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Diabetic drusen, choroidal neovascularization (CNV), and macular edema (DME) are some 

retinal diseases that can cause severe blindness and vision loss. Early diagnosis of retinal 

diseases is vital to prevent this irreversible damage to the eye. The problem statement of this 

study can be given as presenting new deep learning based results for detecting these retinal 

diseases. For this purpose, OCT dataset was used to detect CNV, DME and Drusen patients. 

This data set, which is frequently used in the literature, consists of CNV, DME, Drusen and 

Normal retina images. RestNet50, InceptionV3, InceptionResnetV2, MobileNet, DenseNet-

201, Xception, EfficentNetB4, EfficentNetB7 and EfficentNetV2S models of the CNN 

architecture were applied to the data set and the performance results of these models were 

obtained. Then, in order to increase the classification performance of each of these models, 

hyperparameter tuning was performed by reducing the learning rate by half in each epoch. 

Later, a hybrid version of the EfficientNetV2S and Xception convolutional neural network 

models, the most successful of these hyperparameter-tuned models, was developed. The 

performance analysis results of our proposed hybrid deep learning model are given by 

comparing them with traditional deep learning models in the literature. These comparison 

results show that the classification success of the proposed model is higher than the success 

of traditional deep learning models in the literature. Thus, the proposed hybrid model can 

shorten the clinical diagnosis time. In addition, the costs of healthcare services can be 

reduced by intervening in treatable diseases earlier, instead of more costly interventions in 

the advanced stages of the disease.  
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1. INTRODUCTION

The human eye, a vital sensory organ, significantly 

influences our quality of life. Unfortunately, today, retinal 

diseases pose a severe threat, often leading to substantial 

visual impairment and even blindness. Among the most 

common retinal diseases are Myopia, Drusen, Diabetic 

Retinopathy (DR), Diabetic Hypertension (DH), Diabetic 

Macular Edema (DME), Glaucoma, Choroidal 

Neovascularization (CNV), Cataract, and Age-related 

Macular Degeneration (AMD). Early detection of these 

diseases is paramount to prevent irreversible ocular disorders 

[1]. In this paper, we present a study focusing on the detection 

of CNV, DME, and Drusen, which are among the most 

prevalent retinal diseases [2-10] and extensively discussed in 

the literature [11-20]. 

CNV is characterized by the formation of small, irregular 

blood vessels in the retina [21]. The inability to transport 

oxygen through the retinal blood vessels often leads to their 

abnormal dilation and fragility [22]. The resulting delicate 

vessels rupture under minimal pressure, resulting in retinal 

hemorrhages. CNV prompts visual loss due to vitreous 

hemorrhage and vasodilation. More than 200,000 people in the 

United States are diagnosed with CNV each year [23]. DME, 

on the other hand, is a condition prevalent among diabetics, 

caused by high blood sugar levels damaging the retinal vessels. 

The fluid from these compromised vessels leaks into the 

macula, leading to blurred vision [24]. Drusen comprises 

yellow deposits of lipids located beneath the retina [25]. 

The progression and detection of retinal diseases are 

observed through irregularities in or near various parts of the 

eye's retina, including the optic disc, blood vessels, and fovea 

[26]. Retinal images are essential for these observations. To 

accurately analyze retinal images, structures like the optic disc 

and macula in the retina's natural structure must be correctly 

identified and differentiated from degenerative signs [27]. 

Ophthalmologists diagnose retinal diseases by analyzing these 

images. However, some studies predict that in the future, a 

scarcity of ophthalmologists may render them unable to cater 

to all retinal patients [28]. This stark disproportion between 

retinal patients and the number of ophthalmologists could lead 

to service delays. Hence, in such a scenario, there would be a 

pressing need for systems that can automatically detect eye 

diseases, thereby assisting ophthalmologists in managing their 

workload. 

Optical Coherence Tomography (OCT) is an imaging 

technique capable of evaluating retinal structures at 

microscopic resolution [29]. OCT measures the time delay 

between light emission and its reflection from the target tissue, 

akin to the sound used in ultrasonography. Due to the high 
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speed of light scans, the reflection is measured as direct 

detection is unfeasible. OCT scans are obtained by rapidly 

scanning the macula from all sides with an OCT light source. 

Similar to ultrasound images, the B-scan is combined to form 

a linear image [30]. Currently, only a limited number of 

datasets containing OCT images are available. In this study, 

we utilized the publicly accessible OCT image dataset 

presented by Kermany et al. [31] in 2018 to detect the 

aforementioned retinal diseases. 

In recent years, the medical field has increasingly leveraged 

artificial intelligence (AI) methodologies, with deep learning 

techniques being applied to medical imaging analysis to yield 

significant advancements. The literature review section of this 

study highlights the numerous recent investigations that utilize 

deep learning models for the analysis of retinal images. 

The primary objective of this study is to employ a deep 

learning approach to detect retinal diseases with a high degree 

of accuracy. To accomplish this, we first applied nine different 

deep learning models to the OCT image database and analyzed 

their disease detection success rates. Additionally, we 

performed hyperparameter tuning to enhance these models' 

performance. Subsequently, we developed a hybrid model that 

we term EffXCeptNet. This model combines two pre-trained 

convolutional neural networks (CNNs), namely 

EfficientNetV2S and Xception, with modified 

hyperparameters. To demonstrate the efficacy of our proposed 

model, we conducted performance evaluations and presented 

the accuracy percentages of the discussed models. According 

to these evaluations, the proposed deep learning model, 

EffXceptNet, achieved accuracy, recall, and precision values 

of 99.90%. The performance analysis results indicate that 

EffXCeptNet outperforms the nine other deep learning models 

applied for the considered eye diseases. While the superior 

performance of EffXCeptNet is demonstrated for the eye 

diseases discussed in this study, we expect this model to yield 

equally successful results when trained with different medical 

image sets, implying that it can be applied for the detection of 

various diseases. 

