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The design of autopilots is often enabled by simulating the behavior of the aircraft when 

it is steered by these systems. The automatic pilot of an airplane consists of relieving the 

workload of the crew by allowing it to display an altitude, speed and/or heading instruction 

and letting the control system manage the trajectory to reach this instruction. The autopilot 

uses control laws to compare the pilot's flight parameters with the predetermined 

instructions, then adjusts the control system accordingly. These control laws are 

parametrized as a function of the stability and precision performances to be respected. The 

objective of our proposed approach is to demonstrate the usage of Model-Free Control 

(MFC) using an intelligent controller to check the autopilots altitude based on retention of 

the aircrafts attitude. The proposed MFC approach is applied in the aircraft system and 

numerical results have presented good performances in terms that the autopilot altitude 

regulation error using the MFC controller is more better than the error used by the PID 

controller. 
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1. INTRODUCTION

Today, autopilot mechanisms have become very important 

to ensure safe, long civilian flights for more than 16 hours [1-

4]. The system allows the crew of the aircraft to lighten their 

workload when busy and to assist them in their maneuvers 

using internal control laws. 

System control, and more specifically control and 

regulation allow a user to ensure that a system is converging 

to the setpoint it is providing. This discipline has grown 

exponentially in the age of automation. Remarkable players in 

this growth are Proportional integrator derivative’s or PID 

correctors which are essential for any automation specialist, 

they display their strength very quickly and have established 

themselves as the easiest way to control a system efficiently. 

These correctors have countless well-known uses which are 

within everyone's reach. However, despite this their precision 

remains low and their configuration complex due to the 

number of gains requiring adjustment. Since 2007, the Model 

Free Control (MFC) has been involved in the field of control 

such as [5-11], which has in the past allowed users to set up 

correctors without knowing first the dynamic behavior of a 

certain system. We can address the problem of our research 

work in this question: Can the MFC allow to subdue/subjugate 

the behavior of an aircraft on the vertical plane in a simple 

way? Is it more efficient than the current standard means? 

The MFC is associated with a so-called "intelligent" PID 

corrector because it is characterized by an algebraic estimator 

to ensure precision. Easier to use and more accurate than 

traditional PID correctors, this method deserves attention. 

In recent years, a great deal of research and studies have 

been carried out in regards to the development of design 

systems for autonomous driving (cars, piloting aircraft, etc.) to 

converge towards reliable performance for the 

control/command of the dependable vehicle [12-15], and 

ensure functional solutions in limited driving conditions [15-

17]. The PID corrector is a control system that improves the 

performance of a regulation process. This is the most used in 

industry regulators where its correction qualities apply to 

multiple physical quantities. 

There are many disadvantages to using different types of 

PID classical correctors. For instance, the proportional 

corrector (P) does not independently adjust the speed, the 

precision, and the margins of stability and among its 

disadvantages is the risk of instability. The advantage of the 

Proportional Integrator corrector (PI) is its ability to make the 

static error zero, but the system is sometimes slow in a closed 

loop. Proportional derivative (PD) improves stability, speed 

and the sensitivity of the system to noise. To prevent this, we 

introduced a bass-pass filter as classical PID has the drawback 

of difficulties in adjusting parameters. 

We used the MFC as it retains the advantages of classical 

PID without having serious drawbacks. In 2013, Fliess and 

Join [8] propose to compare regulation by classic continuous 

and discrete PID with the MFC in the case of a system which 

had different characteristics in two scenarios. MFC does not 

require knowledge of the mathematical model of the system 

[8]. Menhour et al. [16] used a MFC approach leading to 

“intelligent” controllers. The longitudinal and lateral motions 

of a Peugeot 406 experimental car were used. This MFC 

approach associated with the intelligent corrector has had 

several concrete successes; a comprehensive list, at least until 
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early 2018 in the following bibliographies [8, 10, 11, 18, 19]. 

In addition, this method is easy to implement to solve various 

research problems; fault tolerance control is a common subject 

in the automation field. The growing importance of artificial 

intelligence and learning particularly through neural networks 

has naturally been grafted onto the MFC. We are interested in 

researching within the field of control and in particular 

correction using the MFC approach associated with an 

intelligent PID corrector to improve performance of the 

systems set by the designer in the specifications. A model-free 

controller with an observer applied in real-time to a 3-DOF 

helicopter is used by Boubakir et al. [7]. 

An approach of a model-free controller with an observer is 

presented for a nonlinear dynamic system Multi Input Multi 

Output (MIMO) in continuous time. The proposed MFC law 

consists of: a linear control term used to specify the dynamics 

of the system in a closed loop and the second part is added to 

compensate the uncertainties of the dynamic system and 

external disturbances. The suggested control approach is 

applied in real-time to a 3-DOF helicopter and experimental 

results present good performances of the proposed approach 

MFC. 

