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This study presents a comprehensive exploration of the performance of a proposed 

controller within dynamic system contexts. The controller is rooted in Model Reference 

Adaptive Control (MRAC) and State Feedback Controller (SFC) techniques, offering a 

robust approach tailored specifically for Series Elastic Actuators (SEAs). This hybrid 

technique aims to overcome system uncertainties and attenuate load disturbances, thereby 

enhancing system performance and stability. Lyapunov stability analysis is employed to 

derive the adaptation mechanism, ensuring both the stability and efficacy of the controller. 

Additionally, the controller can be fine-tuned using a parameter, b. The study thoroughly 

analyzes the impact of this tuning parameter on suspension response. Through systematic 

simulations, an optimal value of is identified, and the controller's performance is 

investigated in terms of achieving the desired output with minimal settling time and control 

torque. At b = -80, the results demonstrate that the proposed controller efficiently achieves 

input tracking with a settling time of 1.95 seconds and a control torque reaching 7.39 Nm. 

The investigation extends to parameter uncertainties, highlighting the controller's 

adaptability to variations and showcasing its ability to proportionally adjust torque in 

response to parameter changes. Furthermore, the controller's resilience is validated under 

load disturbances, effectively demonstrating its capability to mitigate torque fluctuations 

and maintain desired angular positions. The results also indicate that the unit step 

disturbance causes a 49.9% increase in control torque, while the sinusoidal disturbance 

causes a 25% increase in control torque. Overall, this study underscores the controller's 

versatility, efficacy, and adaptive nature, positioning it as a valuable asset in the realm of 

SEA control applications. 
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1. INTRODUCTION

The integration of a Series Elastic Actuator (SEA) 

represents a revolutionary advancement in the fields of 

robotics and mechatronics. By incorporating an elastic 

element in series with the motor, SEAs exhibit unparalleled 

attributes such as compliance, force sensing, and energy 

storage capabilities, surpassing the limitations of conventional 

rigid actuators. This distinctive design empowers the actuator 

to absorb, store, and judiciously release mechanical energy, 

enabling precise and adaptable movements. 

The impetus behind SEAs lies in the pursuit of creating 

robotic systems that emulate human interaction and prioritize 

safety. By endowing robots with compliance through elastic 

elements, SEAs enhance responsiveness to external forces and 

dynamic environmental fluctuations, proving invaluable in 

physical engagement domains like collaborative robots 

(cobots), exoskeletons, prosthetics, rehabilitation devices, and 

diverse applications in healthcare and entertainment [1]. 

However, the adoption of SEAs introduces a set of complex 

challenges, including intricate design, energy inefficiency due 

to elastic effects, intricate control, and achieving stability, non-

linear behavior, and demanding modeling. These intricacies 

necessitate innovative engineering solutions, novel control 

paradigms, and astute trade-off comprehension tailored to 

specific applications [2]. 

A hallmark feature of SEAs is their force-sensing ability, 

derived from the design's elasticity. The actuator, in real-time, 

discerns and quantifies external forces and torques. While this 

real-time force feedback proves invaluable in precision-

critical applications, such as enabling robots to execute 

delicate tasks or adapt motions based on detected interactions, 

it also prompts the need for advanced control strategies [3]. 

In the realm of SEA control algorithms, two predominant 

categories are robust and adaptive controllers. Robust control 

aims to forge systems capable of withstanding uncertainties 

and disturbances without necessitating real-time adjustments, 

ensuring stability even in worst-case scenarios. In contrast, 

adaptive control continuously adapts settings based on real-

time estimations of system dynamics, accommodating 

changes and minimizing disparities between desired and actual 

outputs [4]. 

Notably, these controllers, including PID Controllers, 

Sliding Mode Controllers (SMC), impedance controllers, 

SFC, MRAC, and Fuzzy Logic Controllers (FLC), may 

leverage either robust or adaptive control algorithms and may 

be used individually or combined to form hybrid controllers 

[5-10]. 
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Within this context, a PID controller, widely utilized in 

diverse industries, calculates an output signal based on the 

discrepancy between the desired setpoint and the present 

process value, aiming for stable and precise process control. 

However, PID control may struggle with systems manifesting 

complex or highly nonlinear dynamics, compromising 

accuracy and stability [11-19]. 

SMC is a robust technique crafting a 'sliding surface' that 

mirrors a desired state trajectory, offering swift convergence 

and resilience to uncertainties. Yet, its susceptibility to high-

frequency chattering requires consideration, potentially 

impacting stability and performance [20-30]. 

Impedance control, vital in robotics and mechatronics, 

regulates interactions between a robot and its environment by 

governing the dynamic interplay between applied forces or 

torques and ensuing displacements or velocities at the robot's 

end effector. While impedance control facilitates adaptable 

responses; discrepancies in system parameters or uncertainties 

can undermine its efficacy, impacting overall stability and 

performance [31-37]. 

State Feedback Control (SFC), governing dynamic systems 

based on internal state variables, finds application in diverse 

domains, achieving performance and stability by precise 

control. However, measurement errors or noise in accurate 

state measurements may compromise performance [38-47]. 

