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Detecting and tracking traffic lights within an urban landscape, from a camera affixed to a 

moving vehicle, poses a substantial challenge. It necessitates the development of a reliable 

traffic light detection and tracking system that strikes an optimal balance between precision 

and real-time processing capabilities. Driven by this imperative, this study puts forward a 

novel traffic light detection methodology that harnesses the synergistic power of 

convolutional neural networks (CNN) and recurrent neural networks (RNN). The CNN, 

renowned for its self-learning capability, is employed for effective feature extraction, while 

the RNN is leveraged to retain information from video frames, thereby facilitating more 

reliable predictions. These two types of neural networks are amalgamated into a singular, 

expansive neural network, working in unison. The input video is initially processed through 

the CNN, leading to the extraction of spatial features. Subsequently, it is fed into the RNN 

for the extraction of temporal features. The final determination of the traffic light state is 

based on the combined usage of these extracted features. The addition of temporal features 

significantly bolsters overall performance without escalating computational complexity. 

The proposed methodology was trained and evaluated using two distinct datasets: the 

DriveU Traffic Light Dataset and the Bosch Small Traffic Lights Dataset, both of which 

include video frames captured by a camera mounted on a moving vehicle. Demonstrating 

high detection precision while operating in real-time, the proposed approach exhibits 

significant potential for practical application. 
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1. INTRODUCTION

Advanced driver assistance systems (ADAS) and 

autonomous vehicles have transitioned from the realm of 

fantasy into practical reality, marking significant strides in 

vehicular technology. A plethora of perception-based 

technologies has been seamlessly incorporated into 

contemporary vehicles, empowering them to perform routine 

or repetitive tasks such as highway navigation and parking 

with ease. However, the complex dynamics of urban driving 

present a unique set of challenges that necessitate innovative 

solutions. The technologies deployed must effectively emulate 

human perception and interaction with diverse elements such 

as pedestrians, vehicles, and bicycles. 

One notable component in this technological ensemble is 

traffic light detection, which holds paramount importance for 

both ADAS and autonomous vehicles. It interprets the state of 

traffic lights, thereby informing decision-making processes. 

Despite the inherent challenges such as occlusion, varying 

perspectives, weather conditions, and the similarity with car 

backlights, a robust and reliable traffic light detection system 

is indispensable for real-world driving scenarios. 

The objective of developing a Traffic Light Detection 

System for ADAS is to augment the capabilities of 

autonomous vehicles, equipping them with real-time data on 

traffic lights. ADAS technologies aim to supplement human 

drivers and enhance overall road safety. The following 

encapsulates the primary goals of creating a Traffic Light 

Detection System for ADAS: 

Traffic Light Recognition: The system is designed to 

accurately detect and recognize traffic lights in real-time, 

providing crucial information for autonomous vehicles to 

understand traffic light states and make appropriate 

navigational decisions. 

Enhanced Safety: Recognizing and detecting traffic lights 

allows the system to guide autonomous vehicles in navigating 

intersections and responding to signal changes, thereby 

minimizing the risk of collisions with other vehicles or 

pedestrians. 

Traffic Efficiency: The Traffic Light Detection System for 

ADAS can optimize traffic flow by providing precise 

information about signal timings. It enables vehicles to adjust 

their speed and plan their movements in anticipation of traffic 

light changes, reducing congestion and promoting overall 

traffic efficiency. 
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information, the system assists autonomous vehicles in 

making informed decisions such as when to halt, slow down, 

or proceed through an intersection. It can also facilitate route 

planning by considering traffic light sequences to optimize 

travel paths. 

Reducing Driver Workload: By automating the detection 

and interpretation of traffic lights, the system diminishes the 

cognitive load on human drivers in semi-autonomous vehicles, 

allowing them to concentrate on other aspects of driving and 

reducing the likelihood of human errors. 

Integration with ADAS Systems: The Traffic Light 

Detection System can be integrated with the broader ADAS 

framework, working in conjunction with other sensors such as 

cameras, lidar, or radar to provide a comprehensive perception 

of the environment, thereby enhancing the overall capabilities 

of the ADAS system. 

In essence, the primary intention and goals of developing a 

Traffic Light Detection System for Advanced Driver 

Assistance Systems (ADAS) are centered around enhancing 

safety measures, optimizing traffic efficiency, aiding in 

decision-making processes, and relieving driver workload. By 

accurately identifying and interpreting traffic lights, the 

system plays a pivotal role in the progression of autonomous 

driving technology, fostering the creation of safer and more 

efficient transportation systems. 

The conundrum of traffic light detection within Advanced 

Driver Assistance Systems (ADAS) hinges on the precise and 

reliable identification of traffic light states in real-time. This is 

crucial in assisting autonomous vehicles in making apt driving 

decisions. The problem emerges from the complexity and 

variability inherent to traffic light scenarios, which encompass 

variations in lighting conditions, occlusions, and the presence 

of other objects within the scene. The challenge lies in 

devising robust and efficient methodologies capable of 

detecting and recognizing traffic lights, thereby ensuring the 

safety and efficiency of autonomous vehicles at intersections. 