In the thesis of Bekcheva [6], she studied and differentiated 

flat systems and the application of the model without control 

systems whose dynamics and environment were not modeled. 

This summary focuses on a section of the second part, where 

the author presents the application of the model without 

control in a four drone. She first explains the nonlinear model 

of the drone that is operating in the simulations and then 

returns to the model without control by developing the 

waterfall approach. Finally, this approach is validated through 

several simulations involving unknown disturbances, wind 

whose amplitude varies over time and variations in mass. In 

her thesis, she studied design controllers that avoided system 

identification procedures of the quadrotor while remaining 

robust in the face of the endogenous (control performances are 

independent of any change in mass, of inertia, gyroscopic or 

aerodynamic effects) and exogenous disturbances (wind, 

measurement noise). Its purpose is based on the cascade 

structure of a quadrotor, it divides the system into subsystems 

of position and attitude each controlled by an independent 

controller with no second order dynamics model. It then gives 

convincing results on the practical stability of the proposed 

control design. 

Finally, it validates its control approach in three realistic 

scenarios: in the presence of unknown measurement noise 

with disturbances due to wind and unknown mass variations 

over time. The author uses MFC to control the “horizontal 

elasticity” of a Cloud Computing system [6]. When compared 

to the commercial “Auto Scaling” algorithms, their feasibility 

approach performs better, even with sharp workload 

fluctuations. The authors tested this approach on the Amazon 

Web Services (AWS) public cloud. 

The objective of this research work is the use intelligent 

model-free control to check the autopilot altitude aircraft. In 

the first section of this paper, the theoretical bases of MFC 

control and longitudinal control of an aircraft will be presented. 

The second section deals with the tests, which lead to the 

selection of the architecture of the autopilot used during the 

simulations. In conclusion the third section illustrates the 

results obtained. 

 

 

2. PRINCIPAL OF MODEL-FREE CONTROL (MFC) 

FOR SISO AND MIMO SYSTEM 

 

2.1 Principal MFC for SISO system 

 

We restrict SISO systems, characterized by a single input u 

and a single output y. Model-Free Control (MFC) allows 

modeling of the system with an ultra-local model of the type 

[20-23]: 

 
vy F u= +  (1) 

 

Such as: 

• y is the output of the system. 

• F is an estimate of the unknown components of the 

system as well as of the potential disturbances that affect it. 

• α is a dimensionless factor with the sole objective of 

placing all the terms of the formula in the same order of 

magnitude physical size. 

• u is the input of the system. 

The model-free control (MFC) does not need to differentiate 

the output more than twice, that is, v will take the value of 1 or 

2. It is useless to look for a precise value of the factor α given 

its function. 

 

2.1.1 Intelligent PID controller 

When considering the case where v is equal to 2 in the 

previous ultra-local formulation, we can introduce the 

intelligent PID controller delivering the following control: 

 

𝑢 =
�̈�∗ − 𝐹 + 𝐾𝑝𝑒 + 𝐾𝐼 ∫ 𝑒 + 𝐾𝐷�̇�

𝛼
 (2) 

 

Such as: 

• 𝑦∗ is the setpoint. 

• 𝐾𝑝 ,  𝐾𝐼 , 𝐾𝐷 are the gains of the PID controller. 
The error is: 

 

𝑒 = 𝑦∗ − 𝑦 (3) 

 

The error e is obtained by comparing the output of the 

system with the reference trajectory. 

In the case where v  is equal to 1, we find two different 

intelligent controllers: 

 

Intelligent PI controllers: 

 

𝑢 =
�̈�∗ − 𝐹 + 𝐾𝑝𝑒 + 𝐾𝐼 ∫ 𝑒

𝛼
 (4) 

 

Intelligent P controllers: 

 

𝑢 =
�̈�∗ − 𝐹 + 𝐾𝑝𝑒

𝛼
 (5) 

 

These controllers are therefore standard PID controllers into 

which a term is also injected which makes it possible to 

estimate the fluctuations of the output and which improves the 

accuracy of the controller. 

From Eq. (1), 𝐹 is a continuously updated value that 

represents the overall time-varying dynamics of the system, 

and it could be approximately estimated using the information 

from the control signal u and 𝑦𝑣  [11, 20]. 
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In the reference [11], the efficiency and robustness against 

noise are demonstrated by three illustrative examples and their 

simulation results. 

Recent algebraic parameter identification techniques 

presented by Fliess and Sira-Ramirez [11], and Sira-Ramírez 

et al. [21], and Riachy's trick permit to avoid tedious numerical 

derivations of the output signal 𝑦 [22]. 

Good robustness with respect to corrupting noises is 

ensured via a new noise understanding. The gain tuning is 

straightforward. 