This study is organized into five sections: 

The Introduction section provides an overview of retinal 

diseases, deep learning methodology, and the aim of this study. 

The Literature Review section summarizes previous studies 

on the detection of retinal diseases. 

The Material and Methods section describes the dataset 

used in this study for retinal disease classification, the deep 

learning methods employed, and the proposed hybrid deep 

learning model. 

The Results section presents the performance outcomes of 

the examined models. It also demonstrates the efficiency and 

success of the proposed model by providing comparative 

analyses of the performance results of the discussed models 

and the proposed model. 

The Conclusion section summarizes the key findings of the 

study. 

 

 

2. LITERATURE REVIEW 

 

Retinal images are typically obtained using imaging 

techniques such as Fundus Fluorescent Angiography (FFA), 

OCT, and Indocyanine Green Angiography (ICG) [32]. The 

literature abounds with studies that employ OCT images for 

the detection of retinal diseases. 

For instance, Lu et al. [33] proposed a deep learning-based 

smart system to classify OCT images into four categories, 

offering predictions that exhibited greater reliability and better 

consistency than those made by experts. De Fauw et al. [34] 

developed a novel deep learning architecture applied to three-

dimensional OCT images, demonstrating performance that 

matched expert detection in some retinal diseases. 

Saha et al. [35] created a system for detecting AMD 

symptoms from OCT images. The proposed system used a 

transfer learning algorithm, eliminating the need for thousands 

of images or a highly specialized deep learning machine. 

Wang et al. [36] proposed a fully automated CNV 

segmentation and diagnosis algorithm using a CNN. They 

employed a clinical dataset that included eye scans of both 

CNV and non-CNV patients, achieving a specificity of 95% in 

their test data. 

Sunija et al. [37] proposed a deeply separable convolution 

model to classify glaucoma and healthy images using Spectral-

Domain OCT (SD-OCT) images. This proposed network 

resulted in a higher overall achievable accuracy with less 

computational complexity and produced effective results. 

Elsharkawy et al. [38] proposed a computer-assisted 

diagnostic method to detect DR using structural 3D retinal 

scans. They used prior shape information to segment retinal 

layers from 3D-OCT images. 

Several studies have also binary-classified DME, Drusen, 

and CNV retina images against healthy retina images. Chan et 

al. [39] proposed a model that uses Principal Component 

Analysis to reduce the size of features extracted from 

GoogleNet, VggNet, and AlexNet. They then designed a 

model capable of classifying Normal and DME OCT images 

using majority voting based on the rule of multiplicity. 

Perdomo et al. [40] presented an OCT-NET model for DME 

diagnosis based on a CNN that could automatically classify 

OCT volumes. Vahadane et al. [41] developed a two-part 

system to classify DME. Initially, they used image processing 

techniques to identify areas with hard exudates and fluid, 

followed by a deep CNN to predict the labels of the regions 

found. Finally, they employed a model to predict DME disease 

with the CNN model. 

Jin et al. [42] developed a multimodal deep learning model 

using Optical Coherence Tomography Angiography (OCTA) 

and OCT images to assess CNV in AMD patients, achieving 

95.5% accuracy for the dataset in their study. Daghistani [43] 

employed a method that includes a CNN for the DME 

classification task. Five models consisting of different 

convolution layers were created to demonstrate the effect of 

convolution. The CNN model with five convolutional layers 

exhibited the best performance in classifying DME, 

corroborating the notion that a higher number of convolution 

layers enhances the accuracy of the model. 

Several studies in the literature, akin to our own, discuss 

machine learning methods used to detect individuals with 

CNV, DME, drusen, and healthy individuals from OCT 

images. 

Kaymak and Serener [11] developed a system for 

automatically detecting AMD and DME from OCT images, 

employing a deep learning algorithm trained on images from 

healthy individuals as well as those with DME, wet AMD, and 

dry AMD. 

Fang et al. [12] introduced a lesion-sensitive CNN method 

for classifying retinal OCT images. They originally designed 

a grid to detect lesions and then generated an attention map 

from the OCT image using this grid. This attention map was 

subsequently incorporated into the classification network. 
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Rong et al. [13] proposed a surrogate-assisted classification 

method to automatically classify retinal OCT images based on 

CNN. They first reduced the noise in the images, removed the 

masks by applying morphological thresholding and 

broadening, and used these images to create surrogate images. 

The test images were then estimated by averaging the outputs 

from the CNN model trained on representative images. 

Rastogi et al. [14] endeavored to detect DME, CNV, and 

drusen from OCT images. They proposed a detection model 

based on deep learning architectures to detect retinal diseases, 

utilizing a Dense Connected Convolutional Neural Network 

(DenseNet) and achieved 98% accuracy on the training set. 

Hwang et al. [44] integrated cloud computing with AI and 

telemedicine in their study for the diagnosis of AMD. They 

designed a user-friendly cloud system website, enabling 

anyone with an internet connection and a computer to use the 

AI model. 

Li et al. [15] proposed a model that categorizes retinal 

patients into four classes: DME, CNV, normal, and drusen, 

using the pre-trained deep learning method VGG16. They 

achieved a prediction accuracy of 98.6% on a validation 

dataset of 1,000 images. 