The research domain of traffic light detection in Advanced 

Driver Assistance Systems (ADAS) integrates disciplines such 

as computer vision, machine learning, and sensor fusion 

techniques. Computer vision algorithms are enlisted to process 

image or video data captured by vehicular-mounted cameras, 

while machine learning techniques are harnessed to train 

models that can accurately detect and classify traffic lights. 

Sensor fusion, on the other hand, involves the amalgamation 

of data from multiple sensors, including cameras, lidar, and 

radar, to bolster the reliability and accuracy of traffic light 

detection. 

Within the realm of traffic light analysis, the conventional 

paradigm involves searching for the traffic light within the 

image, detecting it, and subsequently discerning its state and 

tracking its position. Recently, self-learning models such as 

Convolutional Neural Networks (CNN) [1] and Recurrent 

Neural Networks (RNN) [2] have been successfully deployed 

to tackle these tasks. A myriad of detection models have been 

proposed, including but not limited to Faster R-CNN [3], You 

Only Look Once (YOLO) [4], Single-Shot MultiBox 

Detection (SSD) [5], and Feature Pyramid Network (FPN) [6]. 

Most of these detection models have been utilized for traffic-

related tasks, but the results achieved often fall short for real-

world driving scenarios. The models are typically either 

accurate or fast, but for safety purposes, an optimal balance 

between speed and accuracy is essential. 

The recent success of deep learning models for computer 

vision tasks [7, 8], inclusive of traffic-related tasks [9, 10], has 

catapulted performance to a new level. This boost can be 

attributed to the development of deep neural networks and 

their training on expansive datasets. To achieve high reliability 

for real-world driving scenarios, many optimizations must be 

considered. In a bid to construct a robust traffic light detection 

system, numerous works based on deep learning models have 

been proposed. These approaches typically enhance either the 

accuracy or the processing speed. Striking a delicate balance 

between accuracy and processing speed is a formidable 

challenge that must be surmounted to establish a robust traffic 

light detection system for autonomous vehicles. 

Guided by the techniques proposed, researchers continually 

strive to develop traffic light detection systems that are 

accurate, reliable, and capable of real-time operation. These 

methodologies ensure that autonomous vehicles can 

effectively perceive and interpret traffic lights, thereby 

facilitating safe and efficient navigation at intersections. The 

relentless pursuit of research and improvements in this field 

contributes to the evolution of advanced ADAS systems, 

inching us closer to the ultimate goal of fully autonomous 

vehicles. 

In our investigation into the task of traffic light detection, 

we introduce a novel hybrid neural network that leverages the 

strengths of Convolutional Neural Networks (CNN) [1] and 

Recurrent Neural Networks (RNN) [2]. This hybrid model is 

designed to take advantage of the feature extraction prowess 

inherent in convolutional neural networks, and the memory 

retention capabilities of recurrent neural networks. The 

amalgamation of these two neural networks has resulted in the 

desired performance, striking an optimal balance between 

speed and accuracy. 

In our proposed model, the features extracted from the 

Convolutional Neural Network are concatenated and 

subsequently passed onto a Recurrent Neural Network. This 

hybrid neural network is predicated on an object detection 

model, followed by a Recurrent Neural Network. We 

employed the Single Shot MultiBox Detector (SSD) with 

MobileNet v2 [3] as the backbone model for detection, and 

Gated Recurrent Units (GRU) [4] as a Recurrent Neural 

Network at the decision-making level. The detection model 

was initially pre-trained on the COCO [11] dataset and 

subsequently fine-tuned for traffic light detection. The 

memory capabilities of the GRU were utilized to retain the 

previous state of the traffic light, which proves beneficial in 

predicting the subsequent state. For instance, if the current 

state is red or green, the next state will likely be orange, and if 

the current state is orange, the next state will likely be red or 

green. This information contributes to more accurate 

predictions. 

Generally, the performance of deep learning models can be 

significantly amplified when larger datasets are utilized. 

Additionally, data collected under unconstrained conditions 

can augment the generalization power of the model. For traffic 

light detection, several datasets have been proposed, with the 

most recent ones being the DriveU Traffic Light Dataset [5] 

and the Bosch Small Traffic Lights Dataset [6]. Both datasets 

comprise a set of annotated video frames recorded under real-

world conditions including day and night, sunny and cloudy 

weather, etc. Our proposed model, trained and evaluated on 

these datasets, achieved high performance, outperforming the 

current state-of-the-art. 

The crux of this endeavor lies in developing a hybrid neural 

network for traffic light detection in video streams. In this 

hybrid neural network, features were extracted from various 
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levels of convolutional layers and fed into the recurrent neural 

network. This strategy proved advantageous for the task at 

hand, as it facilitated the seamless integration of spatial and 

temporal features. As corroborated by our experimental results, 

the proposed hybrid neural network achieves superior 

performance in terms of both accuracy and processing speed, 

surpassing the existing state-of-the-art works. 

The key findings of the proposed hybrid neural network 

include: 

⚫ The implementation of a detection model predicated 

on a convolutional neural network. 

⚫ The fusion of features at different levels, which 

significantly bolstered the performance of the traffic 

light detection system. 

