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The global rise of skin cancer, accredited primarily to abnormal radiation-induced cellular 

growth, has resulted in millions of fatalities. Early detection and accurate diagnosis can 

potentially ameliorate the survival rate. However, traditional methods for skin lesion 

detection and classification (SLDC) employing machine learning (ML) and deep learning 

(DL) models have demonstrated limitations, notably higher stochastic gradient issues,

increased mispredictions, elevated training losses, and decreased detection and

classification accuracy. Addressing these limitations, we present an optimized Hybrid

SLDC network (HOS-Net). The initial phase of the study saw the augmentation of the

ISIC-2019 dataset, thereby increasing the quantity of images. These images were then

preprocessed to normalize their size and data type. A Deep Convolutional Inverse

Graphics Network (DCIGN) was subsequently developed to identify disease-affected

regions from the preprocessed images. Following this, a Hybrid Deep Kohonen Network

(HDKN) was introduced to extract disease-specific and disease-dependent features from

the segmented images. Additionally, a Swarm-based Pelican Optimization Algorithm

(SPOA) was implemented to extract the optimal features from the HDKN output features.

Ultimately, a Deep Echo Network Machine (DENM) was utilized to classify various

disease types using the pre-trained SPOA features. Simulations conducted on the ISIC-

2019 dataset revealed that the proposed HOS-Net model achieved superior performance,

with an accuracy of 99.13%, precision of 99.13%, recall of 99.25%, and an F1-score of

99.56%. This performance signifies the model's capability to accurately classify and

capture positive cases in the data.
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1. INTRODUCTION

Skin cancer is a burgeoning health issue of global 

significance, with an array of contributing factors such as 

tobacco use, shifting climatic conditions, alcohol 

consumption, dietary habits, viral infections, radiation 

exposure, and lifestyle choices driving the escalating rate of 

diagnoses [1]. As one of the most lethal forms of cancer, skin 

cancer is also notably prevalent, often manifesting as aberrant 

growth of skin cells. The incidence of skin cancer is rising, 

with an alarming 5.4 million new cases diagnosed annually in 

the United States alone [2]. The World Health Organization 

(WHO) has reported an astonishing 53% annual increase in 

the incidence of melanoma cases, with a projected upswing 

in the mortality rate in the forthcoming years. Early detection 

is paramount, as it dramatically enhances survival rates, with 

the chances of survival skyrocketing to nearly 97% when 

skin cancer is detected early, as opposed to a mere 14% when 

diagnosed at an advanced stage. 

The most widespread types of non-melanocytic skin 

cancer are basal cell carcinoma (BCC) and squamous cell 

carcinoma (SCC). These types, BCC and SCC, are more 

prevalent than melanoma, with yearly incidence estimates of 

4.3 million and 1 million cases, respectively. However, these 

figures may be underestimations [3]. Prompt diagnosis is 

crucial in boosting survival probabilities, as the disease's 

deeper penetration into the skin drastically diminishes 

survival rates. Currently, medical practitioners employ 

polarized light magnification and dermoscopy for visual 

examination, taking into account factors such as patient's 

ethnicity, sun exposure, social habits, and medical history to 

facilitate diagnosis [4]. Nevertheless, the process of 

analyzing biopsied lesions remains labor-intensive and time-

consuming, impeding timely medical interventions for skin 

cancer detection. 

Motivation: Despite advancements, the accuracy of skin 

cancer diagnosis remains heavily dependent on the expertise 

of seasoned dermatologists, with a recommended accuracy 

rate exceeding 80%. Given the global dearth of proficient 

dermatologists, the development of image analysis 

algorithms becomes crucial for early-stage skin cancer 

diagnosis and to address the challenges presented by the 

specialist shortage. 

In recent years, artificial intelligence (AI)-enabled 

computer-aided diagnostics (CAD) technologies [5] have 

emerged as a potent tool in the realm of medical imaging. AI-
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based algorithms have demonstrated superior performance 

compared to physicians in diagnosing various diseases [6]. 

AI has found applications in the detection of a diverse set of 

afflictions, such as brain tumors, breast cancer, esophageal 

cancer, lung cancer, and skin lesions. Dermoscopy, CT scans, 

and MRIs have been instrumental in skin imaging, paving the 

way for the development of automated CAD systems [7]. The 

proliferation of skin lesion images and expert-provided 

annotations has spurred research in this field, especially in 

the era of high-speed internet, powerful computing machines, 

and reliable cloud storage, enabling conventional computers 

to function as advanced medical devices. 

Problem Statement: A significant hurdle in AI-driven skin 

cancer diagnosis is the management of imbalanced datasets, 

where certain classes may be overrepresented due to a limited 

number of examples. Data augmentation, the process of 

modifying existing training data to generate new samples, has 

shown promise in ameliorating this issue, particularly in 

medical diagnostic imaging. By utilizing data augmentation 

techniques, AI models can better manage unbalanced datasets 

and enhance classification accuracy. Numerous traditional 

machine learning algorithms heavily depend on handcrafted 

feature engineering. Extracting pertinent features from raw 

data can be laborious and time-intensive, and the 

performance of these models is largely contingent on the 

quality of the selected features. Classic machine learning 

models are prone to overfitting (adhering excessively to the 

training data) or underfitting (oversimplifying the data). 

Striking a balance between bias and variance is pivotal, 

necessitating expertise and meticulous tuning. Fine-tuning 

hyperparameters in conventional AI models can be a time-

intensive process requiring expert knowledge, rendering the 

optimization process challenging and less accessible for non-

experts. 

In this study, we aim to augment the evolution of AI-

driven skin cancer diagnosis by proposing a novel approach 

that addresses the limitations of traditional methodologies. 

Our research concentrates on enhancing diagnostic accuracy, 

particularly in early-stage detection, and tackling the issues 

associated with imbalanced datasets. By bolstering the 

capabilities of AI-based diagnostic systems, we strive to 

boost early diagnosis rates and, ultimately, contribute to 

improving skin cancer survival rates.  

Key Contributions: The unique contributions of this work 

are as follows: 

• The DGCIN model employs pixel relativity 

extraction, wherein a variation in pixels is used to 

identify cancer-affected areas. This allows for 

precise disease localization, overcoming the heavy 

dependency on labeled data common in traditional 

methods. 

• The HDKN model capitalizes on the probabilistic 

Kohonen characteristics of the segmented image to 

discern the connection between different types of 

skin cancer. This method surpasses conventional 

feature extraction methods, which often fail to 

elucidate the relationships between various disease 

classes. 

• The SPOA model is introduced to reduce the 

dimensionality of the feature matrix. It accomplishes 

this by selecting the best features and eliminating 

uncorrelated ones, unlike traditional feature 

selection methods that often discard necessary 

features. 

• The DENM model is developed to conduct 

multiclass skin cancer classification, utilizing 

probabilistic echo properties for the classification 

process. 

• The HOS-Net outperforms state-of-the-art 

approaches in simulations for detecting, segmenting, 

and classifying skin lesions using the ISIC-2019 

dataset. 

The remainder of the paper is organized as follows: 

Section 2 presents a literature survey of both segmentation 

and classification approaches. Section 3 provides a 

comprehensive explanation of the HOS-Net's operation, 

detailing its various algorithms. Section 4 presents the 

simulation results of the HOS-Net and compares them with 

conventional AI, ML, and DL methods. Finally, Section 5 

concludes the paper, discussing future prospects. 

 

 

2. LITERATURE SURVEY 

 

This section covers the methods developed by authors in 

the field of skin cancer segmentation, and classification. 

Further, the survey also contains the cumulative problems of 

each method. These methods encompass a wide range of 

approaches, from traditional image processing techniques to 

state-of-the-art deep learning algorithms. The survey aims to 

explore and analyze the existing body of research on skin 

lesion segmentation and classification methods. Different 

techniques are analysed with strengths, limitations, and 

performance in handling diverse skin lesion images. The 

survey helped to identify common trends, advancements, and 

gaps. The survey also provided insights into potential areas 

for further research and development of more robust and 

reliable CAD systems for skin lesion diagnosis. 