 

2.1.2 Estimation of F 

Model-Free Control (MFC) involves a term made up of the 

unknown parts of the system as well as the disturbances to 

which it is subjected. A suitable approximate estimation of 𝐹 

in Eq. (1) boils down, therefore, to the estimation of the 

constant parameter 𝜙 in the following equation 𝑦𝑣 = 𝜙 + 𝛼𝑢 

if it can be achieved during a sufficiently ‘small’ time interval. 

The objective is therefore to discretize the time domain over 

sufficiently small intervals. 

Analogous estimations of 𝐹  may be carried on via the 

intelligent controllers (Eq. (2), Eq. (4), Eq. (5)). 

In order to encompass all the previous equations, where 𝐹 

is estimated, the study of the physical model of the studied 

system where the classic rules of operational calculus are 

utilized by the studies [24, 25], gives us an equation in the 

frequency domain of the type: 

 

1 1 2 2( ) ( ) ( )L S Z L S Z I S
S


+ = +  (6) 

 

With: 

• 𝐿1and 𝐿2are polynomials of Laurent. 

• 𝐼 a polynomial associated with the initial conditions. 

• 𝜙 the constant to be determined. 

Finally, the corresponding formula in the time domain is 

deduced with two rules in mind: 

• The negative powers of s correspond to integrations 

in time. 

• A derivation according to s corresponds to a 

multiplication by (-t) in time. We then obtain the ultra-local 

estimate of 𝐹: 

 

( ) ( )( )3

6
2 ( ) ( )

t

t L

L y L u d
L

      
−

= − − + −  (7) 

 

With 𝐿  a small chosen parameter, depending on the 

sampling period and the noise applied to the system. 

 

2.2 Principal MFC for MIMO system 

 

Several works and authors deal with the adaptation of MFC 

to MIMO systems, therefore there are several methods. 

Among them, we find in the study [5], the aim of this work is 

to design a single corrector whose inputs are the respective 

errors of all the outputs of the system and whose outputs are 

all the commands of the system. 

The two other methods allow the MIMO system to be built 

with multiple SISO systems using cascade control, as shown 

by the studies [6, 7], or parallel control dealt by Fliess and Join 

[8]. 

Based on the knowledge principle of model-free control 

design for SISO system, the work described in the study [5] 

propose a partial model-free control design method for the 

ultra-local system; firstly, the derivative of y(t) is estimated by 

the low-pass filter, then, the dynamics of the system F(t) is 

obtained from the derivative estimation and the control input, 

with the model-free design. 

The tracking control problem of the complex nonlinear 

MIMO dynamic system has been transformed from a partial 

control to a decomposed linear system [23]; the next step is to 

design the control law. 

For simplicity, we will use cascade and parallel control to 

make use of our knowledge and principles of SISO systems, 

the proposed enslavement is inspired by both the parallel and 

cascade schemes discussed above. 

 

 

3. DESIGN OF A CONTROL SYSTEM 

 

3.1. Autopilot architecture 

 

Designing a complete autopilot involves synthesizing 

multiple controllers. Indeed, the structure of an autopilot 

includes several control loops. The Figure 1 illustrates the 

different control loops that can be found in a modern airplane. 

A first control loop, called internal loop, makes it possible to 

improve the natural flight qualities of the aircraft as well as its 

maneuverability. This control loop generally consists of a 

Stability Augmentation System (SAS) and a Controllability 

Augmentation System (CAS) [23]. A second control loop, 

called external loop, allows the command of the pilot or the 

flight management system to be translated into terms of 

control for the internal loop. It is also divided into several sub-

loops depending on the modes that the autopilot has. Here we 

list some of them: vertical speed hold mode, altitude hold 

mode, heading capture mode, speed hold mode. In this work, 

we are interested in the altitude hold mode. 

SAS are generally designed in accordance with standards 

relating to the specific modes of the system, namely the angle 

of attack recall mode, the phugoid mode and the propulsion 

recall mode. These standards relate to the frequency and 

damping of modes. We will not go so far as to generate these 

specifications; we will accept a model already designed. 

However, we can define time specifications concerning the 

CAS and the autopilot. 

 

 
 

Figure 1. Positions of SAS and CAS in the control system of 

an aircraft 

 

3.2 Model validation 

 

In order to simulate the behavior of the aircraft when 

controlled with a MFC controller, it is first necessary to verify 

that the modules used in the simulation are valid. These 
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modules concern the controller as well as the aircraft. The 

architecture of the autopilot, that is to say the assembly of these 

modules, was also verified. Validation focuses on the error 

between actual and desired altitude. 

The modules concerned control the aircraft using two 

elements: algorithm MFC control and Simulink diagram. 

The purpose of section 3 is to present the Algorithm MFC 

control and Simulink diagram where two scenarios are shown; 

the algorithm was validated by simulating two scenarios 

presented. Each scenario applies the MFC control on a 

different system. 

Figure 2 compares the reference trajectory with the setpoint. 