Shih and Patel [16] presented a new deep learning 

classification technique applied to OCT retinal images, with 

the dataset comprising one normal and three most common 

retinal disease scans. They evaluated several parameters and 

different classifiers in the training network architecture. 

Adel et al. [17] proposed a multiclassification model based 

on OCT images to detect retinal eye diseases. They used 

transfer learning over direct CNN, employing the Xception 

and InceptionV3 transfer learning models. They opted for the 

categorical hinge loss function (known as SVM loss) over 

softmax loss to classify four eye diseases. 

Berrimi and Moussaoui [18] proposed a new CNN 

classification architecture based on deep learning and transfer 

learning, using retinal images obtained from the OCT device. 

They compared their architecture's performance with pre-

trained models such as VGG16 and InceptionV3 and achieved 

98.5% accuracy on the test set. 

Gupta et al. [19] aimed to design an AI-based automated 

network to help ophthalmologists more accurately identify and 

categorize eye diseases from OCT images, such as drusen, 

DME, and CNV. They achieved 83.66% accuracy 

performance for test images using a CNN architecture. 

Yan et al. [45] developed a classification system based on 

OCT images, dividing them into four categories: drusen, 

inactive CNV, active CNV, and normal. They trained a 

ResNet-34 deep learning model containing a Convolutional 

Block Attention Module (CBAM) on the dataset. 

Saleh et al. [20] used OCT images to classify patients as 

drusen, DME, normal, and CNV. They used transfer learning-

based SqueezeNet and InceptionV3 techniques to classify 

retinal diseases, achieving high performance as a result of their 

study. 

The methodologies, datasets utilized, and performance 

metrics of the studies discussed in the literature review, as well 

as the parameter values of our own study, are all presented in 

Table 1. A review of Table 1 elucidates that OCT images yield 

promising results with high accuracy rates in the detection of 

retinal diseases. 

In several of the studies discussed [39-43], binary 

classification is employed. However, it's important to note that 

real-world problems often manifest as multiclass classification 

issues. In the remaining studies, four distinct retinal diseases 

are classified. The most successful outcomes in quadruple 

classifications, apart from our study, have been achieved by 

Shih and Patel [16], and Berrimi and Moussaoui [18]. 

 

Table 1. The detailed analysis of the models discussed 

 

Study  Method  Data Set  Classification  Accuracy (%) 

Chan et al. [39] (AlexNet, VggNet, 

GoogleNet) + (SVM, KNN, 

RF) 

SERI DME, Normal 93.75 

Perdomo et al. [40] OCT-NET SERI DME, Normal 93.75 

Vahadane et al. [41] CNN Specific DME, Normal Pre: 96.43 

Jin et al. [42] UFNet OCT 

OCTA 

Inactive CNV, Active CNV OCT: 97.85 

OCTA: 98.93 

Daghistani [43] CNN UCSD DME, Normal 82.00  

Kaymak and Serener [11] AlexNet UCSD DME, Drusen, wet AMD, Normal 97.10  

Fang et al. [12] LACNN UCSD Drusen, CNV, DME, Normal 90.10  

Rong et al. [13] CNN Specific, Duke DME, AMD, Normal  95.09  

Rastogi et al. [14] DenseNet UCSD Drusen, CNV, DME, Normal 97.65  

Hwang et al. [44] VGG16,  

InceptionV3, 

ResNet50 

Specific Drusen, active wet AMD and 

inactive wet AMD, Normal 

VGG16: 91.40, 

InceptionV3: 92.67 

ResNet50: 90.73 

Li et al. [15] ResNet50 UCSD Drusen, CNV, DME, Normal 96.30  

Shih and Patel [16] VGG16 UCSD Drusen, CNV, DME, Normal 99.48  

Adel et al. [17] InceptionV3 + SVM, 

Xception + SVM 

UCSD Drusen, CNV, DME, Normal Model 1: 93.00, 

Model 2: 98.00 

Berrimi and Moussaoui 

[18] 

First CNN, 

Second CNN, 

VGG16, 

InceptionV3 

UCSD Drusen, CNV, DME, Normal First CNN: 97.70, 

Second CNN: 98.75, 

VGG16: 93.50, 

InceptionV3: 99.27 

Gupta et al. [19] CNN UCSD Drusen, CNV, DME, Normal 83.66  

Yan et al. [45] ResNet-34 UCSD Drusen, Inactive CNV, Active 

CNV, Normal 

91.29  

Saleh et al. [20] SqueezeNet, 

InceptionV3 

UCSD Drusen, CNV, DME, Normal SqueezeNet: 98.00, 

InceptionV3: 98.40 

Proposed Study EffXCeptNet OCT Drusen, CNV, DME, Normal 99.90 
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In the study by Berrimi and Moussaoui [18], the 

InceptionV3 model demonstrated superior results compared to 

the VGG16 model. Similarly, in the study by Adel et al. [17], 

the Xception model outperformed the InceptionV3 model. 

These results imply that the Xception model, which was 

utilized in these studies and forms a part of our hybrid model, 

is the most successful model. 

High-accuracy detection is particularly crucial in health-

related studies. The literature on disease detection from images 

sets certain performance benchmarks for success. The 

objective of studies conducted in this domain is centered 

around introducing systems that will enhance the success rate 

in disease detection, a principle that our work adheres to. In 

this study, we propose a hybrid model that amalgamates high-

performance deep learning architectures with the aim of 

boosting the accuracy performance in detecting retinal 

diseases from OCT images. 