 

2.1 Survey on SLDC segmentation methods 

 

The authors [8] used a melanoma segmentation method 

based on U-net and DL networks. IMLT-DL based skin 

lesion segmentation and classification model was 

implemented in the research [9] along with MFO. In the 

research [10], the authors developed three DL based models 

UNET, RESUNET, improved RESUNET for skin lesion 

segmentation. Table 1 analyses the key findings, advantages, 

and limitations of various SLDC segmentation methods. 

Using a deep-learning based methodology, especially a 

multi-layer residual convolutional neural network (MLR-

CNN), and fuzzy k-means clustering, the authors of the 

research [11] provided a completely automated method for 

segmenting cutaneous melanoma at its early stage (FKM). 

Later-stage cutaneous melanoma was also categorized by the 

study's authors [12]. Using many clinical images, the 

supplied method is tested to determine whether it may aid the 

dermatologist in making a prompt diagnosis of this 

potentially lethal disorder. Using support vector machines, 

random forests, deep neural networks, neural networks, and 

K-nearest neighbor networks, the authors of the research [13] 

demonstrated how these methods was used to differentiate 

between malignant and benign skin tumors. The authors of 

the research [14] presented a two-stream deep neural network 

data fusion framework for classifying a wide variety of skin 

cancers. The proposed strategy integrates two distinct 

methods: A first proposal is made for improving contrast via 

fusion. When the images have been enhanced, they are fed 
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into a pretrained DenseNet201 architecture. Following that, 

the recovered features are optimized using a method called 

skewness-controlled moth-flame optimization (MFO). Using 

swarm intelligence (SI) algorithms, the authors of the 

research [15] explain how to separate the region of interest 

(RoI) around skin lesions in dermoscopy images. The 

Grasshopper Optimization Algorithm achieves the best RoI 

extraction results (GOA). In the research [16], the authors 

demonstrated their efforts in dermoscopy image 

segmentation. To fine-tune the network's hyper-parameters, a 

novel method called Exponential Neighborhood Grey Wolf 

Optimization (EN-GWO) is used. The authors of the research 

[17] created a stacked ensemble architecture based on 

explainable CNNs with the goal of early detection of 

melanoma skin cancer. The notion of transfer learning is used 

inside the stacking ensemble framework, which involves the 

assembly of numerous CNN sub-models that each carry out 

the same classification job. In the research [18], the authors 

proposed InSiNet, a convolutional neural network that uses 

deep learning to distinguish between benign and malignant 

lesions. The mapped images and newly acquired features are 

subjected to transfer learning before a deep learning model 

known as ResNet-50 [19] is used to analyse them. When the 

retrieved features have been further optimised using an 

enhanced grasshopper optimization technique, they are then 

categorised with a naive Bayes classifier. The authors of the 

research [20] established a hierarchical framework for the 

segmentation of skin lesions using a three-step superpixel 

lesion segmentation process. In the article [21], the authors 

described DL as a technique for precisely removing a lesion 

zone from a sample. To begin, the image is segmented using 

Enhanced Super-Resolution Generative Adversarial 

Networks (ESRGAN), which is a technique that is used to 

increase the image's overall quality. The authors of the 

research [22] described a segmentation approach that was 

used to retrieve the afflicted region from an image of skin 

cancer. Because of this, the images are used as input for 

Fuzzy U-net, which does segmentation, and May Fly 

Optimizer, which aims to enhance the range of accuracy, is 

used to optimise the results. SCDNet is the term given to the 

model that was published by the authors in the research [23]. 

This model combines Vgg16 for the purpose of segmentation 

with CNN to classify the various forms of skin cancer. Using 

a collection of images, the authors of the research [24] 

proposed an optimization-based algorithm that could detect 

skin cancer. The segmentation is taken out utilising the U-

RP-Net that was suggested. The Aquila Whale Optimization 

(AWO) method is used to integrate the U-Net and RP-Net 

models, which then results in the suggested U-RP-Net model 

being produced. 

 

Table 1. Summary of SLDC segmentation approaches 

 
Ref. 

No. 
Key Findings Advantages Limitations 

[11] 
Automated segmentation of early-

stage melanoma 
Deep learning-based methodology Lack of comparison with other methods 

[12] 
Categorization of later-stage 

melanoma 
Fuzzy k-means clustering Limited validation on diverse datasets 

[13] 
Differentiation between malignant 

and benign 
Various machine learning methods 

Limited explanation of feature selection and 

extraction 

[14] 
Two-stream data fusion for skin 

cancer classification 
Fusion and MFO optimization 

Lack of comparison with other fusion 

approaches 

[15] 
Separation of region of interest in 

dermoscopy images 
Efficient loss optimization 

Limited explanation of parameter settings for 

GOA 

[16] 
Dermoscopy image segmentation 

using EN-GWO 
Exponential neighborhood selection 

Limited benchmarking with other segmentation 

methods 

[17] 
Stacked ensemble for early detection 

of melanoma 
Transfer learning and explainable CNNs 

Insufficient analysis of ensemble model 

performance 

[18] 
InSiNet for distinguishing benign and 

malignant lesions 

Transfer learning-based feature 

extraction 

Limited discussion on feature optimization 

using grasshopper optimization 

[20] 
Hierarchical framework for skin 

lesion segmentation 

Three-step super pixel segmentation 

process 

Lack of comparison with other segmentation 

approaches 

[21] 
Precise lesion zone removal using 

ESRGAN 

Enhanced Super-Resolution Generative 

Adversarial Networks 

Limited validation on diverse skin lesion 

images 

[22] 
Segmentation of afflicted region in 

skin cancer 
Fuzzy U-net and May Fly Optimizer 

Limited comparison with other optimization 

methods 

[23] 
SCDNet for segmentation and 

classification 

Combination of Vgg16 and CNN for 

skin cancer analysis 

Insufficient validation on larger and diverse 

datasets 

[24] 
Detection of skin cancer using U-RP-

Net 

Utilization of U-Net and Aquila Whale 

Optimization 

Limited comparison with other optimization 

techniques 

 

2.2 Survey on SLDC classification methods 

 

Table 2 provides the summary of SLDC classification 

approaches. The ASRGS-OEN method was first proposed in 

the research [25]; it involves developing a perfect 

EfficientNet model and then fine-tuning its parameters using 

the Flower Pollination Algorithm (FPA). The appropriate 

class labels for dermoscopy images are then located using a 

classification approach called Multiwheel Attention Memory 

Network Encoder (MWAMNE). In the research [26], the 

authors presented a method that greatly improved their 

findings. As far as CNN was concerned, these results were 

eye-opening. The comparison between CNN and Augmented 

Intelligence enabled Deep Neural Networking (AuDNN) [27] 

demonstrates that CNN is superior. Multi-Site Cross-Organ 

Calibration based Deep Learning was presented by the 

authors in the research [28] as a revolutionary approach for 

detecting melanoma skin cancer (MuSClD). In the research 

[29], we saw an example of a tailored CNN termed CCNN 

being applied to the HAM10000 database. Before any actual 
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queries are run against the database, ESRGAN is used to pre-

process the images so that even those with a lower overall 

file size may have a greater resolution. Doing so improves 

efficiency indicators. In the research [30], the authors 

presented a DL method for detecting melanoma and 

distinguishing between benign and malignant melanocytic 

lesions in whole slide images. Both goals might be achieved 

by using their approach (WSI). The authors of the research 

[31] described an automatic method that separates visual data 

from dermoscopy figures using a pre-trained deep CNN 

model and a tree of classifiers to detect melanomas. 

Melanoma was detected using this approach.  

In the research [32], the authors presented a deep learning 

system that relied on transfer learning and used deep 

convolutional neural networks with residue connections to 

successfully complete the task at hand. Several stages of 

melanoma identification using dermoscopy images of skin 

lesions were described by the authors in the research [33]. 