The MFC control algorithm simulates the behavior of the 

system using a loop and a dedicated MFC function. 

The parameters of the model MFC are the same in both 

scenarios; the first one, simple reference trajectory and second 

scenario is complex reference trajectory. The results are shown 

in Figures 3 and 4. 

 

3.2.1 Algorithm MFC control 

Firstly, to control SISO type systems we created a function 

to calculate the control of MFC while knowing the setpoint 

applied as well as the parameters chosen: the integration time 

𝐿 , the factor 𝛼  and the gains P, D, and I. In fact, in this 

algorithm, the MFC function is associated with an intelligent 

proportional corrector to simplify the simulations and not to 

consider any integral and derivative gains. We take the case of 

𝑣 = 1. 

In the algorithm for calculating the MFC control, the 

reference path is obtained by applying the filter to the setpoint 

as: 

 

1
( )

1
H s

s
=

+
 (8) 

 

Figure 2 compares the reference trajectory with the setpoint. 

A zoom on the graphs of Figure 2 is also given. The error e is 

obtained by comparing the output of the system with the 

reference trajectory. The MFC control algorithm simulates the 

behavior of the system using a loop and a dedicated MFC 

function. 

The objective of this section of the research work is to 

control the system under study in such a way that it follows 

the behavior of a reference model. To do this, a reference 

trajectory is calculated from the input control: this is the 

trajectory that the reference model virtually follows if 

stimulated by the control. Thus, to obtain the reference 

trajectory necessary for the calculation of the model-free 

control, a reference model must be defined. 

Figure 2 shows the different responses of the MFC output, 

discrete PID and continuous PID for first order system: 
1

1+𝑠
. 

From Figure 2: We remark that that control by MFC is better 

than control by PID. 

This algorithm was validated by simulating two scenarios 

presented by Fliess and Join [8] and comparing the results with 

those of the article. Each scenario applies the MFC control on 

a different system: 

In the first scenario, we have: 

 
2

2

( 2)
( )

( 1)

s
H s

s

+
=

+
 (9) 

 

For the second scenario, we have: 

2

2

( 2)
( )

( 2.2)

s
H s

s

+
=

+
 (10) 

 

 

 

 
 

Figure 2. Comparison of the setpoint and different control 

responses of the system 

 

The parameters of the model MFC are the same in both 

scenarios. The results are shown in Figures 3 and 4. 

The noise simulation is not strictly similar in the two 

scenarios because the authors do not specify all the 

specifications concerning the generation of the disturbances. 

No precise measurement is possible because the authors 

results are only available in the form of graphs, however it is 

noted that the respective simulations of the scenarios are 

strongly similar. This similarity is observed in both scenarios, 

which allows us at this point to consider the model offered by 

our computation algorithm MFC function valid. 

 

 
 

Figure 3. Comparison of simulations for Scenario 1 
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Figure 4. Comparison of simulations for Scenario 2 

 

The same results presented in the work [8] were found using 

our simulation algorithm. As the authors of the latter do not 

give the disturbance values for the two scenarios, we simulated 

without the presence of disturbance. 

Regarding our simulation algorithm for SISO system, we 

coded the theoretical part of the MFC SISO approach, that is 

to say, the Eq. (2), Eq. (3), and Eq. (7). 

 

 

4. MODELING THE BEHAVIOR OF THE AIRCRAFT 

 

The used aircraft physical model is illustrated in Figure 5. 

 

 
 

Figure 5. Aircraft physical model 

 

The aircraft chosen is similar to a Dassault Mirage III, with 

the following parameters and at the given flight conditions: 

Aircraft mass 𝑚 = 8500𝐾𝑔, Altitude 𝑧 = 3052𝑚 , Mach 

number 𝑀 = 0.8, Air density 𝜌 = 0.9𝐾𝑔.𝑚−3 , variation of 

lift regarding deflection of the elevator 𝐶𝑍𝑀 = 1.1, variation 

of lift regarding variation of angle of attack 𝐶𝑍𝛼 = 2.66 , 

variation of pitch moment regarding variation pitch velocity 

𝐶𝑚𝑞 = −0.68 , induced drag coefficient 𝑘 = 0.22 , parasite 

drag coefficient 𝐶𝑥0 = 0.015 , moment of inertia 𝐼𝑌 =
59691𝑘𝑔.𝑚2, reference surface 𝑆 = 34𝑚2, reference length 

𝑙 = 5.24𝑚, acceleration due to gravity 𝑔 = 9.81𝑚. 𝑠−2. 

Under such conditions, the point of equilibrium is the 

following: 

 

• Velocity 𝑉𝑒 = 262.79𝑚. 𝑠−1, 

• Thrust 𝐹𝑒 = 17287𝑁, 

• Angle of attack 𝛼𝑒 = 0.0428𝑟𝑎𝑑, 

• Lift coefficient 𝐶𝑧𝑒 = 0.0782, 

• Variation of drag regarding variation of angle of 

attack 𝐶𝑥𝑎 = 0.0915, 

Total drag coefficient 𝐶𝑥𝑒 = 0.0163. 

