
 

 

 

 

 
 

 

1. INTRODUCTION 

 

The continuous surface heat and mass transfer has many 

practical applications in electro-chemistry and polymer 

processing such as hot rolling, wire drawing, glass blowing, 

metal spinning, paper production, crystal growing, 

purification of molten metals from non-metallic inclusion by 

applying magnetic field, aerodynamic extrusion of plastic 

sheet, continuous casting, glass fibre production and many 

more. Sakiadis [1], [2] was the first to study boundary layer 

flow of a viscous fluid over a stretched surface moving with a 

constant velocity in an ambient fluid. Erickson et al. [3] and 

Tsou et al. [4] extended the work of Sakiadis to account for 

mass transfer in the boundary layer on a continuous moving 

surface. Chen and Char [5], Elbashbeshy [6] investigated the 

effects of variable and uniform surface temperature and 

surface heat flux subject to blowing or suction. Crane [7], 

Gupta and Gupta [8] studied the boundary layer flow caused 

by a stretching sheet whose velocity varies linearly with a 

distance from a fixed point on the surface under different 

conditions. Magneto-hydrodynamics (MHD) free convection 

flow has a great significance for the applications in the fields 

of stellar and planetary magnetospheres, aeronautics and 

MHD flow and heat transfer problems have become more 

important industrially. In many metallurgical processes 

involving the cooling of many continuous strips or filaments 

by drawing them through an electrically conducting fluid  

subject   to   a   magnetic  field,  the  rate  of  cooling  can  be  

 

controlled and final product of desired characteristics can be 

achieved. Chakrabarti and Gupta [9], Ishak et. al. [10], 

Kumar et al. [11], Kafoussias and Nanousis [12], Anjali and 

Kanda [13] investigated MHD flow heat and mass transfer 

over a stretching sheet in different aspects. Mahapatra and 

Gupta [14], Chiam [15], Nazar et al. [16], Ostrach [17] and 

Sparrow and Gregg [18] investigated the stagnation-point 

flow on a stretching sheet. The problem of natural convection 

along a vertical isothermal or uniform flux plate is a classical 

problem that has been solved with the similarity method. In 

these works the viscous dissipation term in the energy 

equation has been omitted. Gebhart [19] was the first who 

studied the problem taking into account the viscous 

dissipation. Recently, Pantokratoras [20], Hossain et al. [21] 

studied the effect of viscous dissipation in natural convection 

in a new way. Hitesh [22] investigated hydromagnetic flow 

with viscous dissipation, variable heat flux and radiation. 

Parash and Hazarika [23] studied computationally study of 

the effects of variable viscosity and thermal conductivity on 

the MHD flow of micropolar fluid past an accelerated infinite 

vertical insulated plate. Sharif [24] investigated numerically 

the effects of heat generation or absorption and 

thermophoresis on hydromagnetic free convective and mass 

transfer steady laminar boundary layer flow over an inclined 

permeable stretching sheet. On the other hand, numerical 

solution for axisymmetric flow and heat transfer over a 

stretching cylinder surface subject to a uniform magnetic 
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ABSTRACT 

 
This article investigates the influence of variable heat flux on the problem of steady two dimensional MHD 

flow and heat transfer of an electrically conducting fluid along a semi-infinite vertical plate taking into 

account the effect of viscous dissipation. The governing equations are converted into a system of nonlinear 

ordinary differential equations via a similarity variable. The resulting system of equations is then solved 

numerically by using Natchsheim Swigert shooting iteration technique together with sixth order Runge-

Kutta integration scheme. Boundary layer velocity and temperature profiles are determined numerically for 

various values of the ratio of free stream velocity and stretching velocity, the magnetic field parameter, 

suction/blowing parameter, Brinkman number. Regardless of the flow conditions, the flow velocity and 

temperature is found significantly affected by the flow parameters.  
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field and prescribed surface heat flux has been studied by 

Fazle et al. [25].  

In this paper we investigate the effects of viscous 

dissipation on the steady two-dimensional stagnation-point 

flow of an incompressible viscous fluid towards a stretching 

surface subject to variable heat flux and suction/blowing in 

presence of transverse magnetic field.  

