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This paper focuses on designing several controllers to attenuate the chattering problem: a 

conventional sliding mode controller (CSMC) with a barrier function (BF) and a saturation 

function (SF), and an adaptive sliding mode controller (ASMC) with SF as well as ASMC 

with BF. The key distinction between CSMC and ASMC lies in the fact that ASMC 

doesn’t require knowledge of the upper bounds of uncertainties and the determination of 

gain. ASMC can minimize the magnitude of control signals to an acceptably low level. 

Despite perturbations such as parameter uncertainty (PU), external disruption (ED), and 

the friction coefficient of Coulomb (CF), both CSMC and ASMC can effectively handle 

the 2-link robot. They stabilize the robot manipulator and achieve the required joint 

position. Due to the ASMC's lower controller gain compared to CSMC, the amplitude of 

the chatter (zigzag motion) has been minimized. Simulation results using MATLAB 

2018a/Simulink demonstrate that the ASMC outperforms the CSMC in achieving more 

favorable outcomes. 
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1. INTRODUCTION

In response to a growing demand for applications, robotic 

systems have become a focal point of extensive research. A 

comprehensive understanding of robotics complexity requires 

a strong foundation in various disciplines, including electrical 

engineering, mechanical and systems engineering, industrial 

engineering, computer science, economics, and mathematics. 

Emerging engineering fields such as manufacturing 

engineering, application engineering, and knowledge 

engineering have evolved to address the multifaceted aspects 

of robotics. In the last two decades, the field of robotics has 

undergone significant evolution, propelled by rapid 

advancements in computer and sensor technology, along with 

theoretical breakthroughs in control and computer vision [1]. 

Speed, accuracy, and repeatability stand as the primary 

justifications for the widespread adoption of robotics, with 

robotic manipulators rapidly becoming integral to our daily 

lives. Nearly every product in existence now incorporates a 

robotic manipulator [2]. The control of robot manipulators 

poses a particularly intriguing challenge due to their complex 

dynamical models. The dynamic study of a robotic model 

involves examining the coupling relationship between the 

joint torques applied by the actuators and the positions of the 

robotic arm. The presence of nonlinear dynamics and coupling 

relationships makes achieving precise and robust control a 

challenging task. Consequently, developing a controller using 

standard control methods that rely on the dynamics of the 

robotic system is a highly demanding undertaking [3]. Sliding 

Mode Control (SMC) emerges as one of the most effective 

robust and nonlinear controllers. The systematic design 

procedure offers a straightforward solution for the control 

signal. In the late 1970s, Sliding Mode Control (SMC) gained 

significant attention from the control research community due 

to its insensitivity to Parameter Uncertainty (PU) and External 

Disruption (ED) [4]. The design of SMC involves two 

fundamental processes: selecting a stable sliding surface (SS) 

and establishing a discontinuous control rule that guides the 

system's state path to reach the SS at a specific time and remain 

there after that [5]. Notably, in SMC, the Saturation Function 

(SF), sat(s,φ), can be employed instead of the signum function 

sign(s) to reduce chatter. To further mitigate chatter, the 

Barrier Function (BF) can replace sign(s) or sat(s,φ). The BF 

ensures that the output variable converges to a region near zero, 

effectively eliminating the chatter problem. This is the 

rationale behind its selection in this study [6]. On the other 

hand, various technical approaches have been introduced to 

address the chatter phenomenon and fine-tune controller gains, 

including the Integral Sliding Mode controller and Sliding 

Mode Fuzzy controller. These controllers aim to achieve 

asymptotic stability by directing the trajectory toward a 

neighborhood of zero. In the pursuit of enhanced robustness, 

an Adaptive Sliding Mode Controller (ASMC) has been 

proposed. Notably, ASMC not only improves robustness but 

also effectively mitigates chatter, reducing control effort 

without the need to determine the system's upper bound 

beforehand [7]. 

In this study, a CSMC with SF and BF also, an ASMC with 

SF and BF have been designed and applied with the 2-link 

robot to eliminate the chatter problem by using modern 

methods. 

The major advantages of the suggestion of BF-based ASMC 

are: 
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• The output volatile at a limited time converges to a 

predetermined zero region, regardless of the perturbation 

boundary, and cannot be crossed [6]. 

•The gains controlled by this strategy are not inflated. 

because the recommendation technique can only achieve 

output volatility convergence to a certain zone [6]. 

•Theoretically, the suggested technique does not require 

turbulence limitations or a low-pass filter [6]. 