Other important notations are the following: 

Thrust 𝐹, total Lift coefficient 𝐶𝑧, total drag coefficient 𝐶𝑥, 

total pitch moment coefficient 𝐶𝑚. 

 

The previous coefficients synthesize the several 

components of force or moment as shown in the following 

equations: 

 

0( )z z zmC C C m   = − +  (11) 

 

0 0( )m m m mm mq

lq
C C C C m C

V
   = + − + +  (12) 

 
2

0x x zC C KC= +  (13) 

 

Longitudinal flight involves the following angles: The 

attitude 𝜃, The slope 𝛾, The angle of attack 𝛼. 

The following relation in the case of pure longitudinal flight 

was noticed: 

 
  = +  

 

By applying the fundamental principle of dynamics and the 

fundamental principle of kinematics in the benchmarks 

presented above, we can obtain several equations relating the 

state variables to each other. 

Equations in the aerodynamic landmark: 

Equation of propulsion; projection of forces on the axis x: 

 

𝑚�̇� = −
1

2
𝜌𝑆𝑉2𝐶𝑋 + 𝐹𝑐𝑜𝑠(𝛼) − 𝑚𝑔𝑠𝑖𝑛(𝛾) (14) 

 

Equation of sustenance; projection of forces on the axis z: 

 

−𝑚𝑉�̇� = −
1

2
𝜌𝑆𝑉2𝐶𝑧 − 𝐹𝑠𝑖𝑛(𝛼) − 𝑚𝑔𝑐𝑜𝑠(𝛾) (15) 

 

Equation of Moment; around the axis y: 

 

𝐼𝑌�̇� =
1

2
𝜌𝑆𝑉2𝑙𝐶𝑚 (16) 

 

Kinematic Eq. (1); attitude: 

 

�̇� = 𝑞 =
𝑑𝛼

𝑑𝑡
+

𝑑𝛾

𝑑𝑡
 (17) 

 

Kinematic Eq. (2); altitude: 
 

sin( )h V =  (18) 

 

Matrices A and B are obtained with the linearization method 

presented in the next section, in the case of longitudinal flight 

and with the following further assumptions: 

• Aerodynamic coefficients and thrust are not impacted 

by speed; 

• Elevator deflection does not create drag; 

• Incidence variation does not impact thrust; 

• Slope and angle of attack are small. 

To simplify the study of the behavior of the airplane, we can 

consider that the airplane is in pure longitudinal flight, that the 

sideslip 𝛽, the speeds of rotation in yaw 𝑟 and in roll p and 
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inclination 𝜙 are zero. These assumptions make it possible to 

reduce the number of state variables to 6: Speed 𝑉, The angle 

of attack 𝛼, The slope 𝛾, The altitude ℎ, The pitch rotation 

speed 𝑞, attitude 𝜃. 

Considering that the aircraft is in flight, pure longitudinal 

amounts in estimating the lateral state variables (𝛽, 𝑝, 𝑟 and 𝜑) 

have a negligible impact on the longitudinal state variables (𝑉, 

𝛼, 𝛾, ℎ, 𝜃, 𝑞), that is to say that the longitudinal behavior of 

the aircraft will be almost the same whether, for example, it is 

in a turn or not. This approximation has been observed thanks 

to the numerous tests that have taken place throughout the 

history of aviation. 

This manipulation then allows us to calculate the derivatives 

of the variables between them, by taking the value of the 

equilibrium state variables, this is the term (
𝜕𝑓

𝜕𝑥
)

𝑒
. 

From now on, the state variables will denote the deviation 

from the equilibrium value, except for the speed, which will 

be dimensionless, that is to say: 
 

e

V
V

V


=  (19) 

 

where, 𝛾 = 𝛿𝛾, 𝛼 = 𝛿𝛼, 𝑞 = 𝛿𝑞, 𝑧 = 𝛿𝑧. 

The state space is used to represent a linear system, whether 

MIMO or SISO using matrices: 
 

�̇� = 𝐴𝑋 + 𝐵𝑈 (20) 

 

Meanwhile: 𝐴 is the state matrix or evolution matrix, 𝐵 is 

dynamic matrix, 𝑢  the command vector, 𝑋  the state vector. 