 

 

3. MATERIALS AND METHODS 

 

In this study, different versions of CNN architecture were 

applied to OCT retinal images database to detect CNV, DME 

and Drusen patients and the performance results of these 

models were obtained. The CNN models discussed in the 

study are RestNet50, InceptionV3, InceptionResnetV2, 

MobileNet, DenseNet-201, Xception, EfficentNetB4, 

EfficentNetB7 and EfficentNetV2S. After that, 

hyperparameter tuning process was performed for each of 

these models to increase their classification performance. 

Then, the proposed model, which is a hybrid version of the 

most successful of these hyperparameter tuned models, 

EfficientNetV2S and Xception CNN models, was developed.  

The study can be evaluated in 4 steps: 

1. We trained discussed CNN models (RestNet50, 

InceptionV3, InceptionResnetV2, MobileNet, DenseNet-

201, Xception, EfficentNetB4, EfficentNetB7, 

EfficentNetV2S) applying OCT image dataset and 

obtained the performance results of each. 

2. We performed hyperparameter tuning to these CNN 

models to increase the classification performances of 

them and presented new performance results. 

3. We developed hybrid CNN model based on the most 

successful models of these hyperparameter tuned CNN 

architectures and measured performance results of our 

model.  

4. We showed the efficiency and success of the proposed 

model by representing comparisons of the performance 

results of the discussed models and the proposed model. 

 

3.1 Convolutional neural network (CNN) 

 

CNN architecture is a deep learning model often used for 

classification in applications with many data, such as images. 

CNN is made up of neurons with biases and weights that 

need to be trained in a manner similar to conventional neural 

networks. Multiplication of inputs and weights is applied in 

each neuron [46]. CNN architecture is a combination of a 

series of successive layers. Following the input layer, where 

an image with width and height is used, as shown in Figure 1, 

there are three main layers: fully connected, pooling, and 

convolution. These layers are added one after the other to form 

a CNN architecture [47]. 

 

3.1.1 Convolutional layer 

The convolutional layer detects features of images such as 

lines, edges, drops of color, etc. The convolutional layer 

creates a feature map that applies a filter to all pixels of the 

image at each cycle and estimates class probabilities based on 

image features. The filter acts on the parts that make up the 

image to check whether the desired feature is available [48-

50]. 

 

3.1.2 Pooling layer 

The pooling or subsampling layer is used to reduce the 

width and height of the activation map, as shown in Figure 2. 

They are special pooling types where the average and 

maximum values are taken. In general, they reduce the number 

of parameters and calculations that increase due to the increase 

in the number of convolutional layers in the network [51-53]. 

 

3.1.3 Fully connected layer  

Fully connected layers come after pooling layers. Attributes 

are obtained from the outputs of the pooling and convolution 

layers from the input images. The fully connected layer uses 

these properties to classify the image into a predetermined 

class. 

 

3.2 The CNN models discussed 

 

3.2.1 ResNET50 network 

He et al. [54] used a network structure called residual neural 

network (ResNet), which took first place at the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC 2015). 

ResNet proposed residual connections between layers, which 

help preserve knowledge gain, reduce loss, and boost 

performance during the training. ResNet50 consists of 50 

layers, including 48 convolution layers, 1 Average Pooling 

layer, and 1 Max Pooling layer. Figure 3 shows the structure 

of the ResNet architecture. 

 

 
 

Figure 1. Layers of convolutional neural networks 
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Figure 2. Max pooling and average pooling filter 

 

3.2.2 InceptionV3 network 

The Inception network is a pre-trained CNN model 

introduced by Google in 2014 [55]. This network consists of 

22 layers, with max pooling and filters of different sizes used 

to extract features at various scales. Small filters are used to 

save time in calculations. In 2015, Google introduced 48-layer 

InceptionV3 [56], where Convolution layers are factored to 

reduce parameters in the Inception model. Two 3×3 filters 

were used instead of 5×5 convolutional filters to reduce 

computation without affecting the performance of the 

networks. The structure of the InceptionV3 architecture is 

shown in Figure 4. 

 

3.2.3 InceptionResnetV2 network 

InceptionResNetV2 is a network consisting of residual 

connections [54] and a combination of the Inception 

architecture [56]. Improves network performance while 

avoiding gradient disappearance and gradient explosion [57]. 

The block diagram of the InceptionResnetV2 architecture is 

shown in Figure 5. 

 

  
 

Figure 3. The architecture of the ResNET50 network model 

 

 
 

Figure 4. Architecture of InceptionV3 network model 

 

 
 

Figure 5. Architecture of InceptionResnetV2 network model 

 

3.2.4 MobileNet network 

MobileNet consists of light deep CNN using deeply 

separable convolutions. This architecture provides an efficient 

model for embedded systems and mobile applications [58]. 

Deeply separable convolution filters consist of point 

convolution filters and deep convolution filters. MobileNet's 

Deeply separable convolution module compresses both 

computational complexity and parameters. It accelerates 

image recognition without loss of accuracy as it enables 

embedded and mobile devices to take full advantage of the 

processing power of the GPU and CPU [59]. Figure 6 shows 

the structure of the MobileNet architecture. 

3.2.5 DenseNet-201 network 

The DenseNet model consists of transition layers, dense 

blocks, growth rates, and the global average pooling layer [60]. 