Model Reference Adaptive Control (MRAC), altering 

system control parameters in real-time to mirror a desired 

reference model, proves valuable in navigating systems with 

uncertain or time-varying dynamics. Yet, effective MRAC 

relies on accurate modeling of system dynamics, crucial for 

control performance [48-54]. 

FLC, mimicking human decision-making through linguistic 

variables and fuzzy sets, handles imprecise and uncertain data. 

FLC is advantageous in complex, nonlinear, or uncertain 

systems but requires expertise and iterative refinement [55-62]. 

The paper introduces an approach that integrates MRAC 

and SFC to effectively address challenges posed by SEAs. The 

anticipated benefit of this integration stems from the 

complementary strengths of MRAC and SFC. MRAC, known 

for its adaptability and robustness, compensates for 

uncertainties, while SFC, with its precision, contributes to 

accurate control based on internal state variables. This 

synergistic approach aims to enhance overall system 

performance, overcoming challenges such as intricate design, 

energy inefficiency, and control stability associated with SEAs. 

The combination leverages each approach's strengths to 

provide a comprehensive solution tailored to the specific 

challenges posed by SEAs. The hybrid technique is designed 

to overcome system uncertainties, reduce load disturbances, 

and improve the overall performance and stability of the 

system. Additionally, a lumped parameter model serves as the 

reference model, facilitating performance adjustment and the 

computation of necessary gains for the designed SFC. The 

calculation of an adaptation law, guided by Lyapunov's theory, 

incorporates terms aimed at enhancing system performance 

and mitigating parameter uncertainties and load disturbances. 

 

 

2. MATHEMATICAL MODEL OF SERIES ELASTIC 

ACTUATOR 

 

As mentioned before, SEA is a type of actuator that 

incorporates an elastic element in series with the main 

actuation mechanism. The elastic element serves as a buffer 

between the actuator and the load it interacts with, providing 

several advantages for certain applications, particularly in 

areas where compliance and force control are essential. Figure 

1 shows an illustrative diagram showing the equivalent 

lumped parameter model representing a SEA where a DC 

motor is selected to be the actuator mechanism. In Figure 1, 

the variables are defined as follows: 𝑢(𝑡) represents the 

applied control torque, 𝜏(𝑡)  denotes the disturbance torque 

arising from the load, 𝜃𝑚(𝑡) signifies the angular position of 

the motor side, and 𝜃𝑙(𝑡) denotes the angular position on the 

load side. Additionally, system parameters include 𝐾𝑏, 𝐾𝑗, and 

𝐵𝑗 , which respectively characterize the motor mounting 

stiffness, the elastic joint stiffness, and the elastic joint 

damping coefficient. Furthermore, 𝐽𝑚 , and 𝐽𝑙  represent the 

angular moment of inertia for the motor and the load, 

respectively.  

 

 
 

Figure 1. Illustration of a SEA 

 

Applying Newton’s second law of rotation to the motor side 

gives 

 

𝐽𝑚�̈�𝑚(𝑡) + 𝐵𝑗 (�̇�𝑚(𝑡) − �̇�𝑙(𝑡)) + 𝐾𝑗(𝜃𝑚(𝑡) − 𝜃𝑙(𝑡)) 

+𝐾𝑏𝜃𝑚(𝑡) = 𝑢(𝑡) 
(1) 

 

Eq. (1) can be rewritten as  

 

�̈�𝑚(𝑡) =
1

𝐽𝑚
[−(𝐾𝑗 + 𝐾𝑏)𝜃𝑚(𝑡) − 𝐵𝑗�̇�𝑚(𝑡)

+ 𝐾𝑗𝜃𝑙(𝑡) + 𝐾𝑗�̇�𝑙(𝑡) + 𝑢(𝑡)] 
(2) 

 

Also, applying Newton’s second law of rotation to the load 

side gives 

 

𝐽𝑙�̈�𝑙(𝑡) + 𝐵𝑗 (�̇�𝑙(𝑡) − �̇�𝑚(𝑡)) 

+𝐾𝑗(𝜃𝑙(𝑡) − 𝜃𝑚(𝑡)) = −𝜏(𝑡) 
(3) 

 

Eq. (3) can be rearranged to be 

 

�̈�𝑙(𝑡) = 
1

𝐽𝑙
[𝐾𝑗𝜃𝑚(𝑡) + 𝐵𝑗�̇�𝑚(𝑡) − 𝐾𝑗𝜃𝑙(𝑡) − 𝐵𝑗�̇�𝑙(𝑡) − 𝜏(𝑡)] 

(4) 

 

Assuming, 𝑥1(𝑡) = 𝜃𝑚(𝑡), 𝑥2(𝑡) = �̇�𝑚(𝑡), 𝑥3(𝑡) = 𝜃𝑙(𝑡), 

and 𝑥4(𝑡) = �̇�𝑙(𝑡), then substituting these into Eq. (2) and Eq. 