Several of these images were used into the design. For the 

aim of de-noising dermoscopy images, this model offers a 

practical preprocessing method that contains dilation and 

pooling layers to remove hair characteristics. In the research 

[34], the authors provide a technique for the categorization of 

skin lesions using a wavelet transform-based deep residual 

neural network (WT-DRNNet). The proposed approach uses 

wavelet processing, pooling, and normalizing to extract finer-

grained features from images of skin lesions while 

simultaneously filtering out unwanted information. Using the 

Online Region-based Active Contour Model (ORACM) and a 

unique binary level set balance and regularisation operation, 

the authors of the research [35] developed a method for 

extracting the Area of Interest from skin lesions (ROI). The 

collected attributes are then used in a multi-objective 

optimization framework, where it is demonstrated that the 

Non-dominated Sorting Genetic Algorithm (NSGA II) 

achieves the best results. The 1D-CNN was provided by the 

authors of the research [36] to determine how successful, it 

was on the spectrum data collected through spectroscopy. 

VisionTransformer (ViT) network classification model was 

introduced by authors in paper [37]. This model is quite 

distinct from conventional CNN in many respects. At the 

same time, the SGD optimization approach [38] was 

employed to change the pace at which the model was 

learning. The authors of the study [39] produced the final 

hybrid model by combining the image features transfer learnt 

through EfficientNets, information derived from the images 

on colour and texture, and pre-processed metadata regarding 

the patients. An artificial neural network classifier was fine-

tuned using a multi-input single-output (MISO) model that 

received these samples as inputs. Krishna et al. [40] 

developed the deep transfer learning model with AlexNet 

based segmentation and deep learning CNN (DLCNN) based 

feature extraction and classification models. However, these 

models were failed to disease specific, and disease dependent 

features from the dataset. Further, the classification accuracy 

of these methods was very low. 

 

Table 2. Summary of SLDC classification approaches 

 
Ref. 

No. 
Key Findings Advantages Limitations 

[25] ASRGS-OEN for melanoma detection EfficientNet model with FPA fine-tuning Limited validation on diverse datasets 

[26] 
AuDNN outperforms CNN for 

dermoscopy images 

Augmented Intelligence enabled Deep 

Neural Networking (AuDNN) 

Lack of comparison with other advanced 

CNN architectures 

[28] 
MuSClD for melanoma skin cancer 

detection 

Multi-Site Cross-Organ Calibration based 

Deep Learning 

Limited explanation of cross-organ 

calibration process 

[29] CCNN applied to HAM10000 database 
ESRGAN preprocessing for improved 

resolution 

Lack of detailed evaluation on 

classification performance 

[30] 
DL method for melanoma detection in 

whole slide images 

Detection and classification achieved using 

WSI 

Limited benchmarking against other 

whole slide image approaches 

[31] 
Automatic method for melanoma 

detection 

Pre-trained deep CNN model and tree of 

classifiers 

Limited explanation of tree of classifiers 

and its effectiveness 

[32] 
Deep learning system with residue 

connections 

Successful melanoma identification using 

dermoscopy images 

Limited exploration of different network 

architectures 

[33] 
Multi-stage melanoma identification in 

dermoscopy 

Practical preprocessing method for de-

noising dermoscopy images 

Lack of extensive validation on different 

stages of identification 

[34] 
Categorization of skin lesions using 

WT-DRNNet 

Wavelet processing for fine-grained 

feature extraction 

Limited comparison with other feature 

extraction techniques 

[35] 
Extraction of Area of Interest using 

ORACM 

NSGA II achieves the best results in multi-

objective optimization 

Lack of detailed evaluation on the 

effectiveness of ORACM 

[36] 1D-CNN for spectroscopy data Successful classification of spectrum data 
Limited exploration of other spectroscopy 

data models 

[37] 
VisionTransformer (ViT) network 

classification model 
Distinct from conventional CNNs 

Limited explanation of how SGD 

optimization approach was used 

[39] 
Hybrid model combining EfficientNets 

and metadata 

Fine-tuned ANN classifier using MISO 

model 

Lack of validation on the impact of each 

input in the hybrid model 

[40] 
Deep transfer learning model with 

AlexNet and DLCNN 
Failed to capture disease-specific features 

Low classification accuracy and disease 

dependence 

 

2.3 Research gaps 

 

Some conventional works use of specific optimization 

algorithms, such as FPA, May Fly Optimizer, and AWO, but 

they do not provide sufficient details on how these algorithms 

work or why they were chosen for the task. Addressing class 

imbalance is crucial in medical image analysis, especially for 

skin lesion classification where benign lesions often 

outnumber malignant ones. So, using data augmentation 

techniques, it can be avoided. The conventional segmentation 

models highly depended on labeled data, which causes 

supervised segmentation problems. So, the pixel relativity 
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extraction methods can used to identify the cancer-affected 

area. Several papers propose novel feature extraction 

techniques, such as wavelet processing and pooling. Further, 

these methods are failed to provide the relationship between 

the disease specific, disease dependent features. The 

conventional feature selection models failed to capture 

disease-specific features, suggesting the need for further 

investigation into how to extract and incorporate disease-

specific information for accurate diagnosis. Finally, the 

existing explainable CNNs or stacked ensemble architectures, 

but they not thoroughly explored the interpretability of the 

classification models or provide insights into the decision-

making process. 

 

 

3. PROPOSED METHODOLOGY 

 

 
 

Figure 1. Proposed HOS-Net block diagram 

 

Recently, variety of ML, DL, and transfer learning models 

were developed for SLDC. However, these models were 

failed due to lack of unknown image dataset understanding 

properties. Further, these methods also suffer with gradient 

descent issues, stochastic gradient issues as the size of the 

datasets were increased. Recently, the ViT networks were 

widely adopted in real time scenarios for all unknown images, 

which resulted in better performance in SLDC application 

also. So, this work inspired from ViT and developed the 

HOS-Net for efficient SLDC. Figure 1 shows the block 

diagram of proposed HOS-Net. Initially, ISIC-2019 dataset is 

considered, with nine different classes of skin cancers. Yet, 

there is a major imbalance in the forms of skin cancer that 

was diagnosed, with instances of multiple lesions far 

outnumbering those of other lesions. So, the dataset 

expansion is performed to increase the number of images 

dataset. Then, the basic image pre-processing method is 

performed to maintain the uniform size of each image in the 

dataset. Later, DGCIN model extracts the pixels relativity, 

where change in pixels is used to identify the cancer effected 

region. In addition, HDKN model identifies the probabilistic 

Kohonen features of segmented image, which extracts the 

relationship between various classes of skin cancer. 

Moreover, the SPOA model is developed for selection of best 

features by eliminating the uncorrelated features, where 

dimensionality of feature matrix is reduced. The reduction in 

dimensionality can reduce the training complexity of DENM. 

Finally, the DENM model is developed to perform the 

multiclass skin cancer classification, which have probabilistic 

echo properties for classification process. 

 

3.1 Dataset augmentation 

 

When training images for all categories are not distributed 

uniformly to the public, class imbalance occurs. The dataset 

augmentation including flipping, cropping, and rotating the 

data, to increase the total amount of samples included inside 

the train set. Table 3 details the many enhancements applied 

to better the samples and their respective values. Dataset 

augmentation is a technique used in machine learning and 

deep learning to artificially expand a dataset by creating 

additional, modified versions of the original data. The 

purpose of dataset augmentation is to develop the robustness 

and performance of machine learning models by increasing 

the variety and quantity of training data. Some common 

techniques used in dataset augmentation include: 

Rotation: Rotating images to a certain degree to add more 

variation to the dataset. 

Scaling: Increasing or decreasing the size of images to add 

more variation. 

Translation: Moving images horizontally or vertically to 

add more variation. 

Flipping: Mirroring images horizontally or vertically to 

add more variation. 

Cropping: Randomly cropping a portion of an image to 

add more variation. 

Adding noise: Adding random noise to an image to 

simulate real-world noise. 

Changing brightness and contrast: Adjusting brightness 

and contrast of images to add more variation. 

Changing colors: Changing the hue, saturation, and 

brightness of images to add more variation. 