⚫ The deployment of Gated Recurrent Units (GRU) at 

the decision-making level, which amalgamated low, 

mid, and high-level features for precise prediction. 

⚫ The evaluation performed using two distinct datasets, 

which attested to the efficiency of the proposed 

network. 

The remainder of the paper is structured as follows: Section 

2 is devoted to related works. The proposed approach is 

described in detail in Section 3. Section 4 presents and 

discusses the experimental results. Finally, Section 5 draws 

conclusions from the study. 

 

 

2. RELATED WORKS 

 

Traffic light detection is a critical component for Advanced 

Driver Assistance Systems (ADAS) and autonomous vehicles. 

To establish a reliable traffic light detection system, numerous 

methodologies have been proposed, particularly recent ones 

that leverage deep learning techniques. For a more holistic 

review of traffic light detection, readers are encouraged to 

refer to studies [11, 12]. Deep learning and neural networks 

have been successfully deployed to enhance the performance 

of traffic light detection systems. 

In this vein, Kulkarni et al. [13] proposed a traffic light 

detection and recognition system underpinned by the Region-

Based Convolutional Neural Network (R-CNN) [14] with the 

Inception v2 backbone [15]. They utilized the Selective Search 

method [16] for region proposal. Each proposed region 

underwent processing by Inception v2, and a Support Vector 

Machine (SVM) classifier was employed for traffic light 

recognition. This method was tested on the Indian Traffic 

Lights Dataset, and it achieved low accuracy and slow 

processing speed. 

Another traffic light detection methodology for autonomous 

cars was put forth in the study [17]. This was predicated on 

Adaptive Thresholding [18] and a modified version of the 

VGG-16 Convolutional Neural Network [19]. The input data 

underwent preprocessing, and the region of interest was 

proposed using Adaptive Thresholding and morphological 

operations. Further processing was performed using the VGG-

16 Convolutional Neural Network for traffic light detection 

and recognition. The proposed method was trained and tested 

on the LISA Traffic Light Dataset. It achieved an accuracy of 

89.6% for the recognition task and an accuracy of 92.67% for 

the detection task. However, the processing time of the 

proposed method was exceedingly slow, rendering it 

unsuitable for real-world application. 

Ouyang et al. [20] introduced a traffic light detection system 

that leverages a combination of a heuristic detector module 

and a convolutional neural network classifier. The heuristic 

detection module was used to generate candidate regions 

potentially containing traffic lights, while the convolutional 

neural network was employed to classify each proposed 

candidate region. The proposed approach was trained and 

evaluated on several public traffic light datasets, resulting in a 

rather low recall of 31.4% due to the generation of many false-

negative samples. 

The YOLOv3 [21] model was integrated with prior maps 

for traffic light detection in the study [22]. YOLOv3, an 

acclaimed state-of-the-art object detection model, was initially 

trained on the MS COCO dataset [23]. The transfer learning 

technique was applied to the YOLOv3 model to repurpose it 

for traffic light detection. This model was then fine-tuned on 

two datasets, namely the DriveU Traffic Light Dataset and the 

LISA Traffic Light Dataset. The output of the detection model 

was synthesized with prior maps to select the relevant traffic 

light. The approach was evaluated on a custom video sequence, 

revealing that the proposed method achieved acceptable 

accuracy (60% to 80%) across different datasets, albeit with a 

quite slow processing speed. 

Feng et al. [24] proposed a multi-scale attention network for 

traffic light detection. This multi-scale network comprised a 

base neural network, an attention module, and a detection 

module. ResNet 101 [25] served as the base network for 

feature extraction. Three attention modules at different scales 

were deployed to combine low-level features from the base 

network with layers from the up-sampled layers. The attention 

module's primary function was to construct feature maps laden 

with rich information for traffic light detection. The detection 

module consisted of three stages, drawing inspiration from the 

YOLOv3 model [21]. The proposed method was trained on 

public datasets such as LISA Traffic Light Dataset and Bosch 

Small Traffic Lights Dataset, and then evaluated on a custom-

made dataset. The resulting performance indicated a low 

accuracy of 41.17% on the proposed dataset, with an 

acceptable processing time of 45 ms. 

Wang et al. [26] augmented the YOLO v4 model [27] for 

traffic light detection. The model was enhanced to detect 

small-sized traffic lights by improving the bottom of the 

backbone to extract more relevant features. Furthermore, 

uncertainty prediction was introduced to improve the 

bounding box prediction, based on a Gaussian model applied 

on the coordinates. The proposed improvement bolstered the 

detection accuracy compared to the original YOLO v4. 

Another traffic light detection system was proposed that 

integrated handcrafted features and the YOLO model [28]. A 

compilation of handcrafted features such as color, shape, and 

texture were fused based on an integral channel feature. 

Subsequently, the fused features were injected into the YOLO 

model to detect the state of the traffic light. The proposed 

system was evaluated on the Bosch Small Traffic Light 

Dataset and achieved acceptable results. 

