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With the escalating demand for energy and the concomitant depletion of fossil fuel 

reserves, solar energy has emerged as a sustainable alternative, offering both energy 

conservation and power-saving benefits. The optimization of photovoltaic (PV) system 

performance through vigilant monitoring is essential for maximizing energy production. 

This study aims to devise a novel algorithm that derives from photocurrent measurements 

at the string level, alongside the aggregate current output of the PV array. Simulations of a 

PV string/array were executed using MATLAB/Simulink to discern the effects of solar 

irradiance and temperature fluctuations on current parameters. A representative model 

comprising two commercial PV modules arranged in series was employed to construct a 

four-string PV array for analysis. Findings indicate that photocurrent and overall current 

output are significantly influenced by solar irradiance, whereas increases in saturation and 

reverse saturation currents with temperature correspond to diminished current output. A 

rudimentary fault detection algorithm emerged from the simulation data, facilitating the 

identification of faults by juxtaposing the current from a PV string against a benchmark 

PV cell. Prompt detection and amelioration of faults—particularly those within groups two 

and three, which are characterized by 10 – 40% and greater than 40% reductions in current, 

respectively, and commonly associated with shading, soiling, and hotspots—are 

imperative for averting substantial energy yield losses and prolonging system longevity. It 

is crucial to acknowledge that daily variations in weather conditions may affect the 

algorithm's efficacy, underscoring the need for ongoing refinement. 
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1. INTRODUCTION

The burgeoning global energy demand, a burgeoning 

population, and the finite nature of non-renewable resources 

have rendered renewable energy sources imperative to future 

energy strategies. Solar energy, distinguished by its ubiquity, 

scalability, environmental stewardship, and economic 

viability, stands at the forefront of sustainable solutions 

designed to meet this burgeoning demand. Solar photovoltaic 

(PV) technology has witnessed substantial advancements, as 

evidenced by the proliferation of both grid-connected and off-

grid installations [1, 2]. Of particular note are off-grid PV 

systems, which are autonomous in generating electricity at a 

smaller scale through solar panels and storing it in batteries. 

These systems are especially beneficial in remote areas, where 

they represent a more cost-effective option than extending the 

electrical grid. 

Standalone electricity generating systems (SEGS) 

necessitate meticulous monitoring and routine self-

assessments to ensure they operate at optimal efficiency. 

Electricity generation in these systems is contingent upon a 

multitude of factors including, but not limited to, solar 

irradiance, temperature, shading, accumulation of debris, and 

the physical orientation of the modules [2]. These elements 

can precipitate the degradation of PV module performance 

over time, thus impacting the return on investment. More 

critically, they can cause faults that result in heightened energy 

losses, expedited component wear, diminished efficiency, and 

elevate safety hazards [3]. These faults often elude detection, 

potentially culminating in considerable economic losses. To 

mitigate these deleterious effects, regular PV system 

inspections are indispensable for maintaining optimal 

functionality. Moreover, the deployment of monitoring and 

diagnostic systems is instrumental in the expedient 

identification and rectification of faults, thereby minimizing 

repair time and system downtime. Consequently, accurate 

energy prediction in standalone PV systems is paramount for 

the formulation of algorithms that facilitate fault detection [4]. 

Technological advancements have refined the precision of 

energy predictions for PV systems through the adoption of 

new monitoring and diagnostic tools. Despite rapid 

improvements in the field, the integration of advanced 

surveillance systems within the context of small-scale SEGS 

is neither practical nor cost-effective [5]. Current market 

offerings, such as supervisory control and data acquisition 

(SCADA) systems, DT-80 Data takers, Seaward solar data 
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loggers, and Laboratory Virtual Instrument Engineering 

Workbench (LabVIEW) data acquisition software, are 

characterized by their complexity and adaptability to grid-

connected PV systems, rendering them unsuitable for small-

scale standalone applications. Advanced systems might 

leverage artificial intelligence (AI) and machine learning 

algorithms to discern patterns in data and predict potential 

faults. These systems can also enhance system performance by 

tailoring settings in response to the analyzed data. 