The state vector is composed of state variables, so in the case 

of longitudinal flight we have: 
 

V

X
q

z







 
 
 
 

=  
 
 
 
  

 

 

The control vector is composed of the controls, so in the 

case of longitudinal flight, with 𝛿𝑚 the elevator control and 

𝛿𝜏 the throttle control, we have: 
 

m
u





 
=  
 

 

 

Matrices 𝐴  and 𝐵  are obtained with the linearization 

method presented in the previous chapter. In the case of 

longitudinal flight, we have: 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 (

𝜕𝑉

𝜕𝑉
)

𝑒
(

𝜕𝑉

𝜕𝛾
)

𝑒
(

𝜕𝑉

𝜕𝛼
)

𝑒
(

𝜕𝑉

𝜕𝑞
)

𝑒
(

𝜕𝑉

𝜕𝜃
)

𝑒
(

𝜕𝑉

𝜕𝑧
)

𝑒

(
𝜕𝛾

𝜕𝑉
)

𝑒
(

𝜕𝛾

𝜕𝛾
)

𝑒
(

𝜕𝛾

𝜕𝛼
)

𝑒
(

𝜕𝛾

𝜕𝑞
)

𝑒
(

𝜕𝛾

𝜕𝜃
)

𝑒
(

𝜕𝛾

𝜕𝑧
)

𝑒

(
𝜕𝛼

𝜕𝑉
)

𝑒
(

𝜕𝛼

𝜕𝛾
)

𝑒
(

𝜕𝛼

𝜕𝛼
)

𝑒
(

𝜕𝛼

𝜕𝑞
)

𝑒
(

𝜕𝛼

𝜕𝜃
)

𝑒
(

𝜕𝛼

𝜕𝑧
)

𝑒

(
𝜕𝑞

𝜕𝑉
)

𝑒
(

𝜕𝑞

𝜕𝛾
)

𝑒
(

𝜕𝑞

𝜕𝛼
)

𝑒
(

𝜕𝑞

𝜕𝑞
)

𝑒
(

𝜕𝑞

𝜕𝜃
)

𝑒
(

𝜕𝑞

𝜕𝑧
)

𝑒

(
𝜕𝜃

𝜕𝑉
)

𝑒
(

𝜕𝜃

𝜕𝛾
)

𝑒
(

𝜕𝜃

𝜕𝛼
)

𝑒
(

𝜕𝜃

𝜕𝑞
)

𝑒
(

𝜕𝜃

𝜕𝜃
)

𝑒
(

𝜕𝜃

𝜕𝑧
)

𝑒

(
𝜕𝑧

𝜕𝑉
)

𝑒
(

𝜕𝑧

𝜕𝛾
)

𝑒
(

𝜕𝑧

𝜕𝛼
)

𝑒
(

𝜕𝑧

𝜕𝑞
)

𝑒
(

𝜕𝑧

𝜕𝜃
)

𝑒
(

𝜕𝑧

𝜕𝑧
)

𝑒 ]
 
 
 
 
 
 
 
 
 
 
 

 

The analytical expression of the matrix A is given by: 
 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 −

𝜌𝑉𝑒𝑆𝐶𝑥𝑒

𝑚
−

𝑔 𝑐𝑜𝑠(𝛼𝑒)

𝑉𝑒
−

𝐹𝑒 𝑠𝑖𝑛(𝛼𝑒)+
1

2
𝜌𝑉𝑒

2𝑆𝐶𝑥𝛼

𝑚𝑉𝑒
0 0 0

2𝑔

𝑉𝑒
0

𝐹𝑒 𝑐𝑜𝑠(𝛼𝑒)+
1

2
𝜌𝑆𝑉𝑒

2𝐶𝑧𝛼

𝑚𝑉𝑒
0 0 0

−
2𝑔

𝑉𝑒
0 −

𝐹𝑒 𝑐𝑜𝑠(𝛼𝑒)+
1

2
𝜌𝑆𝑉𝑒

2𝐶𝑧𝛼

𝑚𝑉𝑒
1 0 0

0 0
1

2
𝜌𝑆𝑉𝑒

2𝐶𝑚𝛼

𝐼𝑦

1

2
𝜌𝑆𝑉𝑒

2𝑙2𝐶𝑚𝑞

𝐼𝑌𝑉𝑒
0 0

0 0 0 1 0 0
0 𝑉𝑒 0 0 0 0]

 
 
 
 
 
 
 
 
 
 

 

 

The matrix B is defined as: 
 

𝐵 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 (

𝜕𝑉

𝜕𝛿𝑚
)

𝑒
(
𝜕𝑉

𝜕𝛿𝜏
)

𝑒

(
𝜕𝛾

𝜕𝛿𝑚
)

𝑒
(

𝜕𝛾

𝜕𝛿𝜏
)

𝑒

(
𝜕𝛼

𝜕𝛿𝑚
)

𝑒
(
𝜕𝛼

𝜕𝛿𝜏
)

𝑒

(
𝜕𝑞

𝜕𝛿𝑚
)

𝑒
(

𝜕𝑞

𝜕𝛿𝜏
)

𝑒

(
𝜕𝜃

𝜕𝛿𝑚
)