While In K-layer convolutional networks, each layer has a K 

connection with the next layer, the DenseNet model has a 

K(K+1)/2 connection. Feature maps of each layer and feature 

maps of all previous layers are used as inputs for all 

subsequent layers [61]. DenseNet-201 has three transition 

layers and four dense block depths. Each dense block has two 

convolution layers of different sizes. Each convolution layer 

consists of rectified linear units and batch normalization [60]. 

DenseNet has many advantages, such as strengthening feature 
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propagation, promoting feature reuse, reducing the vanishing 

gradient problem, and reducing the number of parameters [62]. 

The structure of the DenseNet-201 architecture is shown in 

Figure 7.  

 

3.2.6 Xception network 

The Xception architecture [63] introduced by Francois 

Chollet is an enhanced version of InceptionV3 [56]. The 

Xception model is based on deeply separable convolution, 

which divides ordinary convolution into spatial convolution 

and point convolution. Spatial convolution occurs 

independently on each input channel. Point-to-point 

convolution uses 1×1 kernel to evolve from point to point. As 

the number of parameters decreases, the number of 

calculations also decreases. Xception consists of 14 modules 

with 36 convolution layers. Except for the first and last 

modules, the other modules contain linear residual 

connections. The structure of the Xception model architecture 

is shown in Figure 8. 

 

3.2.7 EfficientNet Network 

Tan and Le [64] proposed EfficientNet model, which shows 

higher sensitivity and is more flexible than CNNs. The authors 

used efficient and simple composite coefficients to uniformly 

scale the EfficientNet models depth, width, and resolution 

dimensions. This enables the network using a fixed resource 

budget to achieve higher performance. The EfficientNet 

family consists of eight CNN models, named from 

EfficientNetB0 to EfficientNetB7. From EfficientNetB0 to 

EfficientNetB7, resolution, width, depth, model size, and 

accuracy are increasing.  

 

 
 

Figure 6. Architecture of MobileNet network model 

 

 
 

Figure 7. Architecture of DenseNet-201 network model 

 

 
 

Figure 8. Architecture of Xception network model 
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Figure 9. a) is an example of a basic network. b-d) are conventional scaling that only increases one network width, depth, or 

resolution dimension. e) is the recommended composite scaling method that evenly scales all three dimensions with a fixed ratio 

[64] 

 

The EfficientNet architecture consists of excitation and 

squeeze optimization and Mobile Inverted Bottleneck 

Convolution (MBConv) [65]. MBConv expands the channel 

by 1×1 convolution method, then each image performs a deep 

convolution operation. Deep convolution becomes a feature 

map by performing a convolution method with d x d cores for 

all image channels. Each layer goes through the Swish 

function for the enable function. Unlike the Swish, Tanh and 

Sigmoid functions, it prevents the gradient value from 

reaching near zero saturation throughout the learning process. 

The extracted feature map is replicated with a feature map that 

bypasses the Compression and Excitation Layer to reveal key 

features. Finally, the channel is scaled down by a 1×1 

convolution operation. 

EfficientNetV2 recommended by Tan and Le [66], has 

higher performance and a shorter training time. It uses the 

Fused MBConv layer instead of some MBConv layers used in 

EfficientNet to increase training and efficiency and is up to 

6.8x faster than current models. The EfficientNetV2 

architecture is available in three versions, EfficientNetV2S, 

EfficientNetV2M, and EfficientNetV2L. 

Figure 9 shows the EfficientNet scaling model. Figure 9 

(a)–(d) shows a basic mesh and a traditional scaling technique, 

respectively, while Figure 9 (e) shows the composite scaling 

introduced by Tan and Le [64]. 

 

3.3 Proposed hybrid CNN model – EffXceptNet 

 

To detect retinal diseases, we first applied a deep learning 

model with nine different hyperparameter settings in the OCT 

image database. Next, we developed a hybrid model 

combining the most successful of these models, 

EfficientNetV2S and Xception. Figure 10 shows the 

development stages of our model. 

Figure 11 shows the developed hybrid deep learning model 

architecture. It consists of the combination of two CNN 

models which are EfficientNetV2S and Xception, two flatten 

layers, three fully connected layers, and an output layer. An 

image of 150×150 pixels is given to the model in the input 

layer. In our proposed model, two CNN models with high 

performance on the OCT dataset were combined. The 

Xception model produces 2,048 features in training, and the 

EfficientNetV2S model produces 1,280 features in training. A 

total of 3.328 features are obtained by combining the features 

of both models with the concatenate method. These features 

are given as input during the classification phase. ReLU 

activation function is used in fully connected layers. At the 

same time, Lasso Regression (L1 regularization) value was 

chosen as 0.001 in fully connected layers to prevent overfitting. 

The softmax function used in the last layer of the proposed 

architecture calculates the probabilistic distribution of the 

input image for four classes in the trained network. 

 

 
 

Figure 10. The development stages of the proposed hybrid model 
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Figure 11. Structure of proposed hybrid model-EffXceptNet 

 

The model we propose is trained with the Adam optimizer. 

The Adam optimization algorithm has recently been widely 

used in deep learning applications in computer vision. There 

are various studies in the literature about the efficiency of 

Adam Optimizer and its effective results in deep learning [67-

70]. In our study, the Adam optimization algorithm was 

applied to improve the weight coefficients of the network.  

Learning rate is one of the most important hyper parameters 

in model training. We have choose learning rate as 0,001 

initially, after several trainings on the training and validation 

data sets. Learning rates were chosen as 0.1, 0.01, 0.001 and 

0.0001, respectively. The best performance and ideal training 

speed were achieved in model training, where the learning rate 

was initially selected as 0.001. During the model training, we 

halved the learning rate in each epoch. The purpose of this is 

to increase the learning rate by starting the learning rate from 

a large value. The learning rate was reduced throughout the 

training to avoid the risk of not reaching the global optimum 

value.  