By applying these techniques to existing data, dataset 

augmentation can significantly increase the size of the dataset, 

resulting in more accurate and robust machine learning 

models. 

 

Table 3. Data augmentation with parameters 

 
Augmentation Types Parameters 

Rotate 90°, 180°, 270° 

Crop from top 45°, 60°, 90° 

Crop from bottom 45°, 60°, 90° 

Crop from right 45°, 60°, 90° 

Crop from left 45°, 60°, 90° 

Flipping Left right 

Shifting Shifted by (25, 25) pixels 

 

3.2 DCIGN segmentation 

 

Skin lesion segmentation is the task of identifying and 

segmenting regions of the skin that are affected by a lesion. 

This is typically done using a binary classification approach, 

where each pixel in the input image is classified as either 

lesion or non-lesion. To use the DCIGN architecture for skin 

lesion segmentation, we need to modify the decoder to output 

a binary mask instead of a reconstructed image. This can be 
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done by adding an additional convolutional layer to the 

decoder with a single output channel and a sigmoid activation 

function. The layer's output is the likelihood that each input 

pixel is of the lesion class. A binary cross-entropy loss 

function is utilised to train the DC-IGN architecture by 

comparing the predicted binary mask to the ground truth 

mask. It is common practice to build the ground truth mask 

by manually labeling each pixel of the input image as lesion 

or non-lesion. The DCIGN segmentation method is listed in 

Table 4. Figure 2 depicts the core components of the DCIGN 

architecture: an encoder, a decoder, and an inverted graphics 

module. Features are extracted and reconstructed with the 

help of the convolutional auto encoder and decoder, two 

common CNN components. While doing segmentation, the 

inverse graphics module is utilized to create a 3D 

representation of the input image. Typically, the encoder will 

consist of several convolutional layers, each of which will be 

observed by a non-linear initiation function like ReLU. The 

encoder is responsible for generating the 3D representation 

by extracting high-level characteristics from the input image. 

Typically, the decoder will have many deconvolutional layers, 

each of which will be followed by a non-linear activation 

function. The purpose of the decoder is to reconstruct the 

input image from the 3D representation. The inverse graphics 

module is responsible for generating the 3D representation of 

the input image. It typically consists of a series of 3D 

convolutional layers, each followed by a non-linear 

activation function. The output of the inverse graphics 

module is a 3D representation of the input image, which is 

then used to perform segmentation.  

 

Table 4. Segmentation algorithm of DCIGN 

 
Input: Preprocessed image. 

Output: DCIGN segmented outcome. 

Step 1: The input figure is supplied into the DCIGN model. 

Step 2: Encoder: The encoder uses a series of convolutional 

layers to analyze the input image for useful information. To 

make the model non-linear, the output of each convolutional 

layer is processed by the ReLU activation function. 

Step 3: Max-pooling: Max-pooling is used after each 

convolutional layer to reduce the spatial dimensions of the 

feature maps. 

Step 4: Decoder: The decoder consists of multiple 

deconvolutional layers to reconstruct the image with a 

segmentation mask. The output of each deconvolutional layer 

is also passed through a ReLU activation function. 

Step 5: Skip Connections: Placing skip connections between 

the encoder and decoder helps increase segmentation precision. 

At similar spatial resolution, the feature maps from the encoder 

and the decoder are joined together. 

Step 6: Output: The output of the DCIGN model is a binary 

mask that segments the skin lesion from the surrounding skin. 

Step 7: Loss Function: Combining the binary cross-entropy 

loss with the Dice loss, this loss function is used to train the 

DCIGN model. The Dice loss quantifies the degree to which 

the expected and ground-truth segmentation masks overlap, 

whereas the binary cross-entropy loss quantifies the difference 

between the two. 

 

Convolutional auto encoder: The encoder is a CNN that 

processes the input image and extracts high-level features. 

Multi-convolutional layers observed by a non-linear 

activation function like ReLU are a common component. Let 

X be the input image and let We and be be the weight matrix 

and bias vector of the kth convolutional layer in the encoder, 

respectively.  

 
 

Figure 2. DCIGN architecture for skin lesion segmentation 

 

Then, the output of the kth convolutional layer can be 

written as: 

 

𝑍𝑒
𝑘 = 𝑓𝑒(𝑊𝑒

𝑘 ∗ 𝑍𝑒
{𝑘−1}

+ 𝑏𝑒
𝑘) (1) 

 

where, * denotes the convolution operation, 𝑍𝑒
𝑘−1  is the 

output of the (k-1) th convolutional layer, and fe is the 

activation function. The final output of the encoder is a 

feature map 𝑍𝑒
𝐾 , where K is the number of convolutional 

layers in the encoder. 

Decoder: The decoder is a CNN that reconstructs the 

output image from the feature map generated by the encoder. 

It is typically composed of several deconvolutional layers, 

each one followed by a non-linear initiation function.  

Let 𝑍𝑑
𝑘−1  be the output of the (k-1) th deconvolutional 

layer and let Wd and bd be the weight matrix and bias vector 

of the kth deconvolutional layer in the decoder, respectively. 

Then, the output of the kth deconvolutional layer can be 

written as: 

 

𝑍𝑑
𝑘 = 𝑓𝑑(𝑊𝑑

𝑘 ∗ 𝑍𝑑
𝑘−1 + 𝑏𝑑

𝑘) (2) 

 

where, * denotes the transposed convolution operation. The 

final output of the decoder is the reconstructed image, 

denoted as X', which is generated by the last deconvolutional 

layer. 

 

Table 5. Optimal parameter tuning of DCIGN 

 
Layer Type Output Size 

Input Image 224×224×3 

Convolutional + ReLU 112×112×32 

Convolutional + ReLU 56×56×64 

Hidden Skip Connections 28×28×64 

Convolutional + ReLU 56×56×64 

Convolutional + ReLU 112×112×32 

Output 224×224×3 

Optimizer Adam 

Regularization weight decay 

Number of Epochs 1000 

Batch Size 64 

Learning Rate 1e-6 to 1e-2 

Loss Function Cross-Entropy 

 

Inverse Graphics Module: The inverse graphics module 

is used to generate a 3D representation of the input image, 

which is then used to perform segmentation. Several 3D 

convolutional layers are resulted by a non-linear activation 

function in most implementations. Let Vk-1 be the output of 

the (k-1) th 3D convolutional layer and let Wv and bv be the 

weight matrix and bias vector of the kth 3D convolutional 

layer in the inverse graphics module, respectively. Then, the 
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output of the kth 3D convolutional layer can be written as: 

 

𝑉𝑘 = 𝑓𝑣(𝑊𝑣
𝑘 ∗ 𝑉𝑘−1 + 𝑏𝑣

𝑘) (3) 

 

where, * denotes the 3D convolution operation. The final 

output of the inverse graphics module is a 3D representation 

of the input image, denoted as R, which is generated by the 

last 3D convolutional layer. Table 5 shows the optimal 

design parameters of DCIGN, which are tuned to give the 

best segmentation performance. 

 

3.3 HDKN feature extraction 

 

 
 

Figure 3. Feature extraction architecture of HDKN 

 

A HDKN is a type of neural network architecture that can 

be utilized for feature extraction from segmented skin lesion 

images. The HDKN combines the Kohonen self-organizing 

map (KSOM) with deep learning techniques to create a 

hybrid network that can extract useful features from images. 