The following is how this paper is organized: In section 2 

the mathematical model of the 2-link robot manipulator is 

introduced. Section 3 discusses the designing of CSMC and 

ASMC with two types of functions. Section 4 shows the results 

of tuning the controllers. Finally, section 5 provides a few 

conclusions. 

 

 

2. THE MATHEMATICAL MODEL 

 

Robotics advancements have produced a significant impact 

on the automation industry's productivity and efficiency. In 

industries, robots are used to execute a variety of tasks such as 

cutting, welding, assembling, picking and placing, and so on 

[8]. Clarification of the 2-link robot is provided in Figure 1. 

 

 
 

Figure 1. 2-link robot arm 

 

The dynamics of the robot system are described as follows 

[9]: 

 

𝑀(𝜃)�̈� + 𝐶(𝜃, �̇�) + 𝐺(𝜃) = 𝜏 (1) 

 

where, θ, 𝜃,̇  �̈�  are characterized as joint angular position, 

velocity, and acceleration vectors of dimension 2×1.  

τ depicts a torque vector of dimension 2×1.  

M(θ) depicts a 2×2 inertia matrix.  

𝐶(𝜃, �̇�) is depicting the Carioles and centrifugal forces in a 

2×2 grid.  

G(θ) It is a 2×1 matrix that represents a gravity vector. 

The following are the parameter descriptions in Eq. (1): 

 

𝑀(𝜃) = [
𝑀11 𝑀12

𝑀21 𝑀22
] 

 

where, 

𝑀11 = (𝑚1 +𝑚2)𝑙1
2 +𝑚2𝑙2

2 + 2𝑚2𝑙1𝑙2 cos(𝜃2);  
𝑀12 = 𝑚2𝑙2

2 + 2𝑚2𝑙1𝑙2cos⁡(𝜃2); M12=M21; 𝑀22 = 𝑚2𝑙2
2;  

C represents the Coriolis and centrifugal matrix which is 

given by: 𝐶 = [
𝐶1
𝐶2
] ; 𝐶1 = 𝑚2𝑙1𝑙2sin⁡(𝜃2)�̇�2

2 −

2𝑚2𝑙1𝑙2sin⁡(𝜃2) �̇�1�̇�2; C2=m2l1l2sin(θ2) �̇�2
2;  

G represents the gravity vector and is given by: 𝐺 = [
𝐺1
𝐺2

]; 

G1=m2l2cos(θ1+θ2) +(m1+m2)l1gcos(θ1); G2=m2 l2 cos(θ1+θ2); 

𝜏=[
𝜏1
𝜏2
]. 

According to this study, the following statement regarding 

the actual position is: 

 

𝜃1=𝑥1+𝜃1𝑑 

𝜃2=𝑥2+𝜃2𝑑 
(2) 

 

where, θ1d and θ2d are the desirable angles for joint-1 and joint-

2, respectively. 

The Model Robot can be rewritten as follows: 

 

�̇�1 = 𝑥2 

�̇�2=−𝑀(𝜃)−1( 𝐶(𝜃, �̇�) + 𝐺(𝜃) + 𝜏+𝛿(𝑥,𝑢)) 
(3) 

 

Eq. (3) should be rewritten as follows: 

 

�̇�1 = 𝑥2 

�̇�2=𝐹+𝑢+𝛿 
(4) 

 

The symbols Eq. (4) correspond to the equations shown 

below: 

 

𝑥1 = [
𝑥1
𝑥2
], 𝑥2 = [

𝑥3
𝑥4
] (5) 

 

𝐹 = [
𝐹1
𝐹2
] = −𝑀(𝜃)−1(𝐶(𝜃, �̇�)�̇� + 𝐺(𝜃)) (6) 

 

u=[
𝑢1
𝑢2
]=−𝑀(𝜃)−1𝜏 (7) 

 

𝛿=[
δ1
δ2
]=Δ𝐹+𝐹𝑐+𝐷(𝑡) (8) 

 

where, ΔF=10% F, is PU for variables F. In both joints, CF is 

Fc=[
𝐹𝑐1
𝐹𝑐2

] and 𝐷(𝑡)=[
𝑑1(𝑡)
𝑑2(𝑡)

]indicates the ED. 