The categorical cross-entropy loss function, which is a 

commonly used metric in multiple classification problems, 

was used on the validation data set. The batch size was 

determined as 16. With the validation dataset, the loss, 

accuracy, precision and recall rates of our model were 

observed during training. The dataset used within the scope of 

this study, its features and the distribution of training, 

validation and test datasets are specified in Section 3.4. 

 

3.4 Dataset 

 

Table 2. Distribution of OCT dataset 

 
Image Class Total Training Validation Testing 

Healthy 26,565 25,315 1,000 250 

CNV 37,455 36,205 1,000 250 

DME 11,598 10,348 1,000 250 

DRUSEN 8,866 7,616 1,000 250 

 

Some examples of the dataset are shown in Figure 12. 

 

 
 

Figure 12. Sample images from OCT dataset: a) Healthy; b) 

CNV; c) DME d) DRUSEN 

The public OCT image dataset presented in the study of 

Kermany et al. [31] in 2018 was used in this study. They 

collected these images from five institutes from 2013 to 2017. 

The images in the dataset are in 2-dimensional JPEG format, 

and the image resolutions are different. The image data was 

reviewed by retinal specialists, ophthalmologists, and medical 

students. As shown in Table 2, the dataset contains 84,484 

OCT scans. The data were split into 1,000 test images, 4,000 

validation images, and 79,484 training images. Of the 79,484 

training images, 25,315 were labeled Healthy, 36,205 CNV, 

10,348 DME, and 7,616 Drusen. Test data consists of 250 

images from each class, and validation data consists of 1,000 

images from each class. Images are divided into folders in 

JPEG image format according to their tags. 

 

 

4. RESULTS  

 

4.1 Performance analysis metrics 

 

Accuracy, recall, precision and F-score metrics were used 

as performance measures. Confusion matrix for each model 

was obtained to calculate these metrics. Confusion matrix 

represents the False Negative (FN), False Positive (FP), True 

Negative (TN), and True Positive (TP) values of the classifier 

performs. TP refers to samples that actually express a positive 

state and are predicted positively by the classifier. FP refers to 

samples that actually express a negative condition and are 

predicted as positive by the classifier. FN refers to samples that 

actually express a negative condition and are predicted 

positively by the classifier. TN, denotes samples that represent 

an actually negative condition and are predicted negatively by 

the classifier. 

Accuracy is the ratio of the number of true and false data 

that the classifier correctly predicts to the total number of data.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (1) 

 

Recall is the rate at which samples in the Real class are 

predicted correctly. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  (𝑇𝑃) / (𝑇𝑃 + 𝐹𝑁) (2) 

 

Precision is the ratio of the number of data the classifier 

predicts correctly to the actual number of data. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  (𝑇𝑃) / (𝑇𝑃 + 𝐹𝑃) (3) 
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F-score value is the harmonic mean of precision and recall 

values. 

 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙 
  (4) 

 

In addition, the Wilcoxon Test, a nonparametric test, was 

used to determine the significant difference between the 

original versions of the transfer models and the 

hyperparameter adjusted versions. The reason why we use a 

nonparametric test is that the Accuracy, Precision and Recall 

data are little and do not show a normal distribution. 

 

4.2 Experimental results 

 

Experimental results will be given under 3 stages of the 

study: 

1. Performance results of the examined CNN models 

(RestNet50, InceptionV3, InceptionResnetV2, 

MobileNet, DenseNet-201, Xception, EfficentNetB4, 

EfficentNetB7, EfficentNetV2S) will be given 

applying OCT image dataset. 

2. Hyperparameter tuning will be performed to these 

CNN models to increase the classification 

performances of them, then performance results of 

these hyperparameter tuned models will be given. 

3. Performance results of our model EffXceptNet which 

is a hybrid CNN model based on the most successful 

models of these hyperparameter tuned CNN 

architectures will be given.  

4. Efficiency and success of the proposed model will be 

shown by representing comparisons of the performance 

results of the discussed models and the proposed model. 

1. Training and validation accuracy graphs of discussed 

CNN models are shown in Figure 13. The confusion matrices 

of the models are shown in Figure 14. 

In the first phase of the study, analyzes were performed 

using 9 trained CNN models that are RestNet50, InceptionV3, 

InceptionResnetV2, MobileNet, DenseNet-201, Xception, 

EfficentNetB4, EfficentNetB7 and EfficentNetV2S. The 

performance analyzes showed that the best performed models 

are MobileNet and Xception.  

The accuracy, recall, and precision metrics values of the 

examined models are shown in Table 3. The Xception is the 

model with the best performance, with an overall accuracy rate 

of 99.30% compared to the other models. The second best 

performed model is MobileNet with an overall accuracy rate 

of 99.10%. The lowest performing models are EfficientNetB4 

with 31.60% accuracy and EfficientNetB7 with 55.40% 

accuracy. 

2. Hyperparameter tuning was performed to improve the 

performances of 9 CNN models trained on the OCT dataset. 

We halved the learning rate per epoch. Because when the 

learning rate is too large, the error value increases. At the same 

time, if the learning rate is too low when the model starts 

training, it may cause the global minimum not to be reached. 

The validation and training accuracy graphs obtained with 

hyperparameter tuned CNN models are shown in Figure 15. 