(4) gives 

 

�̇�2(𝑡) = −
(𝐾𝑗 + 𝐾𝑏)

𝐽𝑚
𝑥1(𝑡) −

𝐵𝑗

𝐽𝑚
𝑥2(𝑡) +

𝐾𝑗

𝐽𝑚
𝑥3(𝑡) 

+
𝐵𝑗

𝐽𝑚
𝑥4(𝑡) +

1

𝐽𝑚
𝑢(𝑡) 

(5) 
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and 

 

�̇�4(𝑡) =
𝐾𝑗

𝐽𝑙
𝑥1(𝑡) +

𝐵𝑗

𝐽𝑙
𝑥2(𝑡) −

𝐾𝑗

𝐽𝑙
𝑥3(𝑡) 

−
𝐵𝑗

𝐽𝑙
𝑥4(𝑡) −

1

𝐽𝑙
𝜏(𝑡) 

(6) 

 

Now, rewriting Eq. (5) and Eq. (6) in the state space form 

 

[
 
 
 
�̇�1(𝑡)

�̇�2(𝑡)

�̇�3(𝑡)

�̇�4(𝑡)]
 
 
 

=

[
 
 
 
 
 

0 1 0 0
−(𝐾𝑗 + 𝐾𝑏)

𝐽𝑚

−𝐵𝑗

𝐽𝑚

𝐾𝑗

𝐽𝑚

𝐵𝑗

𝐽𝑚
0 0 0 1
𝐾𝑗

𝐽𝑙

𝐵𝑗

𝐽𝑙

−𝐾𝑗

𝐽𝑙

−𝐵𝑗

𝐽𝑙 ]
 
 
 
 
 

[
 
 
 
𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)

𝑥4(𝑡)]
 
 
 

 

+

[
 
 
 
 
0
1

𝐽𝑚
0
0 ]

 
 
 
 

𝑢(𝑡) +

[
 
 
 
 

0
0
0

−
1

𝐽𝑙]
 
 
 
 

𝜏(𝑡) 

(7) 

 

and the output state space 

 

[

𝑦1(𝑡)

𝑦2(𝑡)
𝑦3(𝑡)

𝑦4(𝑡)

] = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] [

𝑥1(𝑡)

𝑥2(𝑡)
𝑥3(𝑡)

𝑥4(𝑡)

] (8) 

 

The system can then be represented by the following 

equation 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑊𝜏(𝑡) (9) 

 

and 

 

𝑦(𝑡) = 𝐶 𝑥(𝑡) (10) 
 

Here, 𝑥(𝑡) denotes the system's state vector, and �̇�(𝑡) is its 

derivative over time. The output vector of the system is 

represented by 𝑦(𝑡). Additionally, 𝐴 is the state matrix, 𝐵 is 

the input matrix for applied torque, 𝑊 is the input matrix for 

disturbance torque, and 𝐶  is the output matrix. Upon 

comparing Eq. (7) and Eq. (9), notable observations emerge. 

 

𝐴 =

[
 
 
 
 
 

0 1 0 0
−(𝐾𝑗 + 𝐾𝑏)

𝐽𝑚

−𝐵𝑗

𝐽𝑚

𝐾𝑗

𝐽𝑚

𝐵𝑗

𝐽𝑚
0 0 0 1
𝐾𝑗

𝐽𝑙

𝐵𝑗

𝐽𝑙

−𝐾𝑗

𝐽𝑙

−𝐵𝑗

𝐽𝑙 ]
 
 
 
 
 

 (11a) 

 

𝐵 = [0
1

𝐽𝑚
0 0]

𝑇

 (11b) 

 

and 

 

𝑊 = [0 0 0 −
1

𝐽𝑙
]
𝑇

 (11c) 

 

Also, the comparison between Eq. (8) and Eq. (10) gives 
 

𝐶 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] (11d) 

 

The state matrix 𝐴  governs the dynamic behavior of the 

system, influencing how it evolves over time. The input 

matrices 𝐵 and 𝑊 play crucial roles in controller design by 

determining how applied torque and disturbance torque, 

respectively, affect the system's response, while the output 

matrix 𝐶 shapes the observed output of the controlled system. 

 

 

3. CONTROLLER DESIGN  
 

In the pursuit of optimizing the performance of a SEA, the 

implementation of a model reference approach stands out as a 

key technique. By utilizing this method, the detection of errors 

in the actuator's performance becomes more accurate and 

precise. To further enhance the actuator's capabilities, a 

controller grounded in state feedback theory is thoughtfully 

crafted. This controller, with its adept ability to calculate 

appropriate gains, effectively counters system uncertainties 

and disturbances while impeccably tracking the desired 

performance trajectory. One of the remarkable aspects of this 

design is the utilization of Lyapunov's theory, which serves as 

the guiding principle for continuously updating and adjusting 

the aforementioned gains. This process ensures a robust and 

adaptive actuation system that excels in meeting the ever-

evolving challenges posed by real-world applications. Figure 

2 shows the functional block diagram of the proposed 

controller. 