 

 

2. EQUATION OF MOTION 

 

Let us consider the magneto-hydrodynamic two 

dimensional steady boundary layer flow of an incompressible 

viscous and electrically conducting fluid from a vertically 

moving surface with suction or injection at the surface. Two 

equal and opposite forces are introduced along the x-axis so 

that the sheet is stretched, keeping the origin fixed in the 

fluid of ambient temperature T . It is assumed that the speed 

of a point on the plate is proportional to its distance from the 

origin. It is also assumed that the heat flux at the stretching 

surface varies as the square of the distance from the origin. 

In MHD flows, the size of electromagnetic parameters 

affects the quantitative interaction between the flow and 

field. The magnetic field vector ( , )x yB B B is assumed to 

lie in the xy  plane. The electrical field E  is assumed to be 

zero. Hughes and Young [26] have shown that the Lorentz 

force has two components: 

 

 2

x y x yF uB vB B   , 

 

 2

y x y xF uB B vB  , 

 

where u and v are the velocity components in the x  and y  

directions respectively. From an “order of magnitude” 

analysis, it can be assumed that  y xB B . Invoking the 

boundary layer approximation  u v , xF  simplifies to 

2

x yF B u  , where the y -component of the magnetic field 

may be dependent on both x  and y ; however, for 

convenience, it is assumed that yB  varies only with the span-

wise coordinate y . So, according to El-Amin [27], if a 

strong magnetic field 0B  is applied in the y-direction then it 

gives rise to magnetic forces 
2

0xF B u   in x-direction.  

For steady-state incompressible viscous fluid environment 

with constant properties using Boussinesq approximation, the 

governing equations for convective flow are: 
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subject to the following boundary conditions:  
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where eu  is the stagnation-point velocity in the inviscid free 

stream, T  is the fluid temperature,   is the kinematic 

viscosity,   is the electric conductivity, 0B  is the uniform 

magnetic field strength,   is the density of the fluid, k  is 

the thermal conductivity of the fluid, pc  is the specific heat 

at constant pressure and ,a c and A  are positive constants. It 

may be noted that the constant a  is proportional to the free 

stream velocity far away from the stretching surface. 

In order to obtain a similarity solution of the problem, we 

now introduce the following dimensionless variables: 

 

c
y




,

( )c xf   , ( ) ( )wT T T T                   (5) 

 

where   is the stream function,   is the dimensionless 

distance normal to the sheet, f  is the dimensionless stream 

function and   is the dimensionless fluid temperature. Now 
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In order to solve equation (3) we assume 

 

 2T T A x
c


                                                             (7)                                                       

 

Using the transformations from equations (6) and (7) in 

equations (2) and (3), we get the following dimensionless 

equations:  

 
2

2

2
''' ' ( ') ( ') 0

a a
f ff f M f
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The transformed boundary conditions are:   

 

0 , 1, 1 0
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w

v
f f f at

c

a
f as

c

 


 


      


   


                   (10)                                  

 

where a prime denotes an ordinary differentiation with 

respect to  , 
a

c
 is the ratio of free stream velocity parameter 

to stretching sheet parameter, 
2

0B
M

c




  is the magnetic 

field parameter, 0
w

v
f

c
  is the suction/injection 
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parameter, Pr
pc

k


 is the Prandtl number, PrrB Ec is the 

Brinkman number where 

5
2

p

c
Ec

Ac 
  is the Eckert number. 

Here 0wf   (i.e. 0 0v  ) corresponds to suction and 

0wf   (i.e. 0 0v  ) corresponds to blowing and Brinkman 

number is a dimensionless dissipation parameter arises 

naturally and it represents the ratio of dissipation effects to 

fluid conduction effects. A Brinkman number of order unity 

or greater means that the temperature rise due to dissipation 

is significant, on the other hand,  indicates 

temperature rise due to pure conduction in the fluid (White 

[28]). 

Of special significance in convection problems are the 

local skin friction coefficient and the local Nusselt number. 

The shear stress at the stretching surface w  is given by 

0

w

y

u

y
 



 
  

 
 and skin friction coefficient fC  is defined as 

2 / 2

w
fC

u




 . 