Confusion matrices of nine hyperparameter deep learning 

models used in our study are shown in Figure 16. 

In the second phase of the study, analyzes were performed 

using 9 hyperparameter tuned CNN models. At this stage, the 

learning rate of RestNet50, InceptionV3, InceptionResnetV2, 

MobileNet, DenseNet-201, Xception, EfficentNetB4, 

EfficentNetB7 and EfficentNetV2S models were reduced by 

half in each epoch during the training process. It was seen that 

the hyperparameter tuned CNN models performed better than 

the original CNN models. 

Accuracy, recall, precision and F-score metrics values of 

hyperparameter tuned CNN models are shown in Table 4. 

Among the hyperparameter tuned deep learning models used 

in this study, the EfficientNetV2S and Xception models are the 

best performing models with an overall accuracy rate of 

99.80%. The hyperparameter tuned CNN model with the 

lowest performance is EfficientNetB4, with an overall 

accuracy of 92.10%. 

When Table 3 and Table 4 are examined, it is seen that the 

performance of the 8 CNN models considered except 

InceptionResnetV2 has increased. This result shows the effect 

of hyperparameter tuning on classification success rate. 

In Table 5, it is seen that there is a significant difference 

between the models as the p values of accuracy, precision and 

recall are less than 0.05 (accuracy Z=-2.075, p<0.05; precision 

Z=-2.192, p<0.05; recall Z=-2.194, p<0.05). When looking at 

the mean rank and sum of the ranks, it is seen that this 

difference is in favor of the hyperpameter adjusted models. 

Therefore, the performance of the models was significantly 

increased by adjusting the hyperpameter. 

 

Table 3. Performance metrics values of transfer learning 

models 

 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-

Score 

(%) 

DenseNet-201 95.40 96.00 95.30 95.65 

EfficientNetB4  31.60 36.17 25.50 29.91 

EfficientNetB7  55.40 78.52 55.40 64.96 

EfficientNetV2S  94.80 94.89 94.70 94.79 

InceptionResnetV2  96.60 96.79 96.60 96.69 

InceptionV3  98.30 98.30 98.30 98.30 

MobileNet  99.10 99.10 99.10 99.10 

RestNet50  95.70 96.07 95.40 95.73 

Xception  99.30 99.40 99.30 99.35 

 

Table 4. Performance metrics values of hyperparameter 

tuned deep learning models 

 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-

Score 

(%) 

DenseNet-201 99.50 99.50 99.50 99.50 

EfficientNetB4  92.10 92.18 92.00 92.09 

EfficientNetB7  99.50 99.50 99.50 99.50 

EfficientNetV2S  99.80 99.80 99.80 99.80 

InceptionResnetV2 95.20 95.20 95.20 95.20 

InceptionV3  99.40 99.40 99.40 99.40 

MobileNet  99.60 99.60 99.60 99.60 

RestNet50  98.90 98.90 98.90 98.90 

Xception  99.80 99.80 99.80 99.80 
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Figure 13. Performance graphs of transfer learning architectures. a)DenseNet-201, b)EfficientNetB4, c)EfficientNetB7, 

d)EfficientNetV2S, e)InceptionResnetV2, f)InceptionV3, g)MobileNet, h)RestNet50, and i)Xception 

 

 

 
Figure 14. Confusion matrix graphs of transfer learning architectures. a)DenseNet-201, b)EfficientNetB4, c)EfficientNetB7, 

d)EfficientNetV2S, e)InceptionResnetV2, f)InceptionV3, g)MobileNet, h)RestNet50, and i)Xception 
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Figure 15. Performance graphs of hyperparameter tuned deep learning architectures.  

a)DenseNet-201, b)EfficientNetB4, c)EfficientNetB7, d)EfficientNetV2S, e)InceptionResnetV2, f)InceptionV3, g)MobileNet, 

h)RestNet50, and i)Xception 

 

 
 

Figure 16. Confusion matrix graphs of hyperparameter tuned deep learning architectures.  

a)DenseNet-201, b)EfficientNetB4, c)EfficientNetB7, d)EfficientNetV2S, e)InceptionResnetV2, f)InceptionV3, g)MobileNet, 

h)RestNet50, and i)Xception 
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Table 5. Wilcoxon test results of the performance results of the original versions of the transfer models and the hyperpameter 

adjusted versions 

 
 

Original Model - Hyperparameter Model n Mean Rank 
Sum of 

Ranks 
Z p 

Acc 

Negative Ranks 2 2.50 5.00 -2.075 0.038 

Positive Ranks 7 5.71 40.00   

Ties 0     

Pre 

Negative Ranks 1 4.00 4.00 -2.192 0.028 

Positive Ranks 8 5.13 41.00   

Ties 0     

Rec 

Negative Ranks 1 4.00 4.00 -2.194 0.028 

Positive Ranks 8 5.13 41.00   

Ties 0     

 

Table 6. Comparison of complexity, run time and performance of hyperparameter tuned deep learning models with original 

versions 

 

Models Size (MB) Number of Parameters Model Depth 

Uptime per Epoch (GPU) (sec) Model Accuracy (%) 

Original Model Fine Tuned 
Original  

Model 
Fine Tuned 

DenseNet-201 80 20.2M 708 744 615 95.40 99.50 

EfficientNetB4 75 19.5M 475 1,170 1,100 31.60 92.10 

EfficientNetB7 256 66.7M 814 3,300 3,366 55.40 99.50 

EfficientNetV2S 88 21.6M 480 970 1,300 94.80 99.80 

InceptionResNetV2 215 55.9M 781 590 890 96.60 95.20 

InceptionV3 92 23.9M 312 240 380 98.30 99.40 

MobileNet 16 4.3M 87 190 222 99.10 99.60 

ResNet50 98 25.6M 176 360 490 95.70 98.90 

Xception 88 22.9M 133 510 500 99.30 99.80 

 