 

 
 

Figure 2. Functional block diagram of the proposed 

controller 

 

3.1 Reference model  

 

Recalling Eq. (1) and Eq. (3) and rewriting them in 

simplifying them using the 𝐷-operator, i.e., 𝐷 = 𝑑 𝑑𝑡⁄ , then 

the result is  

 

𝜃𝑚(𝑡) =
1

𝐽𝑚
[
𝑢(𝑡) + (𝐵𝑗𝐷 + 𝐾𝑗)𝜃𝑙(𝑡)

𝐷2 +
𝐵𝑗

𝐽𝑚
𝐷 +

𝐾𝑗 + 𝐾𝑏

𝐽𝑚

] (12) 

 

and 
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𝜃𝑙(𝑡) =
−𝜏(𝑡) + (𝐵𝑗𝐷 + 𝐾𝑗)𝜃𝑚(𝑡)

𝐽𝑙𝐷
2 + 𝐵𝑗𝐷 + 𝐾𝑗

 (13) 

 

Assuming that both Eq. (12) and Eq. (13) have the standard 

form of the second-order system. This means that they can be 

rewritten as 

 

𝜃𝑚𝑟(𝑡) =
𝜔𝑛1

2 𝑢(𝑡)

𝐷2 + 2𝜁1𝜔𝑛1𝐷 + 𝜔𝑛1
2  (14) 

  

𝜃𝑙𝑟(𝑡) =
𝜔𝑛2

2 𝜃𝑚𝑟(𝑡)

𝐷2 + 2𝜁2𝜔𝑛2𝐷 + 𝜔𝑛2
2  (15) 

 

where, 𝜃𝑚𝑟(𝑡) and 𝜃𝑙𝑟(𝑡) are the angular positions obtained 

by the reference model of the motor and load sides, 

respectively. Furthermore, the parameters 𝜔𝑛1 , 𝜔𝑛2 , 𝜁1 , and 

𝜁2  are the natural frequency of the motor side, the natural 

frequency of the load side, the damping ratio of the motor side, 

and the damping ratio of the load side, respectively. Again, if 

it is assumed that Assuming, 𝑥𝑟1(𝑡) = 𝜃𝑚𝑟(𝑡) , 𝑥𝑟2(𝑡) =

�̇�𝑚𝑟(𝑡), 𝑥𝑟3(𝑡) = 𝜃𝑙𝑟(𝑡), and 𝑥𝑟4(𝑡) = �̇�𝑙𝑟(𝑡), the reference 

model can be expressed in the following state space form 

 

�̇�𝑟(𝑡) = 𝐴𝑟 𝑥𝑟(𝑡) + 𝐵𝑟  𝑟(𝑡) (16) 

 

and the output has this form 

 

𝑦𝑟(𝑡) = 𝐶𝑟 𝑥𝑟(𝑡) (17) 

 

then the system matrices of the reference model can be 

expressed as 

 

𝐴𝑟 = [

0 1 0 0
−𝜔𝑛1

2 −2𝜁𝜔𝑛1 0 0
0 0 0 1

𝜔𝑛2
2 0 −𝜔𝑛2

2 −2𝜁𝜔𝑛

] (18a) 

 

𝐵𝑟 = [0 𝜔𝑛1
2 0 0]𝑇 (18b) 

 

and 

 

𝐶𝑟 = 𝐶 (18c) 
 

where, 𝑥𝑟(𝑡)denotes the reference model state vector, and 

�̇�𝑟(𝑡)  is its derivative over time. The output vector of the 

reference model is represented by 𝑦𝑟(𝑡). Additionally, 𝐴𝑟  is 

the state matrix of the reference model, 𝐵𝑟  is the input matrix 

for the refence input 𝑟(𝑡), and 𝐶𝑟 is the output matrix of the 

reference model. In the current study, 𝑟(𝑡) is a 1×4 column 

vector that serves as the representation of the desired reference 

input to be tracked. 

A reference model serves as a guide for adjusting the 

performance of an actual system. This model represents the 

desired performance that the system should achieve. The 

designer customizes the performance of the reference model 

based on their preferences. The settling time of a system, 𝑡𝑠, 

can be calculated using the Eq. (19):  
 

𝑡𝑠 =
4

2𝜁𝜔𝑛

 (19) 

 

To clarify, the goal is to have a settling time of 1 second for 

both sides of the system. Additionally, the damping ratios are 

set to 1 for both sides. This choice implies that the natural 

frequency 𝜔𝑛1 is equal to 𝜔𝑛2, and both are set to 4. In simpler 

terms, the reference model's settling time formula and 

parameter values are used to fine-tune the system's 

performance. Substituting these values in Eqs. (18a) and (18b) 

gives  

 

𝐴𝑟 = [

0 1 0 0
−16 −8 0 0
0 0 0 1
16 0 −16 −8

] (20a) 

and 

 

𝐵𝑟 = [0 16 0 0]𝑇 (20b) 

 

Eq. (16), Eq. (18c), Eq. (20a) and Eq. (20b) offer a 

comprehensive framework for characterizing the optimal 

response of SEAs.  

 

3.2 Adaptive control law 

 

The primary objective of the controller is to ensure that the 

behavior of the actual SEA follows the behavior of the 

reference model in order to achieve the desired outcome. 

