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Global road transport safety concerns are escalating, evidenced by an annual increase in 

traffic-related accidents, fatalities, and injuries. In response, numerous governmental road 

safety initiatives aim to mitigate crash incidences and consequent harm. Extant literature 

documents myriad datasets collated to address road safety challenges and bolster intelligent 

transport systems (ITS). These datasets are amassed via diverse measurement modalities, 

including cameras, radar sensors, and unmanned aerial vehicles (UAVs), commonly 

known as drones. This study delineates ITS datasets pertinent to transport issue resolution 

and elucidates the measurement methodologies employed in dataset accrual for ITS. A dual 

comparative analysis forms the core of this research: the first examination juxtaposes data 

source methodologies for dataset collection, while the second compares disparate datasets. 

Both examinations are conducted using the Weighted Scoring Model (WSM). Criteria 

germane to the comparison are meticulously defined, and respective weights are assigned, 

mirroring their significance. Findings reveal the UAV-based method as superior in 

amassing datasets pertinent to drivers and vehicles. Among the datasets evaluated, the SinD 

dataset secures the preeminent position. This methodical approach facilitates astute 

decisions regarding data source and dataset selection, augmenting the comprehension of 

their efficacy and relevance within the ITS domain. 
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1. INTRODUCTION

Intelligent Transportation Systems (ITS) integrate advanced 

technologies and communication systems into the 

transportation infrastructure and vehicular fabric, aiming to 

bolster safety, mobility, and efficiency. ITS applications are 

engineered to enhance transportation performance by 

mitigating crash occurrences [1, 2], augmenting roadway 

visibility [3], alleviating congestion [4], reducing accident 

severity [5, 6], and optimizing fuel efficiency. These systems 

encompass intelligent solutions applied across all vehicular 

operation phases to realize the vision of safer and more 

efficient roadways.  

Presently, ITS implementations are prevalent within urban 

centers and along highways, undergirded by an array of 

monitoring devices, including cameras, unmanned aerial 

vehicles (UAVs), light detection sensors (LIDAR), radar, and 

ultrasonic sensors. It is through these devices that critical data 

on driver behavior—encompassing acceleration, braking, lane 

changing, and speed—are harvested under both normal and 

adverse conditions. 

At the core of ITS lies an extensive reliance on datasets, 

amassed through varied data collection methodologies, to 

catalyze a transformative shift in transportation paradigms. 

The potency of data is harnessed to elevate the operational 

efficiency, safety, and environmental sustainability of 

transportation networks. 

Datasets constitute the foundational element of ITS, 

encapsulating crucial information on traffic flow, road 

conditions, user behavior, and environmental variables. By 

analyzing these datasets, ITS are empowered to decode the 

intricacies of transportation systems, thereby enabling 

informed decision-making and the deployment of intelligent 

responses. 

Data acquisition techniques in Intelligent Transportation 

Systems (ITS) are crucial for the procurement of pertinent 

data, utilizing an array of methodologies including sensor 

technologies, imaging devices, and aerial surveying by drones. 

Ground-based sensors, strategically deployed along 

transportation arteries, are responsible for the real-time 

capture of traffic metrics such as volume, velocity, and 

congestion levels. Additional insights into roadway conditions 

and traffic dynamics are procured via vehicular and 

infrastructural cameras and sensors. Unmanned Aerial 

Vehicles (UAVs), or drones, offer a vantage point for aerial 

surveillance, further enriching the data landscape. 

The synthesis of multifaceted datasets with advanced 

collection mechanisms forms the backbone of ITS, 

synergistically enhancing the intelligence and efficacy of 

modern transportation systems. These integrated datasets and 
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collection sources are pivotal in steering transportation 

towards a more intelligent, efficient, and sustainable future. 

Central to the discourse of this paper are several inquiries: 

Which methodologies are employed for the gathering of data 

to compile ITS datasets? Which datasets are considered 

preeminent within the ITS field? And crucially, how can these 

disparate methodologies and datasets be effectively 

compared? 

To address these inquiries, the present study adopts the 

Weighted Scoring Model (WSM) to conduct two distinct 

comparative analyses. Initially, the comparison of data source 

methods—including drones, sensor-equipped vehicles, 

simulators, and infrastructure-based sensors—is undertaken. 