The local wall heat flux is given by Fourier’s law of 

conduction: 

0

w

y

T
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y
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and local Nusselt number is 

defined as 
( )

w
x

w

xq
Nu

k T T




. Using the non-dimensional 

variables, we get  

 

1/21
Re (0)

2
f xC f   and  

1/2/ Re (0)x xNu                                                             (11) 

 

where Re /x ax   is the local Reynolds number. 

 

 

3. NUMERICAL METHOD FOR SOLUTION 

 

The numerical solutions of the nonlinear differential 

equations (8)-(9) under the boundary conditions (10) have 

been performed by applying a shooting method called 

Nachtsheim-Swigert iteration technique, Nachtsheim and 

Swigert [29] along with the sixth order Runge-Kutta-Butcher 

integration scheme. Thus adopting this numerical technique, 

a computer program was set up for the solutions of the 

governing differential equations of our problem. Various 

groups of parameters , , Pr, ,w r

a
f M B

c
 were considered in 

different phases. In all the computations the step-size 

0.001   was selected that satisfied the convergence 

criterion of 10-6 in all cases. The value of  was found to 

each iteration loop by      . The maximum value of 

 to each group of parameters is determined when the value 

of the unknown boundary conditions at 0   change to 

successful loop with error less than 10-6. 

 

 

 

4. RESULTS AND DISCUSSION 

 

In Fig.1, we represent the result for the variation of the 

parameter /a c  when Pr 0.7, 2.0, 0.5wM f   and 

 (though velocity profiles does not change with ). 

Two sets of values for /a c , i.e. / 1a c   and / 1a c   are 

considered. It can be easily observed that the horizontal 

velocity profiles increase with the increase of non-zero 

values of /a c . The figure shows that when / 1a c  , the 

flow has a boundary layer structure and the thickness of the 

boundary layer reduces as /a c increases. For fixed value of 

c , corresponding to the stretching of the surface, increase in 

a  in relation to c  (such that / 1a c  ) implies increase in 

straining motion near the stagnation region. Due to this 

reason the acceleration of the external stream is increased and 

this leads to thinning of the boundary layer (Layek et al. 

[30]). On the other hand when / 1a c  , the flow has an 

inverted boundary layer structure. In this case, the stretching 

velocity ( )cx of the sheet exceeds the velocity ( )ax of the 

external stream. It is to be noted that no boundary layer is 

formed when / 1a c  . The figure also shows that the 

temperature curves increase with the increase of /a c  in both 

the cases of pure conduction (when  i.e. neglecting 

viscous dissipation) and the conduction with viscous 

dissipation ( ).  

 

 
 

 
 

Figure 1. Effect of parameter /a c  

 

In Fig.2, the dimensionless velocity distributions ( )f   

and temperature distributions ( )   are plotted against   for 

different values of Brinkman number . The case of pure 
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conduction is also shown in the figure (i.e. when ). 

The momentum boundary layer thickness decreases with the 

increase of . However, the function ( )f  is negative for 

all values of . Contrary to velocity profiles, the temperature 

profiles increase as the Brinkman number increases.  

 

 
 

 
 

Figure 2. Effect of Brinkman parameter rB  
 

Fig.3 shows the effect of suction parameter wf  on the 

boundary layers. It is seen that the velocity profiles decrease 

monotonically with an increase of suction parameter 

indicating the usual fact that suction stabilizes the boundary 

layer growth. Thus sucking the decelerated fluid particles 

reduces the growth of the fluid boundary layer. However, we 

observe that the temperature profiles increase with the 

increase of suction parameter wf  in both the cases where 

viscous dissipation effect is considered and neglected as is 

seen by Hitesh Kumar [22].   

Fig.4 displays the effect of the variation of Prandtl number 

Pr  on the thermal boundary layers. In both the cases 

 and , the thickness of thermal boundary 

layers increase with the increase in Prandtl number Pr .  

The effect of magnetic field parameter M on the velocity 

and temperature profiles with 

Pr 1.0, 0.5 and wf   is shown in Fig.5 and Fig.6 

considering two different cases of / 0.3a c   and / 1.5a c  . 