Fault detection methodologies for PV systems are broadly 

categorized into process history-based and model-based 

approaches. The current investigation concentrates on model-

based approaches, which juxtapose analytically derived 

outputs with actual measurements to trigger alarm signals [6]. 

Tina et al. proffered a fault detection technique that assesses 

the absolute performance ratio error (APRE) against a 

predetermined threshold to generate diagnostic alerts. 

Furthermore, the DC-AC power ratio has been employed as a 

metric to ascertain inverter failures [7]. Dhoke et al. advocated 

the generation of 'residual' signals to automatically detect and 

pinpoint intra-string line-line faults in expansive PV systems. 

The residual-based outlier detection relies on predefined 

thresholds; anomalies that transgress these boundaries are 

indicative of faults. The fault location algorithm employs 

regression-based expressions to estimate the fault's locus 

within the string [8]. Other studies have implemented 

automatic monitoring and fault detection predicated on power 

loss analyses, comparing monitored data with simulation 

outcomes to flag discrepancies [9]. Additional research has 

focused on fault detection at the module or array level, with 

each PV module or array outfitted with local sensors to track 

parameters such as temperature, irradiance, maximum power 

point (MPPT), or energy generation [10]. Data from these 

measurements are then contrasted with predicted values to 

ascertain faults [11, 12]. 

Despite these scholarly contributions, the implementation 

of monitoring and diagnostic systems in small-scale PV plants 

remains underexplored. The preponderance of research has 

concentrated on grid-connected and large-scale PV 

installations. Hence, the objective of this paper is to develop a 

straightforward algorithm predicated on photocurrent values at 

the PV string level and the overall current output of the PV 

array. This algorithm is specifically tailored for integration 

into small-scale PV systems, offering significant advantages 

for systems situated in isolated locales.  

 
 

2. METHODOLOGY 

 
The simulation involved connecting two commercial PV 

modules in series, with each module containing 36 cells, and 

then connecting four of these strings in parallel to create an 

array, as illustrated in the accompanying Figure 1. The 

equivalent circuit of a PV cell obtained in study [13] is 

comprised of a photo-current source (Iph) in parallel with a 

single diode (D), a shunt resistor (Rsh) and a series resistor (Rs). 

The photovoltaic panel can be modelled mathematically as 

given in Eqs. (1)-(5) [13]. 

Module photocurrent, Iph: 

 

 
(1) 

 

 
 

Figure 1. An array made up of 4 strings 
 

The Iph is linearly dependent on the solar irradiation, G, and 

temperature, T. 

Module diode reverse saturation current, Irs: 
 

 

(2) 

 

Module saturation current, I0: 
 

 

(3) 

 

Module I0 varies in direct proportion to the cell temperature. 

Module shunt resistance, Ish: 
 

 
(4) 

 

Rsh is the equivalent parallel resistance that is caused by the 

current leakages, tunnel effect, breakdown by microplasmas, 

leaks along surface channels, etc. Normally, the value of Rsh is 

generally high meanwhile Rs is very small. The Voc and fill 

factor will reduce when the Rsh is particularly small.  

Module output current, Iout is given in Eq. (5) where ID is the 

forward bias current generated by the diode. 

 

 

(5) 

 

Table 1. Details of mathematical symbols 

 
Symbol Name Value 

ki Short-circuit current of a cell 0.0032 

T Operating temperature (K) T 

Tn Nominal temperature (K) 298 

G Solar irradiance (W/m2) 1000 

q Electron charge (C) 1.6 × 10-19 

n The ideality factor of the diode  1.3 

K Boltzmann’s constant (J/K) 1.38 × 10-23 

Eg Band gap of semiconductor (eV) 1.1 

Rs Series resistance (Ω) 0.1 

Rsh Shunt resistance (Ω) 500 

𝐼𝑝ℎ = [𝐼𝑠𝑐 + 𝑘𝑖(𝑇 − 298)]
𝐺

1000
 

𝐼𝑟𝑠 =
𝐼𝑜𝑢𝑡

[𝑒
(
𝑞𝑉𝑜𝑐
𝑛𝑁𝑠𝐾𝑇

)−1
]