Most of the existing methods grapple with low precision or 

slow processing speed, which are not suitable for real-world 

applications that demand high precision and real-time 

processing. To address these challenges, we propose a novel 

hybrid neural network that strikes an optimal balance between 

precision and processing speed. More details about the 

proposed method are presented in the subsequent section.
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3. PROPOSED APPROACH

Considering the requirements of traffic light detection and 

tracking and the different features collected using different 

neural network models, we propose to combine convolutional 

neural networks and recurrent neural networks to detect and 

track traffic lights in video. The CNN was used due to its 

power in extracting spatial features that enable a high detection 

precision. The RNN has deployed thanks to its ability in 

extracting temporal features that enable the tracking of the 

traffic light. The final prediction is generated based on the 

combination of the spatial and temporal features. The 

proposed approach is composed of an object detection model 

and a recurrent neural network that predict the location and the 

state of the traffic light by fusing different predictions. As a 

detection model, we propose to use the SSD model with the 

mobile v2 backbone. GRU network was used for the decision-

making level. Figure 1 present a detailed flowchart of the 

proposed approach for detecting and tracking traffic based on 

the combination of the SSD model based on the mobileNet 

backbone and the GRU network. 

Figure 1. Flowchart of the proposed approach for detecting 

and tracking traffic light 

Based on the concise requirements of object detection, the 

SSD was deployed due to its high detection accuracy and real-

time processing. Besides, we integrated a lightweight 

backbone to make the proposed approach suitable for mobile 

devices. Then, the GRU was attached to extend the tracking 

power of the network and enhance the final prediction 

accuracy. The final decision is generated after processing 

every 10 frames and fusing the decisions over those frames. 

The pipeline of the proposed approach is presented in 

algorithm 1. 

Algorithm 1 

Initializing the input frames from the camera 

For frames <= 10, frames ++, do 

  If SDD does not detect traffic light then 

    Final prediction = no traffic light 

  Else  

    SSD predict the location of the traffic light 

    SSD predict the state of the traffic light  

    GRU track the traffic light  

    GRU predict the state of the traffic light 

    Final prediction = location of the traffic light 

    Final prediction = state of the traffic light 

  End If 

End For 

To balance the performance and the computation 

complexity, a balancing index was proposed based on the 

accuracy improvements of different models. The balancing 

index can be computed as (1). 

𝐵𝑥 =  𝑎ℎ − max(𝑎𝑆𝑆𝐷 , 𝑎𝐺𝑅𝑈) (1) 

where, 𝑎ℎ  is the accuracy of the hybrid model, 𝑎𝑆𝑆𝐷  is the

accuracy of the SSD model and 𝑎𝐺𝑅𝑈 is the accuracy of the

GRU network. To maximize the accuracy improvement and 

achieve the best balance, relation in (2) must be respected. 

max
𝑎𝑆𝑆𝐷,𝑎𝐺𝑅𝑈

𝐵𝑥 =
(1−2𝑚𝑆𝑆𝐷+ 𝜀)²

4+ 𝑚𝑆𝑆𝐷+𝜀
(2) 

where, 𝑚𝑆𝑆𝐷  is the miss rate of the SSD model and 𝜀  is a

positive calibration variable smaller than one. The best 

condition can be achieved by respecting the condition in (3). 

𝑎𝑆𝑆𝐷 =  𝑎𝐺𝑅𝑈 = (1 − 2𝑚𝑆𝑆𝐷 + 𝜀)/2 (3) 

To prove the condition presented in (3), we analyzed the 

accuracy improvement for different conditions. The accuracy 

improvement can be computed as (4). 

{
− 𝑎𝑆𝑆𝐷 𝑎𝐺𝑅𝑈 +  𝑎𝑆𝑆𝐷 +  𝑎𝑆𝑆𝐷𝜀 + (1 − 2𝑎𝑆𝑆𝐷)𝑚𝐺𝑅𝑈 − 𝜀, 𝑎𝑆𝑆𝐷 ≥  𝑎𝐺𝑅𝑈

(𝜀 − 𝑎𝐺𝑅𝑈 − 2𝑚𝐺𝑅𝑈)𝑎𝑆𝑆𝐷 +  𝑚𝐺𝑅𝑈 +  𝑎𝐺𝑅𝑈 −  𝜀, 𝑎𝑆𝑆𝐷 <  𝑎𝐺𝑅𝑈
(4) 

Since - 𝑎𝑆𝑆𝐷 ≤ 0  and 𝜀 − 𝑎𝐺𝑅𝑈 − 2𝑚𝐺𝑅𝑈 < 0  for both

conditions of the accuracy improvements. The balancing index 

reach each maximum for 𝑎𝑆𝑆𝐷 =  𝑎𝐺𝑅𝑈. The maximum value

of the balancing index can be computed as (5). 

max
𝑎𝑆𝑆𝐷,𝑎𝐺𝑅𝑈

𝐵𝑥 = − (𝑎𝑆𝑆𝐷 −
(1−2𝑚𝑆𝑆𝐷+ 𝜀)

2
 )

2

+

(1−2𝑚𝑆𝑆𝐷+ 𝜀)2

4
+ 𝑚𝑆𝑆𝐷 − 𝜀

(5) 

The maximum value of the balancing index is a quadratic 

polynomial with 𝑎𝑆𝑆𝐷  as the main parameter and when the

condition in (4) establishes, the maximum value in (2) is 

achieved. 