When / 0.3a c  <1, the velocity curves show that the rate of 

transport is considerably reduced with the increase of 

magnetic field parameter M . This is due to the fact that the 

variation of M  leads to the variation of Lorenz force due to 

magnetic field and the Lorenz force produces more resistance 

to the transport phenomena.  

However, for a fixed value of / 1.5a c   with / 1a c  , the 

velocity curves shows an opposite behaviour with the 

increase of M . Here, the velocity at a point increases with 

M . This can be explained by the fact that when / 1a c  , the 

velocity of the stretching sheet exceeds the velocity of the 

inviscid stream and an inverted boundary layer is formed 

near the surface. Thus it is expected that the horizontal 

velocity at a point in this boundary layer increases with 

increase in M .  From Fig.6, we observe that temperature 

profiles decrease with the increase of magnetic field 

parameter M in both the cases. 

So, for a fixed value of /a c with / 1a c   the transverse 

velocity at a point decreases with increase in M due to the 

inhibiting influence of the Lorenz forces.  

 

 

 

 

 

Figure 3. Effect of Suction parameter wf  

 

 
 

Figure 4. Effect of Prandtl parameter rP  
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Figure 5. Effect of Magnetic parameter M  

 

 
 

 
Figure 6. Effect of Magnetic parameter M  with /a c  

 

Tables 1 and 2 display the numerical results for (0)f   

and (0)  for different values of /a c , , , PrwM f and . 

Numerical values in Table 1 indicate that an increase of 

/a c increases the wall shear stress and whereas an increase 

of M  and wf decreases the wall shear stress. However, rate 

of heat transfer i.e. Nusselt number ( Nu ) increases as /a c , 

wf  increase and Nu  decreases as the values of , 

Pr increase. 

 

 

 

 

 

 

Table 1. Values of ''(0)f and (0)   for various values of 

M, a/c and  when Pr 1  and 3rB   

 

 

a/c 

 

M 
''(0)f  (0)   

0.1wf   0.3wf   0.5wf 

 

0.1wf 

 

0.3wf   0.5wf 

 

 

0.1 

2 1.6441 1.7398 1.840 2.772 2.153 2.0344 

5 2.2778 2.3718 2.469 2.662 2.469 2.2871 

10 2.4694 3.0507 3.050 2.287 3.054 3.0549 

0.3 5 1.814 1.887 1.887 1.915 1.797 1.7970 

0.5 5 1.3255 1.3783 1.433 1.431 1.347 1.2687 

 

1.3 

2 -0.6858 -0.719 -0.753 0.259 0.232 0.2082 

5 -0.8627 -0.895 -0.928 0.234 0.210 0.1897 

10 -1.0956 -1.127 -1.159 0.209 0.189 0.1708 

1.5 5 -1.4646 -1.5186 -1.574 0.016 0.001 -0.011 

2 5 -3.0588 -3.1675 -3.279 -0.455 -0.454 -0.4525 

 

Table 2. Values of (0)   for various values of Pr  and rB  

when M=2, a/c=1.5 and 1.5wf   

 

rB  Pr  

1 7 10 20 

0 -0.36760527 -0.08137867 -0.05935586 -0.03132512 

1 -0.23231782 -0.05487682 -0.04027556 -0.02142842 

3 0.03825708 -0.00187312 -0.00211495 -0.00163502 

5 0.30883197 0.05113057 0.03604565 0.01815838 

 

 

5. CONCLUSION 

 

From the present study we can make the following 

conclusions: 

1. Both the momentum and thermal boundary layers 

increase with the increase in parameter /a c , the ratio of the 

free stream constant to stretching surface constant.  

2. Suction stabilizes the boundary layer growth. 

3. The boundary layers are highly influenced by Prandtl 

number Pr. 

4. The velocity profiles decrease and temperature profiles 

increase as the viscous dissipation effect i.e. Brinkman 

number Br increases. 

5. When / 1a c  , the thickness of momentum boundary 

layers increase with the increase in magnetic field parameter. 

However when / 1a c  , the velocity curves reduce as 

magnetic field parameter increase due to the inverted 

boundary layer.  

The present investigation has neglected Hall current 

effects, see Beg et al. [31], [32]. These are of relevance in 

strong magnetic field ocean generator systems and will be 

considered imminently. 
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