 

𝐼0 = 𝐼𝑟𝑠 (
𝑇

𝑇𝑛
)
3

𝑒𝑥𝑝 [
𝑞𝐸𝑔 (

1
𝑇𝑛

−
1
𝑇
)

𝑛𝐾
] 

𝐼𝑠ℎ = (
𝑉 + 𝐼𝑅𝑠
𝑅𝑠ℎ

) 

𝐼𝑜𝑢𝑡 = 𝐼𝑝ℎ − 𝐼𝐷 − 𝐼𝑠ℎ  

𝐼𝑜𝑢𝑡 = 𝑁𝑝𝐼𝑝ℎ − 𝑁𝑝𝐼0 [𝑒𝑥𝑝
(
𝑞(𝑉+𝑅𝑠)
𝑛𝐾𝑁𝑠𝑇

)
− 1] − 𝐼𝑠ℎ  
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Table 2. Electrical characteristics data of reference PV 

module 

 
Symbol Name Value 

Isc Short circuit current (A) 8.21 

Voc Open circuit voltage (V) 43.92 

Vmax Voltage at max power (V) 39.58 

Imax Current at max power (A) 7.58 

Pmax Rated power (W) 300 

Ns Number of cells connected in series 
72 

cells 

Np 
Number of PV modules connected in 

parallel 
4 

 
The descriptions of each mathematical symbol are depicted 

in Table 1 while the datasheets of the reference PV module for 

this simulation are given in Table 2. 

The PV datasheet values are derived at STC (Standard Test 

Conditions) which represents irradiance at 1000 W/m2, 

module temperature at 25℃, wind speed of 0 m/s, air mass 

(AM 1.5), and light incidence angle at 0°. Using all the 

mathematical equations mentioned above, five (5) subsystems 

were created to calculate Iph, I0, Ish, Irs, and Iout. All the 

subsystems are interconnected to produce a PV array model as 

illustrated in Figure 2. This paper focuses on three stages to 

develop a simple fault detection algorithm as displayed in 

Table 3. 
 

 
 

Figure 2. PV array model 

 
Table 3. Three stages of developing a simple fault detection algorithm 

 
Stages Descriptions 

1) Photocurrent at the string level 

Variation of 

• Solar radiation: 1000, 700, 500, 200, 100 W/m2 

• Temperature: 25℃, 30℃, 40℃ 

2) Saturation and reverse saturation current at the string level 
• Temperature varied at 25℃, 30℃, 40℃, 50℃ & 90℃ 

• Solar radiation fixed at 1000 W/m2 

3) Current output at the array level 

Variation of 

• Solar radiation: Increment of 100 W/m2 until 1000 W/m2 

• Temperature: 25℃, 30℃, 40℃ 

• Percentage current reduction 

• Current from the datasheet: 32.84 A 

 
Table 4. Values of photocurrent and output current at different solar radiation and temperature levels 

 

No. 
Solar Radiation 

(W/m2) 

String (Series) Array (Parallel) 

Iph (A) Iout (A) 

25℃ 30℃ 40℃ 25℃ 30℃ 40℃ 

1 1000 8.21 8.37 8.69 32.39 32.65 32.04 

2 700 5.75 5.86 6.08 22.66 22.86 22.45 

3 500 4.11 4.19 4.35 16.16 16.29 15.92 

4 200 2.05 2.09 2.17 8.01 8.03 7.62 

5 100 0.82 0.84 0.87 3.11 3.06 2.59 

 

 
3. RESULTS AND DISCUSSION 

 

A simple algorithm for PV fault detection is developed 

based on the results of MATLAB/Simulink at three different 

stages. The first stage of the study involved varying solar 

radiation and temperature to observe their impact on Iph, at the 

string level and Iout of the PV array. The temperature of the PV 

module increases with solar radiation and air temperature. 