Figure 3 shows the feature extraction based HDKN 

architecture. Table 6 shows the feature extraction algorithm 

of HDKN. The KSOM is an unsupervised learning algorithm 

that is used to cluster data based on similarities in their 

feature vectors. The algorithm is based on a competitive 

learning process, where each neuron in the network is 

assigned a weight vector that is used to represent a region in 

the input space. During training, the input data is presented to 

the network, and the neuron with the close weight vector is 

selected as the winner. The weights of the winning neuron 

are then adjusted to move closer to the input data. This 

process is repeated for multiple iterations until the weight 

vectors converge to a stable configuration. The KSOM layer 

is responsible for clustering the input data based on 

similarities in their feature vectors. The output of the KSOM 

layer is a set of feature maps, where each map represents a 

cluster of input data that have similar features. their feature 

vectors. It consists of a set of neurons placed in a two-

dimensional grid. The input data is presented to the network, 

and the neuron with the closest weight vector is selected as 

the winner. The weights of the winning neuron are then 

informed to move closer to the input data. The update rule 

can be expressed as: 

 

𝑤(𝑡 + 1) = 𝑤(𝑡) + 𝛼(𝑡)(𝑥 − 𝑤(𝑡)) (4) 

 

where, w(t) is the weight vector of the winner neuron at time 

t, x is the input data, α(t) is the learning rate at time t, and t is 

the current iteration. The learning rate is typically decreased 

over time to allow the network to converge to a stable 

configuration. One common way to decrease the learning rate 

is to use a decaying function: 

 

𝛼(𝑡)  =  𝛼(0)  ∗  𝑒𝑥𝑝(−𝑡/𝜏) (5) 

where, α(0) is the initial learning rate, τ is the time constant, 

and 𝑡 is the current iteration. 

The output of the KSOM layer is a set of feature maps, 

where each map represents a cluster of input data that have 

similar features. The CNN layer oversees extracting high-

level features from the input data. Several convolutional and 

pooling layers are used, followed by one or more fully 

connected layers to complete the layer. High-level features 

are generated by the CNN layer and utilized for further 

processing. The KSOM layer is the first to see the input data 

during training, and it uses similarity in the features to group 

the data into groups. High-level features are extracted from 

the clustered data using the KSOM layer's output, which is 

passed into the CNN layer. During training, the complete 

network is subjected to supervised learning, during which the 

loss function is tuned to reduce the gap stuck between the 

predicted and ground features. Table 7 shows the optimal 

design parameters of HDKN model, which are tuned to give 

the best feature extraction performance. 

 

Table 6. Feature extraction algorithm of HDKN 

 
Input: DCIGN segmented image. 

Output: HDKN extracted features. 

Step 1: The input skin lesion images are preprocessed to obtain 

feature maps, where each input pixel is labeled as lesion or 

non-lesion. 

Step 2: KSOM layer: The segmented images are shown to the 

KSOM layer, which is made up of neurons organized in a two-

dimensional grid. This layer is responsible for recognizing 

objects in images. Input data have the same number of 

dimensions as the weight vector that is associated with each 

neuron. 

Step 3: Extracted data clusters (EDC): The KSOM layer 

clusters the pixels based on similarities in their feature vectors. 

The output of the KSOM layer is a set of feature maps, where 

each map represents a cluster of pixels that have similar 

features. 

Step 4: After that, the feature maps are sent into the CNN 

layer, which pulls high-level features from the data that has 

been clustered together. In most cases, the CNN layer is created 

up of numerous convolutional and pooling layers, which are 

then followed by one or more fully connected layers. 

Step 5: Training: The entire network is trained using a 

supervised learning approach, where the loss function is 

optimized to minimize the variation between the expected 

features and the ground features. 

 

Table 7. Optimal parameter tuning of DCIGN 

 
Layer Type Output Size 

Input Image 224×224×3 

Input layer 224×224×3 

KSOM layer 120×120 

EDC layer 100×100 

Convolutional + ReLU 55×55 

MaxPooling  5×5 

Convolutional + ReLU 40×40 

MaxPooling  3×3 

Dense 1+ ReLU 1×37460 

Dense 2 + SoftMax 1×1478 

Output 1×1478 

Optimizer Adam 

Regularization weight decay 

Number of Epochs 1000 

Batch Size 64 

Learning Rate 1e-6 to 1e-2 

Loss Function Cross-Entropy 
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3.4 SPOA feature selection 

 

The SPOA algorithm is a meta-heuristic algorithm that 

uses a population of pelicans to search for the optimal feature 

subset for a machine learning problem. The algorithm is 

based on social behaviour of pelicans in nature, where they 

follow each other in search of food. Table 8 shows the 

optimal design parameters of SPOA, which are tuned to give 

the best feature selection performance. Figure 4 shows the 

feature selection process of SPOA block diagram. Table 9 

presents the algorithm of SPOA. The algorithm searches for 

the optimal solution to a given problem by following a set of 

movement rules that mimic the flocking behavior of pelicans. 

 

 
 

Figure 4. Optimal feature selection process using SPOA 

 

Table 8. Optimal parameter tuning of SPOA 

 
Hyperparameter Typical Range 

Input feature size 1×1478 

Population Size 50 to 100 or more 

Inertia Weight 0.1 to 1.0 

Acceleration Constants 1.0 to 2.0 

Cognitive Coefficient 1.0 to 2.0 

Social Coefficient 1.0 to 2.0 

Maximum Iterations 100 to 1000 or more 

Neighborhood Topology Global, Ring. 

Constriction Factor 0.5 to 1.0 

Stopping Criteria Threshold 

output feature size 1×504 

Initialization: Let N be the population size and let P={p1, 

p2, ..., pN} be the set of pelicans. Each pelican represents a 

potential solution to the optimization problem, where the 

solution is represented as a vector of binary values xi, i=1, 

2, ..., d, where d is the dimension of the problem. 

Evaluation: The fitness function f(p) is used to evaluate 

the quality of each pelican p in the population. The fitness 

function is typically based on HDKN, and it measures the 

performance of the algorithm using the selected features. The 

fitness value is a real number that indicates how well the 

pelican performs on the optimization problem. 

Movement: The pelicans in the population move in search 

of a better solution by following a set of movement rules that 

mimic the flocking behavior of pelicans. The movement rules 

include attraction to the best pelican and avoidance of the 

worst pelican in the population. The movement of the pelican 

is defined by the position vector 𝑥 and the velocity vector v, 

where vij represents the velocity of pelican i in the j-th 

dimension. The position and velocity of each pelican are 

updated at each iteration according to the following equations: 

 

𝑣𝑖𝑗(𝑡 + 1) = 𝑤 ∗ 𝑣𝑖𝑗(𝑡) + 𝑐1 ∗ 𝑟𝑎𝑛𝑑(𝑥)

∗ (𝑝𝑏𝑒𝑠𝑡𝑖 , 𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) + 𝑐2 

∗ 𝑟𝑎𝑛𝑑(𝑥)

∗ (𝑔𝑏𝑒𝑠𝑡𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 𝑥𝑖𝑗(𝑡 + 1)  

= 𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡 + 1) 

(6) 

 

where, w is the inertia weight, c1 and c2 are the acceleration 

constants, rand () is a random number between 0 and 1, pbesti 

is the personal best position of pelican i, and gbest is the global 

best position in the population. 

Update: After each iteration, the population is updated 

based on the movement rules. The bird with the greatest 

fitness score becomes the "global best pelican," or "gbest," and 

the others all begin to follow its lead. To keep the pelican 

population stable, the least fit bird is periodically replaced 

with a randomly produced new bird. 

Termination: When a termination condition is reached, 

such as a maximum number of iterations or convergence of 

the fitness values, the SPOA stops. 

Selection: The final solution is selected based on the 

pelican with the highest fitness value in the population. 

 

Table 9. Optimal feature selection algorithm using SPOA 

 
Input: HDKN extracted features. 

Output: SPOA selected features. 

Step 1: Initialization: The SPOA algorithm starts by initializing 

a population of pelicans, each representing a potential solution 

to the feature selection problem. The population size is defined 

by the user. 

Step 2: Evaluation: Each pelican in the population is calculated 

using a fitness function that measures the quality of the 

solution.  

Step 3: Movement: The pelicans in the population move in 

search of a better solution by following a set of movement 

rules.  

Step 4: Update: After each iteration, the population is updated 

by applying the movement rules. A new pelican is randomly 

generated to maintain the population size. 

Step 5: Termination: The SPOA algorithm terminates when a 

stopping criterion is met.  