The model fusion method achieves a good accuracy 

improvement for the condition 0<  𝑚𝐺𝑅𝑈 < 𝜀 < 0.3. knowing

that 𝑚𝑆𝑆𝐷 ≤  𝑚ℎ (𝑚ℎ is the miss rate of the hybrid model) and

to achieve the highest balance between the performances and 

the computation complexity, we fix 𝑚𝑆𝑆𝐷 = 0.05 and 𝜀 = 0.1.

considering the conditions mentioned earlier, the maximum 

accuracy improvement can be achieved for 𝑎𝑆𝑆𝐷 =  𝑎𝐺𝑅𝑈 =
0.5. Based on the analyses performed in the precedent formula, 

the improvement of the miss rate can be computed as (6). 

𝐵𝑚 =  𝑚𝑆𝑆𝐷 − 𝑚ℎ

𝐵𝑚 =  𝑚𝑆𝑆𝐷 (𝑎𝐺𝑅𝑈 − 𝜀) − (1 − 2𝑚𝑆𝑆𝐷)𝑚𝐺𝑅𝑈

𝐵𝑚 =  0.5𝑚𝑆𝑆𝐷 − 0.05
(6) 

where, 𝑚𝐺𝑅𝑈  is the miss rate of the GRU network.

Considering the formula presented in (7), the miss rate of the 

hybrid model is smaller than the miss rate of the SSD model. 

By summarizing the theoretical analyses presented above, the 

best balancing index can be achieved for the following 

numerical conditions in (7). 

𝑚𝑆𝑆𝐷 ≈ 0.05, 𝑚𝐺𝑅𝑈 > 0.1
𝑎𝑆𝑆𝐷 =  𝑎𝐺𝑅𝑈 = 0.5, 𝜀 ≈ 0.1

(7) 

In this work, we looked for achieving the best balance 

between performances and computation complexity while 

considering the available computation resources. Thus, we 

combined the mentioned neural network models to perform 

the traffic light detection task. 
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Figure 2. Architecture of the SSD model 

 

Generally, the SSD model is composed of a backbone 

model, MobileNet v2 in our case, and SSD layers which are 

based on convolution layers. Figure 2 presents the architecture 

of the SSD model. 

The SSD model was designed for real-time object detection. 

It uses predefined anchors to eliminate the need for a region 

proposal mechanism. Thus, it speeds up the processing time 

but drops the accuracy. To recover the accuracy, the SSD 

model applies some techniques such as multi-scale features 

and computes the size of the predefined anchors based on the 

input data. Those techniques allow the recovery of the 

accuracy and the maintenance of the real-time processing 

speed using lower resolution images compared to other object 

detection models. 

To detect objects, the SSD model computes the location 

parameters and the class score using 3×3 convolution filters. 

Each computed filter generates N+4 channels where N is the 

number of classes and 4 is the bounding box parameters (x, y, 

h, w). Then it predicts each location. The SSD model uses 

multi-scale feature maps to detect objects of different sizes. 

Low-resolution feature maps are used to detect small objects 

and high-resolution feature maps are used to detect large 

objects. Figure 3 presents an illustration of the use of low-

resolution and high-resolution feature maps. 

The five SSD layers are considered multi-scale feature maps 

for object detection. As illustrated in Figure 2, six predictions 

are made by the SSD model where the first one is from the 

middle of the backbone network and the five SSD layers. The 

use of multi-scale feature maps significantly improves 

accuracy. Besides, the choice of predefined anchors has a big 

role in the improvement of accuracy. 

Instead of using a random box and optimize them in the 

training process, the SSD model carefully selects the 

predefined anchors using the k-means cluster algorithm. The 

data and its annotation were fed to a k-men cluster then the 

sizes of the ground truth bounding box were clustered to get a 

close overview of the desired sizes. The centroid of each 

cluster was considered as a predefined anchor. The SSD model 

uses four or six predefined anchors based on the input data. 

 

 
 

Figure 3. High-resolution (left) vs low-resolution (right) 

 

The predefined anchors are chosen manually and this is a 

very sensitive step that must be performed carefully. The SSD 

model assigns each feature map of the multi-scale feature 

maps with a scale value. Feature map of the backbone gets the 

smallest scale value 0.1 then this value increases linearly until 

achieving its maximum 0.9 at the last feature map. To compute 

the high and the width of the predefined anchor, the scale value 

and the aspect ratio were combined. The high (h) and the width 

(w) of the predefined anchor are computed as (8). 

 

ℎ = 𝑠𝑐𝑎𝑙𝑒 × √𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜  

𝑤 =  
𝑠𝑐𝑎𝑙𝑒

√𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜
  

(8) 

 

In real life, objects have a fixed shape of different sizes. In 

this work, we propose to detect traffic lights with having a 

fixed rectangular shape with a vertical or horizontal 

orientation and different sizes based on the distance separating 

the acquisition camera from the target traffic light. Figure 4 

presents an illustration of traffic lights at a different orientation. 

Also, traffic lights do not occupy more than 10% of the total 

size of the image. So, after computing the k-mean cluster on 

the proposed datasets, we get six predefined anchors for each 

dataset where three are used to detect horizontal traffic lights 

and the three others are used to detect vertical traffic lights. 