As a result, the set of nonlinear equations used to diagnose 

the system's behavior is as follows: 

 

�̇�1 = 𝑥3 

�̇�2 = 𝑥4 

�̇�3=𝐹1+𝑢1+δ1 

�̇�4=𝐹2+𝑢2+δ2 

(9) 

 

where, δ1 and δ2 are the terms of Joint 1 and Joint 2 

disturbances, respectively. However, there are two 

fundamental issues with the CSMC: chattering and gain 

setting for best control. Thus, replacing the boundary layer(SF) 

is seen as an efficient technique for resolving chattering, and 

adaptive SMC is regarded as an effective strategy for 

mitigating the gain section of optimal control. Furthermore, 

barrier function-based adaptive SMC may be employed to 

address both of the aforementioned concerns. In this study, 

two ways to define barrier functions are assumed [6, 9]. 

 

2.1 Barrier function 

 

Definition [6]: The BF can be described as an even 

continuous function f: x[−ε, ε] →lb(x)[b, ∞] closely rising 

on [0, ε]. Let's say that some ε>0 is given and steady then: 
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• lim|x|→εlb(x)=+∞. 

• lb(x) has a specific minimum of zero and lb(0)=b≥0. 

There are two different classes of BF: 

1-Positive-definite BF(PBF): 

 

𝑙𝑝𝑏(𝑥)=
𝜀⁡𝐹

𝜀−|x|
, i.e., 𝑙𝑝𝑏(0)=F>0 (10) 

 

2-Positive Semi-definite BF(PSBF): 

 

𝑙𝑝𝑠𝑏(𝑥)=
|x|

𝜀−|x|
, i.e., 𝑙𝑝𝑠𝑏(0)=0 (11) 

 

The defined function in Eq. (10) and Eq. (11) provides 

adaptive and classical gains based on PBF and PSBF. 

Therefore, when 𝜀→0 then 𝐾→0. If the state lies in the 

vicinity of origin, i.e., 
|x|

𝜀
<1, then 𝐾≈

|x|

𝜀
, that certifies the 

convergence of state x to zero [9].  

The PBF lpsb(x) was selected and will be employed in this 

work to simulate the 2-link robot. 

 

 

3. THE DESIGN OF THE SLIDING MODE 

CONTROLLER 

 

The history of Sliding Mode Control (SMC) theory traces 

back to nineteenth-century structure and equilibrium analyses, 

evolving into an engineering field in the late 1950s. Early 

pioneers such as Nyquist, Bode, Evan, and Wiener laid the 

foundation for dynamic analysis and controller synthesis in the 

frequency domain, contributing significantly to the 

development of control system approaches that furthered the 

cause of automation [10]. The SMC is an effective controller 

created to provide a reliable system in the presence of 

uncertainty, but it is susceptible to oscillations with a finite 

capacity and frequency known as the chattering phenomenon, 

which is a well-known issue in SMC. Numerous methods, like 

ASMC and the boundary layer method, are suggested to lessen 

chattering [11]. By using the 2-link robot, the two techniques 

in this work CSMC and ASMC have been examined. Due to 

the addition of a perturbations term, the system of a two-link 

robot can be classified as complex. On the other hand, it has 

utilized several methods to determine the best way to minimize 

the chatter and compare them to show the best to the reader 

and expect that BF is the best. 

 

3.1 The designing of CSMC 

 

 
 

Figure 2. Sliding phase and reaching phase of CSMC 

 

According to Figure 2, the CSMC has two phases: the 

reaching phase (RP) and the sliding phase (SP). The nominal 

control portion (NCP) and discontinuous control part (DCP) 

are two subcategories of the control process. While the DCP 

guides the system's state trajectory to follow the SS until it 

reaches the origin, the NCP of the SMC is employed to push 

the state's trajectory to shift from a starting condition to the 

SS's direction [12-14]. 

 

The SS and udis can be written as [11-13]: 

 

𝑢𝑑𝑖𝑠 = −𝑘(𝑥)𝑠𝑖𝑔𝑛(𝑠) (12) 

 

𝑠 = 𝜆𝑒 + �̇� (13) 

 

here, lambda (λ) is the slope and it is>0. 

Let us assume that x1 is e and x2 is �̇�, thus the SS is going to 

be re-written as: 

 

𝑠 = 𝜆𝑥1 + 𝑥2 (14) 

 

when λ=1, the SS is expressed as: 

 

𝑠 = 𝑥1 + 𝑥2=0 (15) 

 

The entire control law can be expressed as follows: 

 

𝑢 = 𝑢𝑛 + 𝑢𝑑𝑖𝑠 (16) 

 

where, un is the NCP, and the udis DCP [12, 13].  