Subsequently, the focus shifts to the evaluation of datasets 

currently utilized in ITS research. Criteria for comparison are 

meticulously delineated, encompassing scenario depiction, 

naturalistic behavior capture, efficiency, flexibility, duration 

of monitoring, and error frequency for data collection 

methods. For datasets, essential parameters such as mapping 

detail, temporal resolution, feature richness, data provenance, 

and user typology are established. Following the establishment 

of these criteria, the WSM methodology is detailed and 

applied as delineated in Section 4. Results from the WSM 

analysis are subsequently presented in a spider graph format, 

providing a visual comparison of each data collection method 

and dataset against the defined criteria. 

The structure of this paper is as follows: Section 2 elucidates 

the most significant datasets and data collection methods 

utilized in ITS. Section 3 presents a comparative analysis of 

these methods and datasets. Section 4 introduces the WSM 

methodology and outlines the research methodology. Sections 

5 and 6 apply the WSM approach to evaluate the data 

collection methods and datasets respectively, using weighted 

attributions to compute and compare final scores. The paper 

concludes with a discussion of the findings and future 

perspectives in Section 7.  

 

 

2. PREVIOUS WORK 
 

In this section, we present data sources used to collect 

datasets in ITS. Then we present datasets collected to solve 

ITS problems. Using drones as sensors for traffic monitoring, 

then existing datasets for onboard sensors and driving 

simulators.  

To collect datasets, a range of innovative methods are 

employed. Drones equipped with cameras and sensors are 

deployed to capture aerial views and collect data on traffic 

patterns, road conditions, and infrastructure monitoring. In 

addition, ground-based sensors installed along roadways 

provide real-time information on traffic volume, speed, and 

vehicle classification. Driving simulators allow researchers 

and developers to generate simulated environments, enabling 

them to study driver behavior, test algorithms, and evaluate 

new transportation strategies. 

The use of camera-equipped drones to measure every 

vehicle’s position and movements from an aerial perspective 

is a novel approach that has the potential to revolutionize the 

way traffic flow is monitored and managed. By having a 

continuous, real-time bird’s eye view of traffic, bottlenecks, 

and congestion can be identified and addressed more quickly 

and effectively. Additionally, this data can be used to study 

driver behavior and create alert systems in vehicles and to 

police systems to make the necessary decisions. Also, to 

optimize traffic patterns and road safety. Sensors on series-

production vehicles are used to measure the vehicle ś 

environment and collect the data [7]. The data collected by the 

sensors can be used to improve the safety and efficiency of the 

vehicle and driver, it can be used to provide safety warnings to 

the driver in the form of visual, auditory, or haptic feedback. 

The sensors can also be used to monitor the health of the 

vehicle and its components. The installation of infrastructure 

sensors at dedicated masts or streetlights located along road 

segments can permanently monitor a certain road segment for 

signs of wear and tear. This is especially useful for detecting 

changes in road conditions like the flux of traffic and detecting 

abnormal driver behavior that could potentially lead to 

accidents. By constantly monitoring the condition of the road, 

these sensors can help to improve the safety of drivers and 

passengers alike. A simulator of conduits can be used to collect 

datasets for a variety of purposes. It can be used to collect data 

on the performance of a system, or to collect data for research 

purposes. Additionally, a simulator of conduits can be used to 

collect data for educational purposes or to collect data for 

marketing purposes. 

A key component of ITS is the availability of diverse 

datasets that enable the system to tackle transportation 

challenges effectively. These datasets encompass real-time 

traffic information, weather conditions, road infrastructure 

details, vehicle data, and user behavior patterns. They provide 

crucial insights for addressing congestion, optimizing routes, 

and predicting traffic flow.  