To generate bounding box prediction, the SSD model 

introduces the matching strategy which classifies predictions 

as positive or negative matches. Only positive matches are sent 

for further processing. If the IoU (intersection over the union 

of ground truth box and a redefined anchor) value is greater 

than 0.5 then the prediction is considered as a positive match. 

Otherwise, it is a negative match. This matching strategy 

ensures to predict shapes close to the predefined anchors. Thus, 

the predictions are more diverse and the training is fast and 

stable. 

 

 
 

Figure 4. (a) Horizontal traffic light, (b) Vertical traffic light 

 

The detection model was based on the MobileNet v2 

backbone which is a lightweight convolutional neural network 

model designed for implementation on mobile embedded 

devices. The MobileNet achieves high accuracy with a 

minimum of computation resources due to the use of inverted 

residual blocks. An inverted residual block is composed of a 

1×1 convolution with a ReLU6 activation function followed 

by a 3×3 depthwise convolution (Dwise) and 1×1 convolution 

without any non-linear activation function. The ReLU6 is an 

activation function that transforms any negative activation to 

0 and any activation greater than 6 to 6 and maintains other 

values. This activation function was used to prevent the weight 

from becoming too high to optimize memory usage. Figure 5 

presents the inverted residual blocks architecture. The main 

idea behind removing the non-linear activation function at the 

output level of the inverted residual block was as they claimed 

[7] that the use of the ReLU6 again in the block will make the 

deep network act as a linear classifier at the non-zero part of 

the output domain. 

For the downsampling process, the MobileNet uses similar 

blocks to the inverted residual blocks but without residual 

connection and with a stride of 2. As proved in the study [25], 

using stride convolution instead of max pooling is more 

efficient for convolutional neural networks designed for 
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embedded implementation. 

The MobileNet achieves high performance in many 

applications such as image classification, object detection, and 

instance segmentation using fewer computing resources 

compared to state-of-the-art models. Based on the advantages 

of the MobileNet for embedded implementation, we propose 

to use it as a backbone for the SSD model for traffic light 

detection. 

Figure 5. Inverted residual block 

After detailing the detection model, we will describe the 

decision-making level based on the GRU network. The GRU 

is the last generation of recurrent neural networks. It is 

composed of a reset gate and an update gate. It used the hidden 

state to transfer information. An illustration of the GRU is 

presented in Figure 6. The update gate is used to decide what 

information to eliminate and what information to store. The 

reset gate is used to decide on the amount of past information 

to forget. The GRU has few parameters to learn. So, it can be 

processed fast for real-time processing and grantee high 

performance. 

Figure 6. Gated recurrent unit (GRU) 

To make predictions based on GRU, we propose a two 

layers network where each layer is composed of 1280 GRU. 

The proposed GRU network is illustrated in Figure 7. The 

features extracted from the middle layer of the backbone 

network and the features extracted from the SSD layers are 

concatenated and fed to the GRU network. The GRU network 

store information from consecutive frames and use them to 

generate predictions. The state of the traffic light can be 

predicted from more than one sequence for more trusted 

predictions. The old state of the traffic light can be used as an 

important feature. Figure 6 present the proposed GRU network. 

Figure 7. Proposed GRU network for decision-making level 

This helps to reduce prediction probabilities and achieve 

better performance. The current state can be predicted and the 

next state can estimate based on the current state. As a result, 

the processing time can be reduced and the prediction accuracy 

can be enhanced. At the experimental results, those guesses 

will be proved with empirical results. 

The proposed traffic light detection system is based on two 

components. The first one is the object detection model which 

is the SSD model and the second one is a recurrent neural 

network which is the GRU network. The proposed model for 

traffic light detection is illustrated in Figure 8. The 

combination of those components allows detecting traffic 

lights in videos at real-time processing. The SSD model with 

MobileNet backbone was used for feature extraction and to 

make predictions and the GRU network was used to store 

temporal information for better predictions. The MobileNet 

was used to process the input videos in real-time with low 

computation complexity. The SSD model improved the 

detection accuracy using a set of techniques such as the 

matching strategy, the multi-scale feature maps, the use of 

convolution layers instead of fully connected layers to 

generate predictions, and other techniques to reduce the 

computation complexity. 

In this work, we the combination of spatial and temporal 

features for traffic light detection and tracking. Compared to 

existing methods, the proposed approach has many advantages 

such as the lightweight model based on the mobileNet and the 

use of the GRU network for final predictions which consider 

the state change sequence. 

Figure 8. Proposed end-to-end convolutional neural network recurrent neural network for traffic light detection 
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4. EXPERIMENT AND RESULTS 

 

In this section, we provide an overview of the experimental 

environment used for the implementation of the proposed 

approach then the achieved results will be presented and 

discussed. 

The experimental environment used for the implementation 

of the proposed approach is composed of a desktop with a 

Linux operating system equipped with an Intel i7 CPU with 32 

GB of RAM and an Nvidia GTX960 GPU with 2048 CUDA 

cores and 4 GB of memory. The proposed model was 

developed based on the TensorFlow deep learning framework. 