The DCP is defined as below: 

 

𝑢𝑑𝑖𝑠 = −𝑘(𝑥)𝑠𝑎𝑡(𝑠) (17) 

 

where, k(x) is a discontinuity gain that composites all PU, ED, 

and CF and sat(s) is an SF (boundary layer), as defined in Eq. 

(18): 

 

𝑠𝑎𝑡(𝑠, 𝜑) = {
𝑠𝑖𝑔𝑛(𝑠) 𝑖𝑓|𝑠| > 𝜑

𝑠

𝜑
𝑖𝑓|𝑠| ≤ 𝜑

 (18) 

 

where, phi(φ) is the width of SF as seen in Figure 3. 

 

 
 

Figure 3. The sat(s) function [14] 

 

where, 

 

𝑠𝑖𝑔𝑛(𝑠) = {

1 𝑖𝑓⁡𝑠 > 0
−1 𝑖𝑓⁡𝑠 < 0

∈ [−1.1] 𝑖𝑓⁡𝑠 = 0
 (19) 

 

As shown in Figure 4. 
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Figure 4. The signum function [14] 

 

As a result, the equation for the control action is as follows 

[15]: 

 

𝑢 = 𝑢𝑛 − 𝑘(𝑥). 𝑠𝑎𝑡(𝑠, 𝜑) (20) 

 

And replace DCP in (15) with BF then: 

 

𝑢 = 𝑢𝑛 −
𝑠

|𝜂 − |𝑠||
 (21) 

 

The SS can be expressed as in the following: 

 

𝑠1 = 𝜆𝑥1 + 𝑥3 (22) 

 

𝑠2 = 𝜆𝑥2 + 𝑥4 (23) 

 

where, x1 and x2 represent the angular position errors of links 

1 and 2 and x3 and x4 are the angular velocity errors of links 1 

and 2 respectively. 

Let λ=1, then Eq. (22) and (23) are rewritten in the following 

format: 

 

𝑠1 = 𝑥1 + 𝑥3 (24) 

 

𝑠2 = 𝑥2 + 𝑥4 (25) 

 

The gain 𝑘(𝑥) is calculated by generalizing the condition: 

 

�̇�<0 (26) 

 

where, 𝑠=[
𝑠1
𝑠2
]. 

By including Eq. (15) in Eq. (26): x1+x2<0. 

Using Eqs. (4) and (8): 

 

𝑘(𝑥)>|𝛿| 

𝑘(𝑥)=𝑘𝑜(Δ𝐹+𝐷) 
(27) 

 

where, (ko>0). 

 

𝑘(𝑥)=[
𝑘1(𝑥)
𝑘2(𝑥)

] (28) 

 

where, k1(x) is a control action gain for link-1, whereas k2(x) 

is a control action gain for link-2. 

If the gain values of each link are discovered and inserted in 

Eq. (16) then torques are calculated as follows: 

 

𝜏1=𝑀11 𝑢1+𝑀12 𝑢2 (29) 

 

𝜏2=𝑀21𝑢1+𝑀22 𝑢2 (30) 

 

3.2 The designing of ASMC 

 

As soon as a passable value is obtained, the ASMC 

controller gain gradually decreases. This appropriate value is 

capable of preserving the system's robustness and stability as 

they are in CSMC. The aim is adaptively modifying the 

controller gain without knowing the top bound of the system 

uncertainty [14, 16, 17]. 

The ASMC is organized as follows. 

 

𝑢(𝑠. 𝑡) = −𝑘(𝑡)⁡𝑠𝑖𝑔𝑛(𝑥. 𝑡) (31) 

 

The signum function in Eq. (31) is substituted by the SF, as 

previously stated and the DCP by the BF to minimize 

chattering. Where k(t) reflects the varying gain over time and 

could be stated as in [6]. 

 

�̇�(𝑡) = {
𝜌. |𝑠(𝑥. 𝑡)|. 𝑠𝑖𝑔𝑛(|𝑠(𝑥. 𝑡)|) − 𝜖) 𝑖𝑓⁡𝑘 > μ

𝜇 𝑖𝑓⁡𝑘 ≤ 𝜇
} (32) 

 

where, ρ>0 It is used to raise or lower the value of k(t). Where 

μ and ϵ are positive constants to be selected, we noticed from 

the law (Eq. (32)) that it’s clear that the amount of uncertainty 

(upper and lower bound) isn’t included in the calculations of 

the minimally acceptable gain (adaptive gain) despite CSMC 

where the uncertainty had to be calculated as seen in Eq. (26)-

(28). 