Drones equipped with high-resolution cameras can record 

traffic from a so-called "bird's-eye view" with high position 

precision. We present the most popular datasets dedicated to 

ITS. The Stanford Drone Dataset [8] was the first dataset with 

the trajectories of several road users that was created from the 

point of view of a drone. It is publicly available and was 

published in 2016. It is suitable for the analysis of the 

behaviors and interactions of pedestrians. It consists of nine 

hours of data from 8 locations on the Stanford campus. The 

dataset includes 10,300 pedestrian, bicycle, automobile, 

skateboard, cart, and bus trajectories. Only around 7% of the 

targets in the sample that have been tagged are cars, compared 

to a large ratio of identified bikes and pedestrians. The highD 

dataset [7], which was published in 2018, is the first extensive 

naturalistic vehicle trajectory dataset on German highways 

using drone-captured video data. The observations were 

conducted at six separate locations and involved 110,000 

vehicles traveling 45,000 kilometers in 16.5 hours for the 

highD dataset. The CITR and DUT, two drone-based datasets, 

were published in 2019 [9]. The dataset, which lasted for less 

than 30 minutes, was centered on investigating pedestrian 

behavior when interacting with cars. The controlled 

experiment used to create the CITR dataset took place in a 

parking lot, in contrast to the DUT dataset, which comprises 

pedestrians' naturalistic, uninstructed trajectories. The 

INTERACTION dataset [10] is a dataset that was produced 

utilizing drones and includes the realistic motions of numerous 

traffic participants. Several highly interactive driving 

scenarios are included in the collection, which comes from 

China, Bulgaria, Germany, and the United States. It contains 

measurements from 11 locations and the recording time is up 

to 16.5 hours. The dataset offers HD-map data in lanelet2 

format for the first time. In 2020, the inD dataset [11], which 

was captured at four various unsignalized junctions in 

Germany, was published. Over the course of 10 hours, it 

contains a total of 13,599 trajectories. The inD dataset divides 
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all users of the road into four categories: cars, trucks or buses, 

bicyclists, and pedestrians. Another urban dataset named the 

rounD dataset [12] has been published in 2020; it contains over 

13,746 trajectories recorded over six hours at three different 

locations, unsignalized roundabouts in Germany. The openDD 

dataset [13] is collected in Germany in 2020. openDD contains 

84,774 trajectories in 62 hours and HD map data of seven 

different unsignalized roundabouts. At the signalized 

intersection in China, a drone dataset SIND [14] was collected 

and published in 2022. SIND includes traffic light states and 

HD maps, which contain 7 hours of recording including 

13,248 trajectories and include 7 road user types: cars, trucks, 

buses, tricycles, bikes, motorcycles, and pedestrians. The 

trajectory dataset called as CitySim dataset [15] was published 

in 2023 and was taken from drone videos. CitySim has vehicle 

interaction trajectories extracted from 19 hours at 12 different 

locations. More severe and significant critical safety events are 

present in CitySim dataset, which offer supportive scenarios 

for safety-focused research. The Driving Behavior Net 

(DBNet) [16] is a dataset for driving behavior research. It 

includes aligned video, point cloud, GPS and driver behavior 

(speed and wheel). The dataset is collected in 2018.  

The most widely used vehicle motion dataset in the 

behavioral research fields is the Next Generation Simulation 

(NGSIM) dataset [17]. Cameras positioned on buildings 

gathered the raw data, which was then automatically processed. 

NGSIM has been registered in four different locations: 

Peachtree Street in Atlanta, Georgia; Lankershim Boulevard, 

located in Los Angeles, California; eastbound I-80 in 

Emeryville, California; and U.S. Highway 101 in Los Angele. 

In the Five Roundabouts Dataset [18], which was published in 

2019, over 23 000 vehicles at five unsignalized roundabouts in 

Australia were followed using a total of six Ibeo LIDAR 

scanners onboard a vehicle parked close to the roundabouts, 

yielding more than 60 hours of data. The Strategic Highway 

Research Program 2 (SHRP 2) NDS [19] database includes 

data from 50 million vehicle miles and 5.4 million trips, SHRP 

2 was collected by 3,147 volunteers using radar, raw-video, 

and video of the driver at 6 different sites in the United States: 

central Indiana; Erie County, New York; Tampa, Florida; 

Durham, North Carolina; central Pennsylvania; and Seattle, 

Washington. The 100-Car Naturalistic Driving Study dataset 

[20] contains several examples of excessive driver behavior 

and performance, like extreme weariness, impairment, 

mistakes of judgment, risk-taking, aggressive driving, and 

traffic violations. The collection contains data from a very 

competent instrumentation system, including 5 channels of 

video, various vehicle statuses, and kinematic sensors. It also 

contains data from roughly 2 million vehicle miles and almost 

43 thousand hours of data. The European Commission is the 

founder of the UDrive [21], a large naturalistic driving study 

in Europe. More than 1,200 drivers contributed the 

information on more than 35 million kilometers driven in 

UDrive dataset. The information includes raw video, GPS 

position, onboard CAN-bus records, front-facing radar, and 

camera images. However, the datasets UDrive and SHRP 2 are 

not freely available to the public. The driver behavior dataset 

[22] is gathered across four car excursions that last, on average, 

13 minutes each, using a smartphone in 2017. The Honda 

Research Institute Driving Dataset (HDD) [23] was published 

in 2018. The dataset comprises of 104 hours of real human 

driving in the San Francisco Bay Area, the data was collected 

using a vehicle fitted with various sensors. The purpose of this 

dataset is to study driver behavior in real-life environments. 