Therefore, the error, 𝑒(𝑡),can be expressed as  

 

𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑟(𝑡) (21) 

 

Thus, the error rate of change, �̇�(𝑡), can be written as  

 

�̇�(𝑡) = �̇�(𝑡) − �̇�𝑟(𝑡) (22) 

 

Substituting Eq. (9) and Eq. (16) into Eq. (22) gives 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) − 𝐴𝑟𝑥𝑟(𝑡) − 𝐵𝑟𝑟(𝑡) (23) 

 

In this case, the disturbance torque is assumed to be zero, 

and the system takes on the conventional state space form. 

Expressing the control law can be achieved through the 

application of state feedback control theory, as illustrated 

below: 

 

𝑢(𝑡) = 𝑘𝑟𝑟(𝑡) − 𝑘𝑥𝑥(𝑡) (24) 

 

where, 𝑘𝑟  and 𝑘𝑥 ,are 1×4 vectors represent the gain of the 

reference input, and the feedback gain of the state. In fact, the 

integration of state feedback control theory with the reference 

model inherently addresses the impact of disturbances on the 

system. This integration compels the system to dynamically 

follow the reference input 𝑟(𝑡), contingent upon the disparities 

between the states of the actual system and those of the 

reference model.  

Substituting Eq. (23) into Eq. (24) results in the following 

expression: 

 

�̇�(𝑡) = (𝐴 − 𝐵𝑘𝑥)𝑥(𝑡) + (𝐵𝑘𝑟 − 𝐵𝑟)𝑟(𝑡) − 𝐴𝑟𝑥𝑟(𝑡) (25) 

 

The controller's goal is to ensure that state 𝑥(𝑡) tends to be 

identical to state 𝑥𝑟(𝑡) , and hence the error is zero. This 

provides 

 

𝐴𝑟 = 𝐴 − 𝐵𝑘𝑥 (26) 

 

and 
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𝐵𝑟 = 𝐵𝑘𝑟 (27) 

 

In real-life applications, the gains 𝑘𝑥  and 𝑘𝑟  cannot be 

calculated because the system parameters represented by the 

matrix 𝐴 and 𝐵 cannot be identified properly or they change 

over time due to friction, wear, deformation, etc. To overcome 

such a problem, the control law is reformulated to be 

 

𝑢(𝑡) = �̂�𝑟(𝑡) 𝑟(𝑡) − �̂�𝑥(𝑡) 𝑥(𝑡) (28) 

 

where, �̂�𝑟(𝑡) and �̂�𝑥(𝑡) are the estimations of 𝑘𝑟  and 𝑘𝑥  and 

have the same dimensions, respectively. Now, substituting Eq. 

(28) into Eq. (23), which gives  

 

�̇�(𝑡) = (𝐴 − 𝐵�̂�𝑥(𝑡))𝑥(𝑡) + (𝐵�̂�𝑟(𝑡) − 𝐵𝑟)𝑟(𝑡)

− 𝐴𝑟𝑥𝑟(𝑡) 
(29) 

 

It can be noted that the estimation gains �̂�𝑟(𝑡) and �̂�𝑥(𝑡) are 

varying with time, and they can be expressed as  

 

�̃�𝑟(𝑡) = 𝑘𝑟 − �̂�𝑟(𝑡) (30a) 

 

and 

 

�̃�𝑥(𝑡) = 𝑘𝑥 − �̂�𝑥(𝑡) (30b) 

 

where �̃�𝑟(𝑡) and �̃�𝑥(𝑡) are the estimation errors of 𝑘𝑟 and 𝑘𝑥, 

respectively. Substituting Eqs. (30a) and (30b) into Eq. (29) 

gives  
 

�̇�(𝑡) = (𝐴 − 𝐵𝑘𝑥 − 𝐵�̃�𝑥(𝑡)) 𝑥(𝑡) 

+(𝐵𝑘𝑟 − 𝐵�̃�𝑟(𝑡) − 𝐵𝑟)𝑟(𝑡) − 𝐴𝑟𝑥𝑟(𝑡) 
(31) 

 

Further, substituting Eq. (26) and Eq. (27) into Eq. (31), 

which gives  
 

�̇�(𝑡) = 𝐴𝑟𝑒(𝑡) − 𝐵�̃�𝑥(𝑡)𝑥(𝑡) − 𝐵�̃�𝑟(𝑡)𝑟(𝑡) (32) 
 

Now, apply Lyapunov stability analysis to the following 

candidate function: 
 

𝑉(𝑡) =
1

2
𝑒2(𝑡) +

1

2
�̃�𝑟

2(𝑡) +
1

2
�̃�𝑥

2(𝑡) (33) 

 

The time derivative of the candidate function can be written 

as  
 

�̇�(𝑡) = 𝑒(𝑡)�̇�(𝑡) + �̃�𝑟(𝑡)�̃�𝑟
̇ (𝑡) + �̃�𝑥(𝑡)�̃�𝑥

̇ (𝑡) (34) 

 

The time derivatives of �̃�𝑟(𝑡) and �̃�𝑥(𝑡) are 
 

�̃�𝑥
̇ (𝑡) = −�̂�𝑥

̇ (𝑡) (35a) 

 

and 

 

�̃�𝑟
̇ (𝑡) = −�̂�𝑟

̇ (𝑡) (35b) 

 