Step 6: Selection: The final solution is selected based on the 

pelican with the highest fitness value. 
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3.5 DENM classifier 

 

The DENM is a type of recurrent neural network that has a 

simple and efficient training algorithm. It consists of a fixed, 

randomly initialized sparse connectivity structure of recurrent 

nodes, and a set of input and output nodes. The output of a 

DENM is a nonlinear function of its current and past inputs 

and hidden state. Figure 5 shows the DENM classifier block 

diagram. Table 10 presents the algorithm steps of DENM for 

skin cancer classification. Table 11 shows the optimal design 

parameters of DENM model, which are tuned to give the best 

classification performance. The mathematical analysis of a 

DENM involves the following steps. 
Initialization of the DENM: The state of the network at 

time step 𝑡 is represented by the vector x(t)=[x1(t), x2(t), ..., 

xn(t)]T, where n is the number of hidden nodes. The input at 

time t is denoted by u(t)=[u1(t), u2(t), ..., um(t)]T, where 𝑚 is 

the number of input nodes. The output at time t is given by 

y(t)=[y1(t), y2(t), ..., yp(t)]T, where p is the number of output 

nodes. The connectivity matrix of the DENM is represented 

by W=[wij], where wij is the weight of the joining from node j 

to node i. The input weight matrix is represented by 𝑊𝑖𝑛 =
[𝑤𝑖𝑛𝑗

], where 𝑤𝑖𝑛𝑗
 is the weight of the joining from input 

node j to hidden node i. The output weight matrix is 

represented by 𝑊𝑜𝑢𝑡 = [𝑤𝑜𝑢𝑡𝑗
], where 𝑤𝑜𝑢𝑡𝑗

 is the weight of 

the joining from hidden node j to output node i. The initial 

state of the DENM is set to x(0)=0. The input and output 

weight matrices are randomly initialized. 

Dynamics of the DENM: The dynamics of the DENM are 

described by the following equation: 

 

𝑥(𝑡) = 𝑓(𝑊𝑥(𝑡 − 1) + 𝑊𝑖𝑛𝑢(𝑡)) (7) 

 

where, f is a nonlinear activation function, such as the 

hyperbolic tangent function. The output of the DENM is 

given by: 

 

𝑦(𝑡) = 𝑊𝑜𝑢𝑡𝑥(𝑡) (8) 

 

 
 

Figure 5. Classification model of DENM 

 

The DENM has a "reservoir" of hidden nodes that are 

randomly initialized and fixed throughout training. The 

weights between the hidden nodes form a sparse, random 

connectivity structure. The input weights and output weights 

are learned during training. The output weights of the DENM 

are trained using a linear regression algorithm. Given a set of 

input-output pairs {(u(t), d(t))}, where d(t) is the desired 

output at time 𝑡, the output weights are computed using the 

following equation: 

𝑊𝑜𝑢𝑡 = (𝑋𝑇𝑅 + 𝑏𝑒𝑡𝑎 ∗ 𝐼) − 𝑋𝑇𝑅𝐷 (9) 

 

where, X is a matrix of the hidden node activations, R is the 

regularization matrix, beta is the regularization parameter, I 

is the identity matrix, and D is a matrix of the desired outputs. 

The performance of the ESN is evaluated on a separate test 

set of input-output pairs. The output of the DENM is 

compared to the desired output using a suitable error metric, 

such as the mean squared error. 

 

Table 10. Skin cancer classification algorithm of DENM 

 
Input: SPOA selected features. 

Output: Classified cancer type. 

Step 1: Initialization: Randomly initialize the weights of the 

input-to-hidden connections based on SPOA features, the 

hidden-to-hidden connections, and the hidden-to-output 

connections. These weights are typically drawn from a 

Gaussian distribution. 

Step 2: Define the network structure: Specify the number of 

hidden, inputs, and output nodes, and the connectivity pattern 

between them. In the case of a DENM, the input layer receives 

the input data, the hidden layer comprises of many recurrent 

nodes, and the output layer produces the network's predictions. 

Step 3: Forward pass: For each input example in the training 

set, feed the input through the network and compute the 

network's output. During this step, the hidden layer of the 

DENM is updated based on the input and the previous hidden 

layer state. The output is computed by multiplying the hidden 

layer state by the output weights and passing it through a 

nonlinear activation function. 

Step 4: Calculate error: Compare the network's output to the 

true target values for the input example, and calculate the error 

using a suitable loss function, such as mean squared error or 

cross-entropy loss. 

Step 5: Backward pass: Propagate the error backwards through 

the network using the chain rule of calculus, to update the 

weights of the connections. This involves computing the 

gradients of the weights with respect to the error, and using 

gradient descent or a similar optimization algorithm to update 

the weights in the direction that reduces the error. 

Step 6: Repeat steps 3-5: Continue feeding input examples 

through the network, computing the output, calculating the 

error, and updating the weights, until the error on the training 

set reaches a satisfactory level. 

Step 7: Test the model: Use the trained network to make 

predictions on a separate test set of input examples and 

evaluate the model's performance on this set. This step is 

important to ensure that the model generalizes well to new data 

and resulted in effective skin cancer type. 

 

Table 11. Optimal parameter tuning of DENM 

 
Hyperparameter Typical Range 

Input Layer 1×504 

reservoir 504×504 

Output size 1×8 

Optimizer Adam 

Regularization weight decay 

Number of Epochs 1000 

Batch Size 64 

Learning Rate 1e-6 to 1e-2 

Loss Function Cross-Entropy 

 

 

4. RESULTS AND DISCUSSION 

 

This section gives the complete performance analysis of 

HOS-Net. Further, the performance of HOS-Net is compared 
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with other segmentation, classification models using same 

ISIC-2019 dataset. Various segmentation and classification 

metrics are used to evaluate the performance. 
 

4.1 Dataset 

 

International Skin Imaging Collaboration (ISIC) Challenge 

created a massive collection of skin lesion images, which has 

been made accessible to the public and given the name ISIC-

2019. To further study and improve CAD tools for melanoma, 

a collection of patient records was compiled. For the ISIC-

2019 dataset, researchers gathered a total of 25,331 images of 

skin lesions from various sources, such as hospitals, clinics, 

and even people's personal phones. There are a total of eight 

different forms of skin cancer: Merkel cell carcinoma (MEL), 

squamous cell carcinoma (SCC), basal cell carcinoma (BCC), 

melanocytic nevus (NV), benign keratosis (BKL), actinic 

keratosis (AKIES), vascular lesion (VASC), and 

dermatofibroma (DF). Each image in the collection is 

accompanied with ground-truth annotations like lesion 

segmentation masks and diagnostic labels. A group of board-

certified dermatologists rendered the diagnosis of benign or 

malignant for each lesion. In addition to raw image data and 

annotations, the ISIC-2019 dataset also includes precomputed 

image characteristics including color histograms, texture 

features, and wavelet-based features. This means these 

characteristics were used to train ML models even when the 

source images are unavailable. 

 

4.2 Experimental setup 

 

Utilization a GPU-enabled system with NVIDIA CUDA 

support to take advantage of GPU acceleration. Set up the 

software environment using Anaconda to manage the Python 

environment and package dependencies. Split the dataset into 

training, validation, and test sets. Implement k-fold cross-

validation to ensure robust evaluation of the model's 

performance. Setting of hyperparameters, including learning 

rate, batch size, number of epochs, dropout rate, and weight 

decay, using cross-validation for optimal values. Utilization 

of the GPU for accelerated training by installing the GPU-

supported version of TensorFlow and Keras. Used the Adam 

optimizer with the chosen learning rate and the appropriate 

loss function for the specific task (e.g., 

categorical_crossentropy for multi-class classification). 
Presented the results of the experiments, including accuracy 

scores, confusion matrices, and learning curves. Analyzed the 

impact of different hyperparameters on the model's 

performance. Evaluated the model's performance using 

metrics like accuracy, precision, recall, and F1-score on a 

separate test dataset. 