 

 

4. THE SIMULATION RESULTS 
 

In this work, CSMC and ASMC were constructed to try the 

reaction in the presence of PU, CF, and ED on each link of a 

2-link robot manipulation by employing SF and a BF. To 

demonstrate the effectiveness of the suggested strategies, these 

two techniques were simulated using the 

Matlab2018a/Simulink program. Table 1 lists the system 

parameters. Where, the initial conditions are x1(0)=
π

8
(rad. ), 

x2(0)=
π

16
(rad. ), x3(0)=0(rad./sec.), and x4(0)=0(rad./sec.). 

The ASMC control law parameters' values in Eq. (29) are 

given as below: ρ1=20, ρ2=19, ϵ1=ϵ2=0.002, μ1=30, μ2=29, 

k1(0)=20, k2(0)=19. 

 

Table 1. The set of parameters of the 2-Link Robot 

 

Parameter Description Value (unit) 
l1 The link’s 1 length 0.7 (m) 

l2 The link’s 2 length 0.3 (m) 

m1 The link’s 1 mass 0.2 (kg) 

m2 The link’s 2 mass 0.1 (kg) 

θ1 desired Theta desirable of link 1 
𝜋

3
(rad. ) 

θ2 desired Theta desirable of link 2 
𝜋

2
(rad. ) 

d1 Link’s 1 disturbance 0.1 (N.m.) 

d2 Link’s 2 disturbance 0.1 (N.m.) 

Fc1 Link’s 1 CF 0.031 (N.m.) 

Fc2 Link’s 2 CF 0.052 (N.m.) 

φ The width of SF 0.07 

ε Eta for barrier function 0.08 

 

4.1 CSMC 

 

Figures 5 and 6 show the states' progression from their 

starting positions x1(0)=
π

8
, x2(0)=

π

16
, x3(0)=0, and x4(0)=0 for 
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joint-1 and joint-2 till reaching equilibrium points (desired 

position) for CSMC with SF and with BF and as seen in 

Figures 7 and 8 the desired position. As a result, the system 

can be characterized as having global asymptotically stable 

because of convergence to the too-close neighborhood to zero 

(desired location) on the other means the error and the 

derivative of error are zero or near zero which leads to the 

exact tracking movement for the 2-link robot as seen in 

Figures 9-12. 
 

 
 

Figure 5. The upward trajectory of calculated the SS 

uncertainty coefficients of joint-1 for CSMC with SF and BF 
 

 
 

Figure 6. The upward trajectory of calculated the SS 

uncertainty coefficients of joint-2 for CSMC with SF and BF 
 

 
 

Figure 7. The performance of tracking between both the 

actual and desired position of joint-1 for CSMC with SF and 

BF 
 

 
 

Figure 8. The performance of tracking between both the 

actual and desired position of joint-2 for CSMC with SF and 

BF 

 
 

Figure 9. The error of joint-1 (radians) for CSMC with SF 

and with BF 

 

 
 

Figure 10. The error of joint-2 (radians) for CSMC with SF 

and with BF 

 

 
 

Figure 11. The derivative of error of joint-1 

(radians/seconds) for CSMC with SF and with BF 

 

 
 

Figure 12. The derivative of error of joint-2 

(radians/seconds) for CSMC with SF and with BF 

 

Figure 13 and Figure 14 displays the gain controller for each 

joint CSMC with SF and with BF, where it gives the high level 

which leads to optimizing the effort torque action, as seen in 

Figure 15 and Figure 16. When employing boundary layers 

(SF), the chatter persisted as seen in Figure 15 and Figure 16. 

In contrast, when using CSMC with BF, the chattering nearly 

completely disappeared. 
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Figure 13. The joint’s 1 classical gain k(x) of for CSMC 

with SF and with BF 

 

 
 

Figure 14. The joint’s 2 classical gain k(x) for CSMC with 

SF and with BF 

 

 
 

Figure 15. The joint’s 1 torque action (N.m.) for CSMC with 

SF and with BF 

 

 
 

Figure 16. The joint’s 2 torque action (N.m.) for CSMC with 

SF and with BF 

 

The data in Table 2 below illustrate the settling time and 

chattering intensity while administering the CSMC with SF 

and BF. It can be seen that the chattering decreased to a more 

tolerable level when using BF, and the settling time was 

shorter when using SF. 