According to a previous study on hot spotting, the temperature 

of the shaded cell can reach up to 10 – 20℃ higher than the 

neighboring cells under even illumination conditions. Thus, 

the module temperature varied from 25℃ at STC value to 

30℃ and 40℃ are to consider the possibility of hot spots. The 

results in Table 4 and Figure 3 showed that Iph values 

decreased as solar radiation decreased for all temperature 

levels. In contrast, the temperature had minimal effect on Iph. 

Similar results were obtained for Iout, although its values 

dropped slightly as the temperature approached 40℃ for all 

solar radiation levels. 

 

 

a) 
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Figure 3. Graphs of a) solar radiation versus photocurrent 

and b) solar radiation versus current output at three different 

temperatures 

 

 

 
 

Figure 4. Graphs of a) solar radiation versus current output 

and b) solar radiation versus percentage current reduction at 

three different temperatures 

 

The second stage of the study focused on the temperature 

dependence of Irs and I0, which is the reason for the decrement 

of Iout. To verify this, the temperatures were varied from 25℃ 

to 50℃ while maintaining the solar radiation level at 1000 

W/m2 as displayed in Table 5. The table result exposes that 

both current parameters gradually increased with the 

temperature which mainly contributes to the high internal 

carrier recombination in the PV cell [14, 15]. Fundamentally, 

Iout relies on the values of Iph, I0, and Irs as given in Eq. (5). 

The third stage presented the percentage of Iout reduction at 

the array level for different solar radiation and temperature 

values as indicated in Table 6 and Figure 4. Despite the 

working conditions at the STC values, there is about a 1.38% 

of Iout reduction in the PV array as a result of heat loss and 

internal recombination. Based on study [15], the data table can 

be categorized into three groups according to the value of 

percentage Iout reduction. The first group is for the percentage 

Iout reduction that is less than 10% which reflects about 900 – 

1000 W/m2 solar radiation. The second group is when the 

percentage Iout reduction is approximately 10% to 40% which 

refers to around 500 – 900 W/m2 Solar radiation. The third 

group corresponds to the percentage Iout reduction of more than 

40% that falls under less than 500 W/m2 solar radiation. 

 

Table 5. Values of diode reverse saturation current and 

saturation at different temperature values 

 

No. 

Solar Radiation (1000 W/m2) 

Temperature (°C) 
Irs 

(A) 

I0 

(A) 

1 25 9.58 × 10-8 9.68 × 10-8 

2 30 1.30 × 10-7 2.37 × 10-7 

3 40 2.32 × 10-7 1.30 × 10-6 

4 50 3.97 × 10-7 6.47 × 10-6 

 
Based on this framework, crucial information can be 

extracted to develop a simple algorithm for fault detection as 

portrayed in Figure 5. The diagram illustrates the data analysis 

process, which incorporates both electrical and thermal 

methods to detect the malfunction in the PV system. The 

electrical method is based on I-V characteristic analysis, which 

involves comparing actual electrical parameters with expected 

values derived from graphs. In this paper, two main scenarios 

will be considered, where the current at the string level is 

compared between the reference and the faulty conditions. 

Both scenarios will be executed under actual working 

conditions. The current from each string will be used for 

evaluation, as it is easier to check and compare with the 

reference PV cell, given that the strings are connected in series. 

Thus, the program will assess the string current and if the Istring 

is lower than Iref. cell for any particular strings, it will prompt 

the program to estimate the percentage of current reduction 

between the two currents. The program will analyze and match 

the percentage of current reduction to the three main groups 

which can be categorized as <10%, between 10% to 40%, and 

more than 40% of current reduction. If it falls under less than 

10%, the program will instruct the system to repeat the steps 

from the beginning and perform the analysis again. Since the 

current drop is small, the slight difference is considered mainly 

caused by clouds and rain [16]. However, if the percentage 

current reduction is more than 10%, an alarm signal will be 

triggered, indicating that a fault has been detected. The source 

of faults has been determined based on the extent of the 

percentage of current reduction.  