 

4.3 Evaluation metrics 

 

Accuracy: It is the proportion of correctly classified 

samples out of the total number of samples in the dataset. It 

measures how well the classifier predicts all classes. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
) (10) 

 

Precision: It is the proportion of correctly predicted 

positive samples (true positives) out of all the samples 

predicted as positive (true positives + false positives). It 

measures how well the classifier avoids misclassifying 

negative samples as positive. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑃)
) (11) 

 

Recall: It is, also known as true positive rate, is the 

proportion of correctly predicted positive samples (true 

positives) out of all the actual positive samples (true positives 

+ false negatives). It measures how well the classifier 

identifies positive samples. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = (
(𝑇𝑃)

(𝑇𝑃 + 𝐹𝑁)
) (12) 

 

F1-Score: It is the harmonic mean of precision and recall. 

It provides a balance between precision and recall and is 

useful when the class distribution is imbalanced. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = (
2 ∗ (𝑇𝑃)

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
) (13) 

 

Specificity: It is the proportion of correctly predicted 

negative samples (true negatives) out of all the actual 

negative samples (true negatives + false positives). It 

measures how well the classifier identifies negative samples. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = (
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) (14) 

 

4.4 Cross validation analysis 

 

Cross-validation is a widely used technique in deep 

learning and machine learning to assess the performance and 

generalization ability of a model on a limited dataset. In the 

context of the above multi-class skin cancer classification 

task, cross-validation helps to obtain a more robust estimate 

of the model's performance by dividing the data into multiple 

subsets, training the model on different combinations of these 

subsets, and evaluating its performance across all subsets. 

The basic idea behind cross-validation is to split the available 

dataset into several parts, or "folds," and then iteratively train 

and test the model on different combinations of these folds. 

The original dataset is divided into K subsets (folds) of 

approximately equal size. The value of K is determined based 

on the available data size and computational resources. 

Common choices for K are 5 to 10. For each fold in the K 

subsets, the model is trained on K-1 folds and tested on the 

remaining fold. This process is repeated K times, ensuring 

that each fold serves as the test set once, while the other K-1 

folds are used for training. Cross-validation can also be used 

for hyperparameter tuning. By running cross-validation for 

different combinations of hyperparameters (e.g., learning rate, 

batch size, number of epochs), you can select the optimal set 

of hyperparameters that result in the best average 

performance across all folds. 

Statistical tests, such as the paired t-test, are essential tools 

in data analysis and hypothesis testing. The paired t-test is a 

parametric statistical test used to compare the means of two 

related groups or conditions. It is called "paired" because the 

data points are paired, meaning each observation in one 

group is related to a corresponding observation in the other 

group. This pairing is crucial when comparing the two 
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conditions, as it helps control for individual differences and 

reduces variability. The simulation results show that, the 

proposed HOS-Net resulted in 0.47% error rate in 

segmentation, and 0.57% error rate in classification. 

 

4.5 Segmentation performance evaluation 

 

Figure 6 shows the skin cancer segmentation outcomes of 

various methods. Here, the proposed HOS-Net resulted in 

accurate segmentation outcome as compared to DenseNet201 

[14], CNN-GOA [15], InSiNet [18], ESRGAN [21]. One of 

the main drawbacks of DenseNet201 [14] is its high 

computational cost, which makes it challenging to deploy the 

model on resource-constrained devices or in real-time 

applications. Another limitation is its susceptibility to 

overfitting, especially when trained on small datasets. The 

CNN-GOA [15] model relies on manual selection of the 

optimal segmentation threshold, which can be subjective and 

time-consuming. Additionally, the model may struggle with 

segmentation of lesions with complex shapes or irregular 

boundaries. The InSiNet [18] model is relatively complex, 

which can make it challenging to train and optimize. It also 

requires a large amount of training data to achieve optimal 

performance. The ESRGAN [21] introduce artifacts or 

distortions in the images, which can affect the accuracy of 

lesion segmentation. Additionally, the model can be 

computationally expensive, which can limit its practical 

applications. Table 12 compares the segmentation 

performance estimations of various segmentation methods. 

Here, the proposed HOS-Net resulted in superior 

performance than conventional methods such as 

DenseNet201 [14], CNN-GOA [15], InSiNet [18], ESRGAN 

[21], MLR-CNN [12], and AlexNet [40] for all performance 

metrics.  

Table 13 shows the percentage of improvements of 

proposed HOS-Net over conventional methods presented in 

Table 12. Here, the proposed HOS-Net method has increased 

segmentation accuracy (SACC) by 7.10%, segmentation 

precision (SPR) by 8.52%, segmentation recall (SRE) by 

1.61%, segmentation F1-score (SF1) by 7.19%, segmentation 

sensitivity (SSEN) by 1.59%, and segmentation specificity 

(SSPE) by 21.00% as compared to the DenseNet201 [14]. 

Then, the proposed HOS-Net method has increased SACC by 

4.61%, SPR by 8.26%, SRE by 0.79%, SF1 by 6.82%, SSEN 

by 2.40%, SSPE by 20.51% as compared to the CNN-GOA 

[15]. Then, the proposed HOS-Net method has increased 

SACC by 7.36%, SPR by 8.39%, SRE by 0.58%, SF1 by 

7.72%, SSEN by 2.15%, SSPE by 22.77% as compared to the 

InSiNet [18]. Then, the proposed HOS-Net method has 

increased SACC by 6.59%, SPR 7.11%, SRE by 1.57%, SF1 

by 6.27%, SSEN by 1.80%, SSPE by 21.43% as compared to 

the ESRGAN [21]. Then, the proposed HOS-Net method has 

increased SACC by 8.42%, SPR by 9.79%, SRE by 0.94%, 

SF1 by 6.84%, SSEN by 1.85%, SSPE by 22.23% as 

compared to the MLR-CNN [12]. Finally, the proposed 

HOS-Net method has increased SACC by 3.53%, SPR by 

0.79%, SRE by 1.32%, SF1 by 1.67%, SSEN by 0%, SSPE 

by 0% as compared to the AlexNet [40]. 

AUC-ROC allows for a fair and comprehensive 

comparison of different classifiers or models on the same 

task. It is especially helpful when you have multiple models 

trained on the same dataset and want to determine which one 

performs better. n situations where the classes in the dataset 

are imbalanced, accuracy alone may not provide a complete 

picture of a classifier's performance. AUC-ROC considers 

the trade-off between sensitivity (true positive rate) and 

specificity (true negative rate), making it suitable for 

imbalanced datasets.  
 

 
 

Figure 6. Skin cancer segmentation outcomes of various 

methods. (a) input image. (b) DenseNet201 [14]. (c) CNN-

GOA [15]. (d) InSiNet [18]. (e) ESRGAN [21]. (f) proposed 

binary mask. (g) proposed colour segmented region 

 

Table 12. Segmentation performance estimation of various methods 
 

Method SACC (%) SPR (%) SRE (%) SF1 (%) SSEN (%) SSPE (%) 

DenseNet201 [14] 93.21 91.23 97.54 92.89 98.43 82.64 

CNN-GOA [15] 95.43 91.45 98.34 93.21 97.65 82.98 

InSiNet [18] 92.98 91.34 98.54 92.43 97.89 81.45 

ESRGAN [21] 93.65 92.43 97.58 93.69 98.01 82.35 

MLR-CNN [12] 92.07 90.18 98.19 93.19 98.18 81.81 

AlexNet [40] 96.42 98.23 97.82 97.93 98.72 86.85 

Proposed HOS-Net 99.83 99.01 99.12 99.57 98.94 87.12 

 

Table 13. Percentage of improvements of Table 12 
 

Method SACC (%) SPR (%) SRE (%) SF1 (%) SSEN (%) SSPE (%) 

DenseNet201 [14] 7.10 8.52 1.61 7.19 0.79 0.41 

CNN-GOA [15] 4.61 8.26 0.79 6.82 0.24 1.84 

InSiNet [18] 7.36 8.39 0.58 7.72 0.12 1.10 

ESRGAN [21] 6.59 7.11 1.57 6.27 0.17 0.65 

MLR-CNN [12] 8.42 9.79 0.94 6.84 0.55 6.16 

AlexNet [40] 3.53 0.79 1.32 1.67 0.22 0.31 
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4.6 Classification performance evaluation 

 

Figure 7 shows the measurement of area under the ROC 

curves (AUC) of various methods. Here, receiver operating 

characteristic curve (ROC) is measured for various thresholds 

of false positive rate. Further, the ROC region is mapped for 

true positive rate region to the false positive rate region. Here, 

the conventional ViT [37] resulted in AUC-ROC value as 

0.750, MuSClD [28] resulted in AUC-ROC value as 0.824, 

and DLCNN [40] resulted in AUC-ROC value as 0.847. But, 

the proposed HoS-Net resulted in higher AUC-ROC values, 

i.e., 0.946, which is higher as compared to existing methods. 