The CUDA library was used for GPU acceleration and the 

open cv library was used for image manipulation. To train and 

evaluate the proposed approach, we propose to use two 

challenging datasets. The first is the DriveU traffic light 

dataset [5] and the second is Bosch Small Traffic Lights 

Dataset [6]. 

The DriveU traffic light dataset was designed to provide a 

huge number of traffic lights with a focus on high diversity in 

the visual appearance of the collected samples. The dataset 

was collected by recording videos in 11 German cities with a 

frequency of 15 FPS using a camera of 2 megapixels. It 

contains 232,039 annotated traffic lights from 344 labels by 

taking into account the state, the orientation, the relevance, 

pictogram, number of units, and many others. 

Bosch Small Traffic Lights Dataset was designed for 

tracking, detecting, and classifying traffic lights in a real 

environment. The dataset contains more than 13427 images at 

a resolution of 1280×720. The images were collected using an 

RGB camera in El Camino Real in the San Francisco Bay Area 

in California. 24000 traffic lights were labeled using bounding 

boxes with the identification of the state of each traffic light. 

At the testing process, only 4 labels (red, yellow, green, off) 

were considered. 

As evaluation metrics, we propose to use different metrics 

for different datasets. For the DriveU traffic light dataset, the 

recall (R) was defined as an evaluation metric. The recall is the 

true positive rate which provides an idea on the percentage of 

total relevant outputs correctly predicted. The recall is defined 

as (9). 

 

R= TP/(TP+FN) (9) 

 

where, TP is the true positive and FN is the false negative. 

For the Bosch Small Traffic Lights Dataset, the mean 

average precision was used as an evaluation metric. The 

precision provides information on the percentage of the 

relevant predictions. The precision is defined as (10). The 

mean average precision (mAP) is the sum of the average 

precisions of all classes divided by the number of classes. 

 

P = TP/(TP+FP) (10) 

 

where, TP is the true positive and FP is the false positive. 

The defined evaluation metrics were proposed to perform a 

fair comparison against state-of-the-art models trained and 

tested on the same datasets used in this work. The performance 

of the traffic light detection system was evaluated using the 

precision of relevant state prediction for each input frame. The 

confusion matrix that computes the difference between the 

target state and the predicted state was reported. 

The proposed model was trained for 50000 iterations on the 

Bosch Small Traffic Lights Dataset and for 100000 iterations 

for the DriveU traffic light dataset because of its large amount 

of training data. The SSD model was pre-trained on the MS 

COCO dataset then it was finetuned on the proposed datasets. 

The evaluation of the proposed model based on the proposed 

evaluation metrics results in a recall of 94.7% on the DriveU 

traffic light dataset and an mAP of 65.3% on the Bosch Small 

Traffic Lights Dataset. Table 1 present a comparison against 

state-of-the-art works on the DriveU traffic light dataset in 

term of recall and processing speed. 

 

Table 1. Comparison against state-of-the-art on the DriveU 

traffic light dataset 

 
Model Recall (%) Speed (ms) 

TL-SSD [5] 92.10 111 

IARA [22] 91.05 97 

Ours 94.70 85 

 

Table 2. Comparison against state-of-the-art models 

 
Model mAP (%) Speed (ms) 

Faster RCNN + ResNet101 [29] 45.07 2638.73 

YOLO v2 [29] 30.63 543.32 

RetinaNet [30] 54.25 108 

Ours 65.30 85 

 

As shown in Table 1, the proposed approach achieves Hight 

performance and outperforms state-of-the-art models in both 

recall and processing speed tested on the same dataset. 

Table 2 shows a comparative study between the proposed 

approach and state-of-the-art models tested on the Bosch 

Small Traffic Lights Dataset. 

Table 1 compares three different models, TL-SSD [5], 

IARA [22], and the proposed model tested on the DriveU 

traffic light dataset, based on their recall percentage and 

processing speed. 

The TL-SSD model achieves a recall rate of 92.10%, 

indicating that it successfully detects and captures 92.10% of 

the actual traffic lights present in the scene. It operates at a 

speed of 111 ms, which indicates the time taken by the model 

to process each frame. 

IARA: The IARA model achieves a recall rate of 91.05%, 

which indicates a robust performance in detecting traffic lights. 

It operates at a speed of 97 ms, similar to the TL-SSD model. 

The proposed model achieves the highest recall rate of 

94.70%, demonstrating its robustness in accurately detecting a 

higher percentage of traffic lights in the scene. It operates at a 

speed of 85 ms, indicating a faster processing time compared 

to the other models. 

The experimental results suggest that the proposed model 

outperforms the TL-SSD and IARA models in terms of recall 

percentage, indicating its effectiveness in accurately capturing 

a higher number of traffic lights. Additionally, the proposed 

model maintains a faster processing speed, making it suitable 

for real-time applications. 

These results demonstrate the robustness of the traffic light 

detection system based on the SSD model, showcasing high 

recall rates and fast processing times. The system effectively 

detects and captures a significant percentage of the traffic 

lights present, ensuring accurate perception for ADAS 

applications. 