 

Table 2. Simulation results for CSMC 

 

Content 

CSMC with 

Barrier 

Function 

CSMC with 

Saturation 

Function 

Settling time (sec.) 4.5 4 

The magnitude of 

chattering Beak to 

Beak (N. m.) 

≈0 1.00281 

 

4.2 ASMC 

 

Figures 17 and 18 show the states' progression from their 

starting positions x1(0)=
π

8
, x2(0)=

π

16
, x3(0)=0, and x4(0)=0 for 

joint-1 and joint-2 till reaching equilibrium points (desired 

position) for CSMC with SF and with BF and as seen in 

Figures 19 and 20 the desired position. As a result, the system 

can be characterized as having global asymptotically stable 

because of convergence to the too-close neighborhood to zero 

(desired location) on the other means the error and the 

derivative of error are zero or near zero which leads to the 

exact tracking movement for the 2-link robot as seen in 

Figures 21-24. 

 

 
 

Figure 17. The upward trajectory of calculated the SS 

uncertainty coefficients of joint-1 for ASMC with SF and BF 

 

 
 

Figure 18. The upward trajectory of calculated the SS 

uncertainty coefficients of joint-2 for ASMC with SF and BF 

 

 
 

Figure 19. The performance of tracking between both the 

actual and desired position of joint-1 for ASMC with SF and 

BF 
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Figure 20. The performance of tracking between both the 

actual and desired position of joint-2 for ASMC with SF and 

BF 

 

 
 

Figure 21. The joint-1 error (radians) for ASMC with SF and 

with BFss 

 

 
 

Figure 22. The joint-2 error (radians) for ASMC with SF and 

with BF 

 

 
 

Figure 23. The derivative of error of joint-1 

(radians/seconds) for ASMC with SF and with BF 

 

 

 
 

Figure 24. The derivative of error of joint-2 

(radians/seconds) for ASMC with SF and with BF 

 

The controller’s gain of each joint for the ASMC with SF 

and with BF is illustrated in Figures 25 and 26. It provides a 

low level, which minimizes the effort torque action, as seen in 

Figures 27 and 28. When ASMC is used with BF, the 

chattering almost completely disappears, but when boundary 

layers (SF) are used, as in Figures 27 and 28, ASMC still 

exhibits chattering. 

 

  
 

Figure 25. The joint’s 1 adaptive gain k(t) for ASMC with 

SF and with BF 

 

  
 

Figure 26. The joint’s 2 adaptive gain k(t) for ASMC with 

SF and with BF 

 

 
 

Figure 27. The joint’s 1 torque action (N.m.) for ASMC with 

SF and with BF 
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Figure 28. The joint’s 2 torque action (N.m.) for ASMC with 

SF and with BF 

 

The information in Table 3 below illustrates the settling 

time and chattering intensity while applying the ASMC with 

SF and BF. It can be seen that chattering decreased to a more 

tolerable level while applying the ASMC with BF and that 

settling time is shorter when applying SF. 

 

Table 3. Simulation results for ASMC 

 

Content 

ASMC with 

Barrier 

Function 

ASMC with 

Saturation 

Function 

Settling time (sec.) 4.5 4  

The magnitude of 

chattering Beak to 

Beak (N. m.) 

0 0.012 

 

 

5. CONCLUSIONS 

 

In the presence of nonlinearity in the actuator, PU, CF, and 

ED, a robust SMC for a 2-link robot is constructed using the 

ASMC with BF concept. By lowering the controller gain to a 

more tolerable level, ASMC is used to improve the efficiency 

of CSMC. As a result, the control input is decreased. Unlike 

CSMC, ASMC doesn’t need the limit of uncertainty to be 

known, and the calculations of discontinued gain in cases 

when the limit of uncertainty is unknown would be affected by 

the motion of the 2-link robot and make it to follow the exact 

trajectory. Compared to SF, the simulation results in Figure 15, 

Figure 16 and Table 2 demonstrate that there will be no 

chattering when employing BF. Similar phenomena can be 

seen in ASMC in Figure 27, Figure 28 and Table 3 which led 

to the achievement of asymptotic stability. On the other hand, 

employing the SF in CSMC and ASMC results in a faster 

settling time than using the BF. However, BF ensures a zero 

chattering magnitude in contrast to SF, which has a tiny 

chattering magnitude; as a result, BF offers greater stability. 

On the other hand, even though it requires more settling time, 

BF is preferable to SF if accuracy is required for work. 

However, the SF will be a good option for the system if a 

shorter period is desired. 
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