Substituting Eq. (35a), Eq. (35b), and Eq. (32) into Eq. (34), 

which leads to  
 

�̇�(𝑡) = 𝐴𝑟𝑒
2(𝑡) − 𝐵𝑥(𝑡)𝑒(𝑡)�̃�𝑥(𝑡) 

−𝐵𝑟(𝑡)𝑒(𝑡)�̃�𝑟(𝑡) − �̂�𝑥
̇ (𝑡)�̃�𝑥(𝑡) − �̂�𝑟

̇ (𝑡)�̃�𝑟(𝑡) 
(36) 

In order to ensure that �̇�(𝑡) goes to zero at time rans to 

infinity, then the following relationships should be provided 

 

�̂�𝑟
̇ (𝑡) = −𝐵𝑟(𝑡)𝑒(𝑡) (37a) 

 

and 

 

�̂�𝑥
̇ (𝑡) = −𝐵𝑥(𝑡)𝑒(𝑡) (37b) 

 

As previously mentioned, since the system parameters are 

considered unknown, the vector 𝐵  can be represented as 

follows:  

 

𝐵 = 𝑏[0 1 0 0]𝑇 (38) 

 

Here, b is a constant utilized to fine-tune controller 

performance and tailor it based on the designer's preferences.  

The proposed controller exhibits versatile applicability 

across SEAs and analogous systems. The incorporation of 

state feedback control integrated with a reference model 

establishes a flexible framework that can seamlessly adapt to 

diverse systems sharing similar dynamics. The fundamental 

principles and methodologies inherent in our model are 

inherently generalizable, streamlining the application process 

to different SEAs or systems that demonstrate akin 

characteristics. This inherent adaptability underscores the 

robustness and broad utility of our controller in addressing a 

spectrum of practical scenarios. 

 

 

4. CASE STUDY 

 

In this section, a comprehensive case study will be 

presented to rigorously validate the efficacy and performance 

of the proposed controller. The simulation model, crucial for 

this validation, has been meticulously crafted using MATLAB, 

a widely acknowledged platform for system modeling and 

analysis. This case study serves as a practical application of 

the proposed controller in a real-world context, shedding light 

on its capabilities and robustness.  

 

Table 1. Parameters of simulated SEA 

 

Physical Parameter Symbol Value Unit 

Motor side moment of inertia 𝐽𝑚 0.1 kg m2 

Load side moment of inertia 𝐽𝑙 0.1 kg m2 

Motor mounting stiffness 𝐾𝑏 7 N/m 

Joint stiffness 𝐾𝑗 3 N/m 

Joint damping coefficient 𝐵𝑗 0.6 N s/m 

 

Table 1 provides the parameters employed in simulating the 

SEA in order to obtain the actual system response. Actually, 

the intention is to emulate a scenario where the parameters 

under consideration are deliberately assumed to be unknown. 

The purpose of this approach is to assess the controller's ability 

to generate a suitable response even in situations where vital 

parameters are not precisely known. This simulation-based 

investigation provides valuable insight into the controller's 

adaptability and robustness in real-world scenarios with 

uncertain or uncharacterized parameters. It is important to note 

that the utilization of these parameters solely for the purpose 

of eliciting responses adds an element of controlled 

unpredictability to the study, enabling a thorough evaluation 
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of the proposed controller's performance under challenging 

and dynamic conditions. 

Figure 3 illustrates the dynamic behavior of angular 

positions over time, showcasing a comparison between the 

motor and load sides of both the reference model and the 

original SEA. The input applied to the system is a unit step. 

Evidently, the results highlight a significant disparity in 

performance. The original SEA system struggles to fulfill its 

intended task, with discernible deviations and oscillations in 

its response. In contrast, the reference model exhibits 

impeccable execution of the task, precisely tracking the 

desired angular positions. This marked divergence 

underscores the proficiency of the reference model-based 

controller in achieving superior control and response precision, 

even when compared to the inherent behavior of the original 

system. 

 

 
 

Figure 3. Responses of the actual SEA and the reference 

model 

 

Despite the similarity in the setup of both the motor and load 

sides within the reference model, an intriguing observation 

emerges from the results. It becomes evident that the desired 

1s settling time is effectively achieved for the motor side, 

substantiating the model's capacity for rapid and precise 

response. However, it's noteworthy that such an optimized 

settling time is not attainable for the load side. This 

phenomenon can be attributed to the inherent dynamics and 

interplay within the reference model, where the motor side's 

output serves as the driving force for the load side. 

Interestingly, despite this discrepancy in settling times 

between the two sides, the reference model remarkably 

upholds its promise of mimicking the ideal performance of the 

SEA. This underscores the model's proficiency in 

encapsulating the fundamental characteristics of the system 

and accurately replicating its behavior, even in cases where 

specific performance metrics might vary between components. 

The reference model's ability to consistently achieve the 

desired SEA performance substantiates its utility as a robust 

and effective control strategy, offering a valuable avenue for 

enhanced system performance and dynamic response. 