By testing on the Bosch Small Traffic Lights Dataset, the 

Faster RCNN + ResNet101 achieves an mAP of 45.07%, 

indicating a moderate performance in accurately detecting and 

localizing traffic lights. However, it operates at a relatively 
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slow speed of 2638.73 ms, which may impact real-time 

applications. 

The YOLO v2 model achieves an mAP of 30.63%, which is 

lower compared to other models. It operates at a faster speed 

of 543.32 ms, making it suitable for real-time applications that 

prioritize speed over accuracy. 

The RetinaNet model achieves an mAP of 54.25%, 

indicating a relatively high level of accuracy in detecting 

traffic lights. It operates at a speed of 108 ms, which is 

significantly faster compared to the previous two models. 

The proposed model achieves the highest mAP of 65.30%, 

showcasing its robustness in accurately detecting and 

localizing traffic lights. It operates at a speed of 85 ms, which 

is faster compared to other models, making it suitable for real-

time applications. 

The experimental results proved that the SSD-based model 

outperforms the other models in terms of both accuracy (mAP) 

and speed. It demonstrates robustness in accurately detecting 

traffic lights while maintaining a fast-processing time. These 

results indicate the effectiveness of the SSD model for traffic 

light detection in ADAS applications, providing a balance 

between accuracy and real-time performance. 

In the Bosch Small Traffic Lights Dataset, the average 

width of traffic lights per image is 9.43 pixels. So, most of the 

proposed models fail in detecting those small traffic lights. To 

overcome this issue and enhance the detection precision, we 

use the proposed model with the multi-scale feature maps to 

take advantage of using information from different feature 

maps and generate an average prediction and we use small 

predefined anchors to fit the size of the detected traffic lights. 

The combination of those features results in a significant 

improvement in terms of precision without hearting the 

processing speed. 

As reported in Table 1 and Table 2, the proposed approach 

achieves state of art on both datasets in terms of 

precision/recall and processing speed. The proposed approach 

based on the combination of an object detection model and a 

GRU network was very effective for traffic light detection in 

real-time. The high performance was achieved thanks to many 

factors. First, using a lightweight convolutional neural 

network as a backbone for the object detection model speed up 

the processing speed. Second, the use of multi-scale feature 

maps enables the possibility of detecting traffic lights at 

different scales without increasing the processing speed 

because of the use of high-resolution images. Third, the 

custom predefined anchors for each dataset allow us to detect 

very small traffic lights. Finally, the use of the GRU network 

helps to store more information from previous frames and use 

them for the prediction of the current frame. An average 

prediction of many frames results in improving the detection 

accuracy and allows the tracking of the state of the traffic light 

and use it for the prediction of the next state. 

The experimental results prove the efficiency of the 

proposed approach based on combining convolutional neural 

networks with recurrent neural networks. The proposed 

approach was suitable for mobile devices through the use of a 

lightweight backbone. That was very important for vehicles 

processing units equipped with limited computations and 

energy. The use of the GRU network has enhanced detection 

precision through collecting temporal features. Considering 

the old state of the traffic light the final decision will be more 

trusted. It is critical to achieving high precision to guarantee 

safety. The combination of the lightweight model and the 

GRU makes the traffic light system useful due to achieving 

real-time processing and high precision. Besides, being 

suitable for mobile devices makes the proposed method 

applicable for real-world applications. 

 

 

5. CONCLUSIONS 

 

Ensuring the safety of the urban environment requires a 

strong emphasis on respecting traffic lights. To enhance this 

safety aspect, it is essential to integrate a reliable traffic light 

detection system into ADAS, which leverages intelligent 

processing of camera data. To build such a robust system, we 

recommend combining a convolutional neural network 

(CNN)-based object detection model with a recurrent neural 

network (RNN). 

For the object detection model, we propose utilizing the 

SSD model with the MobileNet architecture as its backbone. 

This combination has shown promising results in accurately 

detecting and tracking the state of traffic lights, even under 

challenging conditions. To further enhance the system's 

performance, we suggest employing a GRU network with two 

layers, each comprising 1280 units, as the RNN component. 

To validate the effectiveness and robustness of our proposed 

approach, extensive evaluations were conducted on two 

datasets. The reported results substantiate the reliability of our 

traffic light detection system, showcasing its capability to 

detect even the smallest traffic lights in various conditions, 

including different speeds, occlusions, and varying 

perspectives. 

Moreover, to optimize the system's efficiency, we suggest 

exploring compression techniques such as quantization and 

pruning. Applying these techniques can help improve the 

processing speed and reduce the model size, ensuring seamless 

integration with mobile devices without compromising 

performance. 

By following these recommendations, we can enhance the 

safety of the urban environment by effectively detecting and 

respecting traffic lights. The proposed system, combining a 

CNN-based object detection model with an RNN, showcases 

promising results and can be further optimized for real-world 

deployment. The reported results proved that our traffic 

detection system is reliable and can be used to detect very 

small traffic lights at different conditions such as moving 

speed, occlusion, a different point of view, etc. In future work, 

we propose to implement the proposed system in a mobile 

device and tested in a real environment. Besides, more 

compression techniques such as quantization and pruning can 

be applied to the proposed model to speed up the processing 

speed and reduce the model size to better fit the mobile device. 
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