𝑒
(
𝜕𝜃

𝜕𝛿𝜏
)

𝑒

(
𝜕𝑧

𝜕𝛿𝑚
)

𝑒
(

𝜕𝑧

𝜕𝛿𝜏
)

𝑒]
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 0

𝐹𝜏 𝑠𝑖𝑛( 𝛼𝑒)

𝑚𝑉𝑒
1
2

𝜌𝑆𝑉𝑒𝐶𝑧𝑚

𝑚
0

−

1
2

𝜌𝑉𝑒𝑆𝐶𝑧𝑚

𝑚
0

1
2

𝜌𝑉𝑒
2𝑆𝑙𝐶𝑚𝑚

𝐼𝑌
−

1
2

𝜌𝑆𝑉𝑒
2𝑙𝐶𝑚𝑚

𝐼𝑌
0 0
0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

To specify the outputs concerned, which are placed in the 

vector 𝑌, one also indicates the matrices 𝐶 and 𝐷 such as: 

 

𝑌 = 𝐶𝑋 + 𝐷𝑈 (21) 

 

where, 

 

𝐶 =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

, 𝐷 =

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

 

 

To specify the outputs concerned, which are placed in the 

vector Y, one also indicates the matrices 𝐶 and 𝐷 such as: it 

can be seen that the aircraft in longitudinal flight is a system 

with several inputs (𝛿𝑚 and 𝛿𝜏) and we will see later in this 

article that it can also have several outputs in order to be 

controlled correctly. 

The following algorithm presented in Figure 6 was 

developed to vary the Mach and flight altitude. We took the 

neighborhood of the nominal conditions 𝑀 = 0.8  and 𝑍 =
3048 meters to obtain the space state matrices. 

The simplest model studied is a decoupled model where 

only the variables evolving notably with the incidence 

oscillation mode are considered [1, 2]. This made it possible 

to verify that the results obtained by the basic simulations were 

correct. The advantage of simulating this system before 

moving on to a more complex one is that it is easy to build a 

Simulink diagram around this state space, by analyzing only 

two variables. 

 

[
�̇�
�̇�
]=[

−1.266 1
−7.4016 −1.2576

] [
𝛼
𝑞]+[

−0.5203
−39.7908

] 𝛿𝑚 
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Figure 6. Equilibrium point calculation algorithm 

 

The simulations are then run on the complete system, with 

the 6 state variables; as well as the variable 𝜃  which is 

obtained by integrating 𝑞. The attitude 𝜃 is integrated into the 

state model for reasons of simplicity, in order to have direct 

access to it, it should be noted that it is sufficient to add the 

slope and the incidence to obtain it, if it does not it is not 

integrated into the article model. First, the throttle 𝛿𝜏 is zero, 

the control then relates to several outputs (𝑞, 𝜃 and 𝑧) and to a 

single input 𝛿𝑚. 

 

[
 
 
 
 
 
�̇�
𝛾
�̇�
�̇�

�̇�
�̇�

̇

]
 
 
 
 
 

=

[
 
 
 
 
 
−0.0155 −0.0373 −0.0436 0 0 0
0.074 0 1.266 0 0 0

−0.074 0 −1.266 1 0 0
0 0 −7.4016 −1.2576 0 0
0 0 0 1 0 0
0 262.79 0 0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝑉
𝛾
𝛼
𝑞
𝜃
𝑧]
 
 
 
 
 

+

[
 
 
 
 
 

0
0.5203

−0.5203
−39.7908

0
0 ]

 
 
 
 
 

𝛿𝑚 

 

 

5. SIMULATION RESULTS 

 

5.1 Control of aircraft attitude 

 

The first stage of research work consists of controlling 

attitude using a MFC and a PID controller. The simulation 

result is shown in the Figure 7. 

The Comparison between the characteristics of 𝜃𝑃𝐼𝐷  and 

𝜃𝑀𝐹𝐶  is summarized in the Table 1. 

According to the characteristics illustrated in Table 1, which 

illustrate each response of the aircrafts attitude. The Aircraft 

attitude 𝜃𝑀𝐹𝐶  is selected. 