Various tuning gains for b have been methodically utilized 

to assess their influence on crucial aspects of the system. These 

include the angular positions of both the motor and load sides, 

along with the adaptively adjusted control torque. The 

selection of specific b values in our analysis resulted from an 

extensive series of simulations. The objective was to 

systematically investigate and illustrate the effects of diverse 

b values on the system's response and control torque. While 

the detailed exploration yields valuable insights into the 

variable's impact, the chosen values were deliberately tailored 

to present a comprehensive spectrum of scenarios, 

accentuating subtle nuances in the system's behavior across 

diverse conditions. The outcomes of these investigations are 

visually depicted in Figures 4, 5, and 6, respectively. As 

evident from Figures 4 and 5, the magnitude of b distinctly 

influences the velocity of the system's response. When b 

assumes a value of -5, the settling time, determined by the 2% 

criterion, extends to 3.46 seconds for both the motor and load 

sides. However, a substantial reduction in settling time is 

observed when b is set to -80, resulting in impressive durations 

of 1.95 seconds for the motor side and 1.81 seconds for the 

load side. Surprisingly, Figures 4 and 5 reveal that the system's 

response appears nearly indistinguishable at b values of -40 

and -80. In contrast, Figure 6 emphasizes a subtle variance in 

control torque relative to the chosen b values, barring the 

instance of b at -80, which demonstrates a notable surge in 

control torque. Notably, Figure 6 also portrays the maximum 

control torque for b at -80, reaching 7.39 Nm, whereas for b at 

-40, the maximum control torque registers at 3.99 Nm. In light 

of these findings, the value of b equal to -40 is judiciously 

selected for further comprehensive investigation within this 

paper. 

 

 
 

Figure 4. Response of the motor side of SEA 

 

 
 

Figure 5. Response of the load side of SEA 

 

 
 

Figure 6. Control torque variation 
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To comprehensively assess the controller's performance 

under scenarios where system parameters are either unknown 

or subject to change, an investigation has been undertaken. 

Specifically, a parameter variation of both +25% and -25% 

from the original values has been assumed. Remarkably, the 

results reveal a consistent pattern: the angular positions of both 

the motor and load sides remain unaltered in both cases, 

aligning precisely with the behaviors depicted in Figures 5 and 

6, respectively. However, a significant variance is observed in 

the control torque, prominently displayed in Figure 7. At the 

point of steady-state operation, a distinct trend emerges: with 

a 25% increase in the parameters, the control torque 

experiences a corresponding 25% increase, effectively 

reflecting a proportional response to parameter fluctuations. 

Conversely, a 25% decrease in the parameters corresponds to 

a 25% reduction in the control torque. These findings 

underscore the controller's adaptive nature, where it adeptly 

compensates for parameter variations to maintain desired 

system behaviors, thus affirming its robustness and 

effectiveness within dynamic operational environments. 

 

 
 

Figure 7. Control torque variation with parameters 

uncertainties 

 

In order to thoroughly assess the efficacy of the proposed 

controller, a comprehensive evaluation across diverse 

operational conditions has been conducted. The analysis 

includes a meticulous study of the system's response to two 

distinct types of load disturbances: unit step and sinusoidal 

disturbances. It's important to note that there isn't a universally 

standardized form of disturbance applicable to most real-life 

scenarios. Hence, the deliberate choice of these two 

disturbance types aims to provide insights into the controller's 

performance under varied conditions. The sinusoidal 

disturbance introduced features a frequency of 1 Hz and an 

amplitude of 1 Nm. Notably, the angular positions of the 

system remain consistent for both types of disturbances, 

harmoniously aligning with those depicted in Figures 4 and 5 

for the selected tuning gain of -40. 

Intriguingly, Figure 8 effectively encapsulates the system's 

reaction to these disturbances. The unit step disturbance, when 

applied, triggers a substantial 49.4% surge in the control 

torque. This pronounced increase underscores the controller's 

capability to dynamically adapt and exert enhanced control 

authority in response to abrupt changes in the system. Equally 

noteworthy, the sinusoidal disturbance's effect on the control 

torque is comparatively milder, with a discernible 25.1% 

increase. This outcome reinforces the controller's adeptness in 

attenuating oscillatory influences, resulting in a more 

tempered response to periodic disturbances. This 

comprehensive assessment underscores the controller's 

versatile performance, adeptly addressing diverse disturbance 

scenarios and further establishing its efficacy in maintaining 

system stability and desired behaviors across varying 

operational contexts. 

 

 
 

Figure 8. Control torque variation with disturbances 

 

 

5. CONCLUSIONS 

 

This paper highlights the revolutionary impact of SEAs in 

robotics and mechatronics, emphasizing their unique attributes 

such as compliance, force sensing, and energy storage. While 

SEAs address critical needs in human-robot interaction and 

safety, they also pose challenges like intricate design and 

control complexities. The paper proposes an innovative 

integration of MRAC and SFC to address SEA challenges. 

This hybrid approach aims to leverage the adaptability of 

MRAC and the precision of SFC, offering a comprehensive 

solution to enhance overall system performance and overcome 

challenges associated with SEAs, such as energy inefficiency 

and control stability. The use of a lumped parameter model and 

Lyapunov's theory guides the adaptation law, optimizing 

system performance and mitigating uncertainties and 

disturbances. 