The next step is to locate the fault in the PV string. In this 

case, infrared thermal analysis will be used to scan the 

corresponding faulty PV string. Infrared thermal analysis is 

one of the techniques for quickly detecting hotspots. It can 

reflect the characteristics of different working conditions due 

to temperature differences. When the PV cells operate under 

faulty conditions compared to normal working PV cells, it will 

display two different infrared images of the PV cells’ surface 

temperature. On the other hand, if the PV modules operate as 

usual, the measured data can be stored to develop long-term 

diagnostic analysis. 

Three main faults that could affect the performance of the 

PV system have been identified, namely soiling, shading, and 

hotspots. In the case of series-connected PV modules, non-

b) 

a) 

b) 
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uniform solar radiation critically affects performance. Soiling 

and shading are the main causes of PV panels absorbing a non-

uniform amount of solar radiation, leading to a serious 

problem known as hotspots. For instance, during partial or full 

shading, when the diode current, ID flows in a reverse direction, 

a large fraction of power is consumed due to high resistance in 

the diode, thereby reducing the current flow and increasing the 

module temperature. In a situation where there is a high 

difference in illumination levels between cells, it can 

potentially damage the diode of a PV cell. Additionally, the 

voltage can reach more than -20 V during the reverse-biased 

condition. Hotspots occur when the fully shaded module 

overheats due to a large variation in the current generated 

between modules, which may disrupt the entire system [17, 

18]. Instead of generating power, the hotspots cause the shaded 

cells to consume power from other non-shaded cells, leading 

to an increase in temperature. Therefore, preventing the hot 

spots by detecting when and where they occur in the PV 

module is crucial to reduce degradation over the PV system’s 

lifetime. 

 
Table 6. Percentage of current output reduction at different solar radiation and temperature levels 

 

No. 

Solar 

Radiation 

(W/m2) 

Array (Parallel) 

Iout (A) 

25℃ 
% Iout 

Reduction 
30℃ 

% Iout 

Reduction 
40℃ 

% Iout 

Reduction 

1 1000 32.39 1.38 32.65 0.58 32.04 2.44 

2 900 29.15 11.24 29.4 10.48 28.88 12.06 

3 800 25.91 21.10 26.13 20.43 25.68 21.80 

4 700 22.66 31.00 22.86 30.00 22.45 31.64 

5 600 19.41 40.90 19.58 40.38 19.20 41.53 

6 500 16.16 50.79 16.29 50.40 15.92 51.52 

7 400 12.90 60.72 12.99 60.44 12.61 61.60 

8 300 9.64 70.64 9.68 70.52 9.29 71.71 

9 200 8.01 75.64 8.03 75.55 7.62 76.80 

10 100 3.11 90.53 3.06 90.68 2.59 92.11 

 

 
 

Figure 5. General algorithm for early fault detection 

 
 

4. CONCLUSIONS 
 

The study aimed to create a simple algorithm based on 

MATLAB/Simulink simulations to detect faults in a PV array. 

Subsystem blocks were developed to design a user-friendly 

PV array model with practical icons and dialogs to produce a 

meaningful outcome. The model was used to observe 

photocurrent values at the PV string and the PV system’s 

current output. Both parameters were highly sensitive to 

variations in solar radiation. Furthermore, the findings 

showed that saturation and reverse saturation currents 

escalate with the temperature, leading to a reduction in 

current output. This adverse impact on power generation 

indicates the importance of PV monitoring and early fault 

detection. The percentage reduction in current output was 

categorized into three groups, and a fault detection algorithm 

was developed based on these categories. The detection and 

mitigation of faults become particularly important for group 

two (10 – 40% current reduction) and group three (> 40% 

current reduction), which encompass shading, soiling, and 
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hotspot phenomena to prevent substantial energy losses. In 

future work, this algorithm will be incorporated into a 

customized PV monitoring system and will be tested 

vigorously under real working conditions. A data logger will 

be used to validate the electrical data collected from the PV 

modules and further improvements are required, taking into 

consideration factors such as weather conditions and 

obstruction in the forms of buildings, trees, and motor 

vehicles. 
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