 
 

Figure 17. Graphs for hybrid model EffXceptNet. a) Performance, b) Loss, c) Confusion matrix 

 

The complexity of the discussed deep learning models on 

the dataset, the run times per epoch, and their performance are 

given in Table 6. It is seen that the model with the least 

memory size and the number of parameters, the shortest run 

time per epoch is MobileNet. On the other hand, 

EfficientNetB7 deep learning model has the most memory size 

and the number of parameters, longest run time per epoch. The 

performance of all hyperparameter tuned deep learning models 

has improved except InceptionResNetV2 based on uptime per 

epoch and accuracy metrics. The DenseNet-201 and 

EfficientNetB4 models have shown a decrease in running 

times per Epoch, while the other models show a slight increase. 

Due to the increase in the performance of the models, the 

increase in the study times can be ignored, as the diseases in 

the retina are better predicted. 

3. The proposed hybrid model EffXceptNet was trained on 

the same OCT dataset. The training and validation accuracy 

curves of our EffXceptNet model during the training phase are 

presented in Figure 17a, and the training and validation loss 

curves are presented in Figure 17b. The confusion matrix plot 

of the test data of the developed model is shown in Figure 17c. 

Our model shows that the training and validation accuracy 

curves and the training and validation loss curves converge 

throughout the training process. Our hybrid model measured 

accuracy, recall, and precision at 99.90%. It is seen that the 

highest accuracy performance is obtained by the proposed 

model. 

4. Table 7 shows the comparison of the accuracy metrics of 

the proposed hybrid method and the hyperparameter tuned 

versions of the discussed deep learning methods. The proposed 

hybrid model shows the best performance according to 

accuracy results. 

All methods were trained on the same OCT dataset for four 

classes: Normal, DME, Drusen, and CNV. The proposed 

hybrid model shows the best performance. 
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Table 7. Accuracy comparison of the proposed hybrid model 

with other deep learning models 

 
CNN Model Accuracy (%) 

Fine Tuned 

Models 

EfficientNetB4  92.10 

InceptionResnetV2  95.20 

RestNet50  98.90 

InceptionV3  99.40 

EfficientNetB7  99.50 

DenseNet-201 99.50 

MobileNet  99.60 

EfficientNetV2S  99.80 

Xception  99.80 

Proposed Model - EffXceptNet 99.90 

 

 

5. CONCLUSIONS 

 

This paper proposes new results on retinal diseases 

detection using deep learning methods. OCT images were used 

to perform retinal disease classification problem. Nine 

different deep learning models and our model EffXceptNet 

were applied to OCT dataset to classify CNV, DME, and 

drusen patients and healthy individuals. It was observed that 

better performances were obtained after hyperparameter 

tuning performed to the discussed deep learning models. As 

the performance analysis results show, the proposed hybrid 

deep learning model outperformed the other models. The 

classification success of the proposed hybrid model obtained 

as 99.90%. This result shows the effectiveness of the proposed 

model in detecting retinal diseases. 

This work can be turned into software system as an 

automatic disease diagnosis tool that can be used by experts in 

medical departments. In addition, mobile applications can be 

developed to help general practitioners make quick decisions 

about retinal diseases. Thus, the proposed EffXceptNet model 

may shorten the clinical diagnosis time and contributes to the 

early referral of emergency patients to specialist physicians. 

Early treatment prevents the progression of retinal disorders. 

In addition, the costs of health services are reduced by 

intervening in the treatable disease earlier instead of costlier 

interventions in the advanced stages of the disease [71, 72]. In 

addition, models that detect more retinal diseases can be 

developed besides CNV, DME and DRUSEN diseases we 

detected in this study. The proposed model can be expanded 

for to give successful results when different medical image 

sets are trained with this model. That means the proposed 

approach can be used to detect different kind of diseases. First 

of all, a data set containing the diseases to be addressed must 

be obtained. After this data set is trained on the model we 

recommend and the necessary optimizations are made, the 

system will work to diagnose the diseases on which it is trained. 
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NOMENCLATURE 

 

Acc accuracy 

AI artificial intelligence 

AMD age-related macular degeneration 

CBAM convolutional block attention module 

CNN convolutional neural network 

CNV choroidal neovascularization 

DenseNet dense connected convolutional neural 

network 

CPU central processing unit 

DH diabetic hypertension 

DME diabetic macular edema 

DR  diabetic retinopathy 

FN  false negative 

FP  false positive 

GPU  graphics processing unit 

ICG indocyanine green angiography 

ILSVRC 
imagenet large scale visual recognition 

challenge 

KNN k-nearest neighbor 

M million 

MB megabyte 

MBConv mobile inverted bottleneck convolution 

OCT optical coherence tomography 

OCTA optical coherence tomography angiography 

Pre Precision 

Rec Recall 

ReLU rectified linear unit 

ResNet residual neural network 

RF random forest 

SD-OCT spectral domain optical coherence 

tomography 

sec second 

SVM support vector machines 

TN true negative 

TP true positive 

VGG visual geometry group 

3D 3 dimension 

 

Greek symbols 

 

% percentage 

 

Subscripts 

 

Z wilcoxon test statistic value 

p statistical test significance value 
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