In conclusion, this study delves into a meticulous 

exploration of the performance and adaptability of the 

proposed controller within a dynamic system framework. The 

investigation encompasses various facets, each shedding light 

on the controller's robustness and efficacy. Through a 

systematic analysis of tuning gain b, the impact on the system's 

response was unveiled, revealing distinct settling times for 

varying b values. Notably, the reference model consistently 

demonstrated exceptional performance, even when settling 

times varied between the motor and load sides. This 

underscores the controller's potential to adeptly capture system 

behavior. 

Moreover, the inquiry encompasses parameter 

uncertainties, deliberately chosen at a 25% variation in 

parameter values. These uncertainties were selected 

deliberately to be sufficiently substantial, allowing for a robust 

assessment of the controller's performance under challenging 

conditions. Impressively, despite parameter fluctuations, the 

angular positions remained consistent, reaffirming the 

controller's adaptability in maintaining desired behaviors. The 

proportional adjustment of control torque in response to 

parameter variations exemplified the controller's dynamic 

nature, robustly mitigating the effects of uncertain parameters. 

The results demonstrate that a 25% increase in parameters 

corresponds to a 25% increase in control torque, highlighting 

a proportional reaction to parameter changes. Conversely, a 

25% reduction in parameters results in a corresponding 25% 

reduction in control torque. 

The controller's prowess is further validated under load 

disturbances, showcasing its adaptability to external 
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influences. Whether subjected to unit-step or sinusoidal 

disturbances, the controller exhibits commendable responses, 

adeptly mitigating surges in control torque and maintaining 

desired angular positions. These findings underscore the 

controller's versatility in managing diverse operational 

scenarios. Additionally, the results indicate that the application 

of a unit step disturbance leads to a 49.4% increase in control 

torque. This significant rise emphasizes the controller's ability 

to dynamically adapt and exercise expanded control authority 

in response to system changes. The effect of the sinusoidal 

disturbance on control torque is also notable, with a detectable 

25.1% increase. 

In summary, the proposed controller proves to be a robust 

and adaptive control strategy, effectively addressing 

uncertainties in parameters and dynamic disturbances. Its 

ability to uphold system stability, ensure precise control, and 

achieve desired behaviors across diverse challenges positions 

it as a valuable asset for optimizing system performance. 

Through a comprehensive exploration, this study underscores 

the controller's potential for real-world applications in 

dynamic systems, contributing to the evolution of control 

methodologies and enhancing operational outcomes. Looking 

ahead, future extensions of this study may involve 

implementing optimizing algorithms to determine the tuning 

parameter b. Additionally, consideration of non-linearities 

associated with SEAs could further broaden the scope of this 

research.  
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NOMENCLATURE 

 

𝐴 state matrix  

𝐴𝑟 state matrix of the reference model 

𝐵 input matrix of the applied torque  

𝐵𝑗  elastic joint damping coefficient, N.m/(rad/s) 

𝐵𝑟  input matrix for the refence input 

b fine-tuning parameter  

𝐶 output matrix 

𝐶𝑟 output matrix of the reference model 

𝑒(𝑡) error  

𝐽𝑚 motor side moment of inertia, kg m2 

𝐽𝑙 load side moment of inertia, kg m2 

𝐾𝑏 motor mounting stiffness, N.m/rad 

𝑘𝑟 gain vector of the refence input  

�̂�𝑟(𝑡) estimation of the gain 𝑘𝑟  
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�̃�𝑟(𝑡) estimation error of the gain 𝑘𝑟 

𝐾𝑗 elastic joint stiffness, N.m/rad 

𝑘𝑥 gain vector of the system state 

�̂�𝑥(𝑡) estimation of the gain 𝑘𝑥 

�̃�𝑥(𝑡) estimation error of the gain 𝑘𝑥 

𝑟(𝑡) refence input 

𝑡𝑠 settling time, s 

𝑢(𝑡) applied control torque, N.m 

𝑉(𝑡) candidate function of Lyapunov stability analysis 

𝑊 input matrix of the disturbance torque  

𝑥(𝑡) state variables of the system 

𝑥𝑟(𝑡) state variables of the reference model 

𝑦(𝑡) output variables of system 

𝑦𝑟(𝑡) output variables of reference model 

 

Greek symbols 

 

𝜁 damping ratio  

𝜁1 damping ratio of the motor side 

𝜁2 damping ratio of the load side 

𝜃𝑚(𝑡) angular position of the motor side, rad/s 

𝜃𝑚𝑟(𝑡) angular position of the motor side of the reference 

model, rad/s 

𝜃𝑙(𝑡) angular position of the load side, rad/s 

𝜃𝑙𝑟(𝑡) angular position of the load side of the reference 

model, rad/s 

𝜏(𝑡) disturbance torque due to load N.m 

𝜔𝑛 natural frequency, rad/s 

𝜔𝑛1 natural frequency of the motor side, rad/s 

𝜔𝑛2 natural frequency of the load side, rad/s 

 

Subscripts 

 

FLC Fuzzy Logic Controller  

MRAC Model Refernce Adaptive Control  

PID Proportional-Integral-Derivative  

SEA Seies Elastic Actuator  

SFC State Feedback Controller  

SMC Sliding Mode Control  
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