 

 
 

Figure 7. AUC-RoC curves of various methods 

 

Table 14 compares the classification performance of 

various SLDC methods. Here, the proposed HOS-Net 

resulted in improved skin cancer classification performance 

as compared to conventional ASRGS-OEN [25], WT-

DRNNet [34], ORACM [35], ViT [37], MuSClD [28], and 

DLCNN [40]. Table 15 shows the percentage of 

improvements by proposed HOS-Net in comparison with 

existing methods presented in Table 14. Here, the proposed 

HOS-Net method has increased accuracy by 2.90%, precision 

by 3.87%, recall by 1.63%, f1-Score by 2.10%, sensitivity by 

1.49%, and specificity by 0.87% as compared to the ASRGS-

OEN [25]. Then, the proposed HOS-Net method has 

increased accuracy by 3.85%, precision by 1.56%, recall by 

1.38%, f1-Score by 1.39%, sensitivity by 0.33%, and 

specificity by 1.36% as compared to WT-DRNNet [34]. Then, 

the proposed HOS-Net method has increased accuracy by 

3.04%, precision by 1.51%, recall by 1.03%, f1-Score by 

1.77%, sensitivity by 2.00%, and specificity by 2.25% as 

compared to the ORACM [35]. Then, the proposed HOS-Net 

method has increased accuracy by 5.07%, precision by 0.80%, 

recall by 0.92%, f1-Score by 1.35%, sensitivity by 0.63%, 

and specificity by 1.69% as compared to the ViT [37]. Then, 

the proposed HOS-Net method has increased accuracy by 

3.87%, precision by 1.49%, recall by 0.72%, f1-Score by 

1.40%, sensitivity by 0.97%, specificity by 1.03% as 

compared to the MuSClD [28]. Finally, the proposed HOS-

Net method has increased accuracy by 2.81%, precision by 

0.91%, recall by 1.46%, f1-Score by 1.66%, sensitivity by 

0%, specificity by 0% as compared to the DLCNN [40]. 

 

4.7 Computational time estimation 

 

Table 16 compares the computational time (seconds) 

estimation of various segmentation methods. Here, the 

proposed HOS-Net resulted in reduced computational time as 

compared to other segmentation methods. Here, the proposed 

HOS-Net reduced computation time by -40.23%, -40.13%, -

31.25%, -24.10%, -14.39%, -6.70% as compared to existing 

DenseNet201 [14], CNN-GOA [15], InSiNet [18], ESRGAN 

[21], MLR-CNN [12], and AlexNet [40] methods. Table 17 

compares the computational time (seconds) estimation of 

various classification methods. Here, the proposed HOS-Net 

reduced computation time by -32.36 %, -27.69 %, -24.49 %, 

-11.59 %, -17.72 %, -25.24 % as compared to existing 

ASRGS-OEN [25], WT-DRNNet [34], ORACM [35], ViT 

[37], MuSClD [28], and DLCNN [40] methods. 

 

Table 14. Classification performance estimation of various methods 

 
Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Sensitivity (%) Specificity (%) 

ASRGS-OEN [25] 96.33 95.43 97.65 97.51 98.53 99.13 

WT-DRNNet [34] 95.45 97.60 97.89 98.19 99.67 98.65 

ORACM [35] 96.20 97.65 98.23 97.82 98.03 97.79 

ViT [37] 94.34 98.34 98.34 98.23 98.37 98.33 

MuSClD [28] 95.43 97.67 98.54 98.18 99.03 98.98 

DLCNN [40] 96.42 98.23 97.82 97.93 99.15 99.12 

Proposed HOS-Net 99.13 99.13 99.25 99.56 99.21 99.14 

 

Table 15. Percentage of improvements of Table 14 

 
Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Sensitivity (%) Specificity (%) 

ASRGS-OEN [25] 2.90 3.87 1.63 2.10 1.15 0.48 

WT-DRNNet [34] 3.85 1.56 1.38 1.39 1.64 0.87 

ORACM [35] 3.04 1.51 1.03 1.77 0.34 0.55 

ViT [37] 5.07 0.80 0.92 1.35 0.67 0.66 

MuSClD [28] 3.87 1.49 0.72 1.40 0.12 0.14 

DLCNN [40] 2.81 0.91 1.46 1.66 0.06 0.02 

 

Table 16. Computational time (seconds) estimation of various segmentation methods 

 
DenseNet201 [14] CNN-GOA [15] InSiNet [18] ESRGAN [21] MLR-CNN [12] AlexNet [40] Proposed HOS-Net 

12.514 12.484 10.87 9.847 8.73 8.01 7.473 
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Table 17. Computational time (seconds) estimation of various classification methods 

 
ASRGS-OEN [25] WT-DRNNet [34] ORACM [35] ViT [37] MuSClD [28] DLCNN [40] Proposed HOS-Net 

15.484 14.484 13.87 11.847 12.73 14.01 10.473 

 

 

5. CONCLUSIONS 

 

Skin cancer is a serious global health concern, and its early 

detection and diagnosis are crucial for improving the chances 

of successful treatment and increasing the survival rate of 

affected individuals. This work introduced the HOS-Net by 

combining the multiple stages. At first, the dataset 

augmentation is carried out, which results in a growth in the 

total amount of images included inside the dataset. After that, 

the image pre-processing is carried out to standardise the 

images in the dataset into sizes and data types that are 

consistent throughout. In addition, DCIGN was created for 

the purpose of recognising disease-affected regions within 

images that had already been pre-processed. After that, the 

HDKN is presented for the purpose of the extraction of 

disease-specific characteristics that rely on the disease from 

the segmented image. Additionally, the SPOA selects the 

most relevant features from the HDKN output features. Last, 

DENM classifies the various diseases based on their SPOA 

traits that have been pretrained. The proposed HOS-Net 

method has increased SACC by 3.53%, SPR by 0.79%, SRE 

by 1.32%, SF1 by 1.67%, SSEN by 0%, SSPE by 0% as 

compared to the other segmentation methods. Finally, the 

proposed HOS-Net method has increased accuracy by 2.81%, 

precision by 0.91%, recall by 1.46%, f1-Score by 1.66%, 

sensitivity by 0%, specificity by 0% as compared to other 

classification methods.  

The potential application of HOS-Net in clinical 

environments offers several promising benefits for the 

diagnosis and management of skin cancer. HOS-Net can act 

as a valuable tool to support dermatologists in their decision-

making process. By providing additional insights and 

analysis, it can serve as a second opinion and help 

dermatologists make more informed decisions about the 

diagnosis and treatment of skin cancer. With its deep learning 

capabilities, HOS-Net can process and analyze large datasets 

of skin lesion images quickly and efficiently. This can 

streamline the workflow in clinical settings, enabling faster 

diagnosis and reducing waiting times for patients. HOS-Net's 

automated analysis can be integrated into telemedicine 

platforms, allowing for remote consultation and assessment 

of skin lesions. This can be particularly valuable in rural or 

underserved areas where access to dermatologists might be 

limited. HOS-Net's deep learning capabilities can be utilized 

for longitudinal monitoring of skin lesions over time. By 

tracking changes in lesion characteristics, it can help in 

assessing treatment efficacy and disease progression. HOS-

Net's deep learning capabilities can be utilized for 

longitudinal monitoring of skin lesions over time. By 

tracking changes in lesion characteristics, it can help in 

assessing treatment efficacy and disease progression. 
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