The UAH-DriveSet [24] is a dataset that was gathered from 

six different drivers and cars and is used for the analysis and 

classification of driving behavior. Three unique driving 

behaviors were included in the data: normal, drowsy, and 

aggressive.  

According to some researchers, it is challenging to directly 

model using equations the interactions between human drivers. 

In order to solve this issue, simulations like CARLA [25] 

developed by researchers at Intel, and AirSim [26], developed 

by Microsoft, are examples of such simulators that are both 

open-source. may more easily imitate a human driver's 

behavior thanks to learning-based methods for 

characterization of human-driver behavior. The HRI Driver 

Behavior Dataset (HDBD) [27] contains driver behavior 

collected using simulator and real scene videos from 32 

participants. Each participant recorded 4 sessions, each 

consisting of 10 intersections that last approximately eight 

minutes. 

 

 

3. COMPARATIVE STUDY 

 

In this section, we will compare the data sources and 

datasets discussed earlier based on several characteristics. 

 

3.1 Data sources 

 

Table 1 provides the outcomes of our initial analysis, 

examining the current state-of-the-art regarding data sources. 

It explores the strengths and weaknesses associated with each 

of these sources. To facilitate a more comprehensive 

comparison of these data sources, we present Table 2, which 

offers a detailed comparative study. In this process, we first 

identify and establish criteria that enable us to assess the 

effectiveness of a data source. Subsequently, we evaluate each 

data source based on these criteria, as illustrated in Table 2. 

The comparisons presented in Table 2 draw upon studies 

analyzed in the study [28] and other relevant references cited 

in the previous section (Section 2) of this work. The 

comparison criteria used to compare the data sources are: 

1. Scenario description: Access to information belonging 

to the road (environment), such as the number of lanes, speed 

limits, and road curvature, must be accurately captured. 

Additionally, information describing road users' movements 

and positions must be measured accurately. Finally, 

information on environmental conditions needs to be recorded. 

2. Naturalistic behavior: It is crucial that road users act 

naturally, and their behavior remains unaffected by the 

measurement process. For proper data collection, road users 

should be unaware of the research method, allowing them to 

continue behaving as they would under normal conditions. 

3. Efficiency: Efficiency, or effort effectiveness, is 

calculated by determining the ratio of measured scenarios to 

the total effort expenditure. This encompasses both the one-

time setup effort and ongoing operational requirements, 

resulting in the total effort expenditure. 

4. Flexibility: High accessibility to capture the widest range 

of traffic parameters is essential. It is always crucial to 

measure traffic and under various conditions to ensure that all 

traffic variants are considered during data collection.  

5. Time monitoring: Time monitoring is a technology used 

to continuously collect and store data on roads and vehicles. 

6. Mistakes: Data from roads and vehicles must be 

collected with high quality and minimum errors to ensure the 
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development of reliable algorithms for performance evaluation. 
 

Table 1. Advantages and disadvantages of data sources 
 

Method Advantages Disadvantages 

Drone 

Simple to maintain vehicle geometries and inter-

vehicle distances. 

High longitudinal and lateral accuracy. 

There are no occlusions by road users. 

The traffic behavior recorded is natural. 

Daytime measurements are constrained by legal 

flight restrictions and environmental conditions. 

Vehicle with sensors 
Datasets require careful consideration of privacy 

and data protection concerns. 

The naturalistic behavior of road users may not 

always be accurately captured due to limitations 

in sensor capabilities and their visibility. 

Simulator 

Collect different types of data. 

Collect data that cannot be collected in the real 

world. 

The datasets are not naturalistic. 

Infrastructure sensors 
The data collected can provide a comprehensive 

overview of traffic patterns in the observed area. 