 

Table 1. Comparison between the characteristics of 𝜃𝑃𝐼𝐷 and 

𝜃𝑀𝐹𝐶  

 

Characteristics 𝜽𝑷𝑰𝑫 𝜽𝑴𝑭𝑪 

Rise Time 2.4852 2.2008 

Settling Time 4.6268 3.9343 

Settling Min 0.8999 0.900 

Settling Max 0.9998 1.000 

Overshoot 0 1.6534e-04 

Peak 0.998 1.000 

Peak Time 10 9.997 

 

 
 

Figure 7. Step response of the aircraft attitude 𝜃 using MFC 

controller and PID regulator 

 

5.2 Control of the altitude 

 

The second stage of research work consisted of controlling 

altitude using throttle control. The state space is then as 

follows: 

 

[
 
 
 
 
 
�̇�
𝛾
�̇�
�̇�

�̇�
�̇�

̇

]
 
 
 
 
 

=

[
 
 
 
 
 
−0.0155 −0.0373 −0.0436 0 0 0
0.074 0 1.266 0 0 0

−0.074 0 −1.266 1 0 0
0 0 −7.4016 −1.2576 0 0
0 0 0 1 0 0
0 262.79 0 0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝑉
𝛾
𝛼
𝑞
𝜃
𝑧]
 
 
 
 
 

+

[
 
 
 
 
 

0
0.5203

−0.5203
−39.7908

0
0

0
0
0

    −39.7908
0
0 ]

 
 
 
 
 

[
𝛿𝑚

𝛿𝜏
] 

 

Our objective: 

 

 
 

Figure 8. Functional diagram to control the attitude and 

altitude of the aircraft 

 

Maintain the aircraft altitude displayed by the pilot because 

altitude is an important navigation parameter (anti-collision); 

when the "vertical speed" mode is activated. We controlled 

altitude 𝑧  using a MFC and a PID Controller using the 

functional diagram is illustrated in Figure 8. 

With: 𝑍𝐶 is the altitude of reference equal 10000 meter 𝐾𝜃  

is gain constant used for simulation. 𝑝  is the operator of 

Laplace. Bloc 𝐾𝑍 can take two cases of controllers: 

Firstly, the gain of MFC approach control and secondly gain 

of PID (Figures 9 and 10). 

A zoom on the error of attitude 𝜃 is given on Figure 9. 
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Figure 9. Step response of the Altitude using MFC controller 

and PID regulator and error zoom of the attitude 𝜃 

 

 
 

Figure 10. Error of Step response of the Altitude using MFC 

and PID controller 

 

Table 2. Comparison between the characteristics of 𝑧𝑀𝐹𝐶  and 

𝑧𝑃𝐼𝐷 

 

Characteristics Altitude 𝒛𝑴𝑭𝑪 Altitude 𝒛𝑷𝑰𝑫 

Rise Time 185.4359 223.6703 

Settling Time 400.4539 558.7572 

Settling Min 8.9896e+03 9.1263e+03 

Settling Max 9.9837e+03 1.0392e+04 

Over shoot 0 2.6483 

Peak 9.9837e+03 1.0392e+04 

Peak Time 1001 451 

 

According Figure 10, we see that the MFC response is better 

than the PID response because the error of step response of the 

altitude using MFC controller is less that the error of step 

response of the Altitude using PID controller. In time interval 

(s): [0.5, 3] we see some oscillations in the transient response 

after becoming stable and precise in the steady state. 

We did not choose the PID response because there is an 

overshoot in steady state and an error in the 2 states: transient 

and permanent. The comparison between the characteristics of 

𝑧𝑀𝐹𝐶  et 𝑧𝑃𝐼𝐷  is presented in the Table 2. The longitudinal 

control of the aircraft is ensured and satisfactory with regard 

to response time at 5% and lower overshooting. 

 

 

6. CONCLUSION 

 

In this article, a model-free control approach was proposed 

to control a nonlinear aircraft system. The tracking control 

problem of this complex nonlinear MIMO dynamic system has 

been transformed decomposed control. 

Based on the proposed model-free control strategy, the 

control altitude is taken from the aircraft attitude to the control 

parameters of autopilot. From the study of the simulation, we 

find the control effects of the model-free control method are 

quite promising according to control performances; that is to 

say, satisfactory model with regard to rapid response time and 

lower overshoot and zero error. 

Based on the proposed model-free control approach, the 

control altitude is taken from the aircraft attitude to the control 

parameters of autopilot. From the study of the simulation and 

the comparison results of PID and MFC controller, we find the 

control effects of the model-free control method are quite 

promising according to control performances. Simulations 

have confirmed the benefit of model-free control in the 

aeronautical field. 

In future work, we want to apply this method on a real 

system, either a quadrotor with 4 DC motors or on a Quanser 

Aero system. Also, we would like to develop an autopilot for 

a MIMO System with constraints and uncertain disturbances. 

This work impacts the field of aircraft control systems, for 

example, MFC controller can be applied to different levels of 

the autopilot, that to say, maintaining a given speed. 
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NOMENCLATURE 

 

m Aircraft mass Kg 

 

Greek Symbols 

 

 
is a dimensionless factor with the sole 

objective 

 the constant to be determined 

𝜌 Air density 𝐾𝑔.𝑚−3 

𝑉𝑒 velocity 𝑚. 𝑠−1 

𝐹𝑒 Thrust  N 

𝛼𝑒 Angle of attack rad 

 

Subscripts 

 

P Proportional-Integral-Derivative 

MFC Model-Free Control 
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