Accurately capturing the naturalistic behavior of 

road users is not always guaranteed. 

High initial effort for installation.  

Most of the data are not available to the public. 

 

Table 2. Comparative study for data sources 
 

Criteria Detailed Criteria Drone Vehicle with Sensors Simulator 
Infrastructure 

Sensors 

Scenario 

description 

·Object detection Yes Yes Yes Yes 

·Scene flow Yes No Yes Yes 

·3D visual odometry Yes No Yes No 

·Road user types Yes Yes Yes Yes 

·HD maps with semantics Yes No No No 

·Traffic light states Yes Yes Yes Yes 

·User movements Yes Yes No Yes 

Naturalistic 

behavior 

·No occlusions by road users Yes Yes (partly) Yes Yes 

·Behavior recorded is natural Yes Yes No Yes 

Efficiency 

·Ease of installation Yes Yes No No 

·Difficulty in installation No No No Yes 

·Easy to use No Yes Yes No 

·Use a person to control Yes Yes Yes No 

Flexibility 

·Weather patterns No Yes Yes Yes 

·Different types of sensors No Yes No No 

·Low cost No Yes No No 

·Expensive Yes No Yes Yes 

·Lightweight Yes Yes No No 

·Need specific settings Yes No Yes Yes 

·Difficult to change No No No Yes 

Time of 

monitoring 

·Specific time Yes Yes Yes No 

·Any time No No No Yes 

Mistakes 

·Errors due to weather conditions Yes No No No 

·Errors due to noise No Yes No No 

·Errors of hardware collection of data Yes Yes No Yes 

·Errors due to the difference between 

the simulator environment and the real 
No No Yes No 

 

 
 

Figure 1. Data sources comparison 
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Based on Figure 1 and Table 2, several key observations 

emerge. In dynamic scenarios, the highest precision is attained 

through aerial perspectives and simulators, while static 

scenarios benefit most from digital maps or drone data. 

Infrastructure sensors offer accurate scene information. 

Drones provide an effective way to capture naturalistic 

behavior with minimal disruption to road users since they 

remain largely invisible to them. This method allows 

researchers to acquire the most accurate data sources for 

studying targeted behaviors. For efficiency, vehicle sensors 

can often be implemented with little effort and minimal 

modifications, providing essential data to enhance vehicle 

operation accuracy. Operating a drone necessitates approval 

and the employment of an experienced pilot. Infrastructure 

sensors demand a high initial setup effort; however, their 

operation is notably efficient. The flexibility of measurement 

vehicles is a significant advantage, as they can navigate nearly 

any terrain and endure various conditions. Infrastructure 

sensors require installation approval before use; nevertheless, 

they function reliably under diverse environmental conditions. 

Drones have the potential to adapt to different survey locations, 

but their adaptability is constrained by flight restrictions and 

weather patterns. Simulators, on the other hand, are the least 

flexible, designed with carefully defined conditions and 

parameters. At the monitoring level, most data sources can 

acquire substantial amounts of data, especially when 

integrated with the latest technology that facilitates data 

recording and retention. Lastly, error sources related to data 

collection can be categorized into two areas: collector error 

and material quality. Preprocessing, particularly in relation to 

sensors, is another possible source of errors. Overall, it is 

essential to consider these factors when gathering data. 

 

3.2. Datasets 

 

Diverse collection methods have been utilized to generate a 

wide array of datasets in the field of Intelligent Transport 

Systems (ITS). Furthermore, in this section, we will conduct a 

comparative analysis of these datasets. 

Table 3 presents the comparison between the datasets and 

the criteria used for comparison. The criteria are as follows: 

1. Dataset: Name of dataset. 

2. Map: The underlying HD map of locations. 

3. Hours: Number of hours taken to collect data. 

4. Features: Number of features available in the dataset. 

5. Data source: The method used to collect the data. 

6. Road user type: The type of road users collected in the 

dataset. 

7. Data types: The type of data used to achieve dataset 

objectives 

8. Pre-processing: Steps taken to prepare and clean the 

dataset before it can be used for analysis or modeling. 

9. Detection: The algorithms used to detect objects in the 

dataset. 

10. Tracking: The algorithms used to track objects in the 

dataset. 

11. Post-processing: post-processing tools that play a vital 

role in exploring dataset and refining acquired knowledge. 

Based on the information provided from Table 3 and 

Figures 2, 3, 4, 5, and 6, the following observations can be 

made: Intersections are the most chosen locations as a field of 

study, followed by roundabouts. This indicates that 

researchers and practitioners often focus on studying the 

behavior and interactions of road users at these complex traffic 

junctions. The "rounD" and "OpenDD" datasets are notable for 

capturing more than eight types of road users, including Car, 

van, truck, bus, trailer, pedestrian, bicycle, and motorcycle. 

These datasets provide a comprehensive representation of 

various road user types, enabling a more holistic analysis of 

traffic scenarios. The "SinD," "OpenDD," "CitySim," "inD," 

and "interaction" datasets are among the datasets that comprise 

road maps. Having access to road maps enhances the context 

and accuracy of the collected data, facilitating better 

understanding and analysis of traffic behavior. The "Strategic 

Highway Research Program" dataset stands out as the largest 

dataset in terms of hours of collected data, with a massive 1 

million hours. This extensive dataset offers a significant 

amount of information for in-depth research and analysis of 

long-term transportation trends and patterns. Datasets 

collected from drones, such as the "OpenDD" dataset, provide 

62 hours of data collection. Drone-based data collection can 

offer unique perspectives and valuable insights into traffic 

behavior without disturbing road users. Regarding dataset 

functionalities, "UDRIVE" and "CitySim" are examples of 

datasets with a large number of functionalities, containing 344 

and 67 functionalities, respectively. These datasets likely 

cover a wide range of features and measurements, providing 

comprehensive data for various analyses and applications. 

Overall, the information from Table 3 and the 

accompanying figures offers a valuable overview of the 

different datasets available in the field of Intelligent Transport 

Systems. Researchers can use this information to select 

appropriate datasets based on their specific research goals and 

requirements, leading to more effective studies and 

advancements in intelligent transportation technologies. The 

most common problems treated in these datasets are : 

⚫ Trajectory prediction: Predicting the paths and 

movements of vehicles and other road users is crucial for 

improving traffic flow and safety. 

⚫ Traffic flow analysis: Understanding the dynamics of 

traffic flow helps optimize road networks and reduce 

congestion. 

⚫ Analysis of factors contributing to accidents: 

Identifying factors that lead to accidents can aid in designing 

safer road environments and implementing preventive 

measures. 

⚫ Risk assessment for autonomous driving: Evaluating 

potential risks and challenges faced by autonomous vehicles 

to enhance their safety and reliability. 

⚫ Analysis of driver behavior: Studying driver behavior 

provides insights into decision-making processes and helps 

design more human-centered transportation systems. 

Other issues related to transportation and traffic 

management may also be addressed using these datasets. 

 

 
 

Figure 2. Distribution of hours of datasets 
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Figure 3. Distribution of number of trajectory of datasets 

 
 

Figure 4. Distribution of number of features of dataset

 

 
 

Figure 5. Datasets location distribution 

 

 
 

Figure 6. Distribution of road user types of datasets 
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Table 3. Comparative study for datasets 
 

Dataset Location Map Hour Trajectory Feature Data Source 
Road User 

Type 

Data 

Types 
Pre-processing Detection Tracking 

Post-

processing 

SDD [8] Campus No 9 10300 n/a Drone 

Pedestrian, 
bicycle, car, 

skateboard, 

cart, bus 

Text 

files 

Image 

_ _ _ _ 

rounD [12] Roundabouts No 6 13746 40 Drone 

Car, van, 
truck, bus, 

trailer, 

pedestrian, 
bicycle, 

motorcycle 

Text 

files 

Calibrate the drone 

camera 

Transformation 
estimator  

DeepLab-v3+ 

Kalman filter 

to track road 

users not 
detected 

Rauch-Tung-
Striebel 

smoothing 

inD [11] Intersections Yes 10 13599 40 Drone 

Pedestrian, 

bicycle, car, 
truck, bus 

Text 

files 

Calibrate the drone 

camera 
Time 

synchronization 

Downsampling and 
stabilization 

YOLOv5 

IOU matching 
and linear 

Kalman 

filtering 

RTS 

smoother 

Interaction 
[10] 

Intersections, 

roundabouts, 
merging, lane 

change 

Yes 16.5 40054 12 

Drone 

Infrastructure 

sensors 

Cars, 
pedestrians 

Text 
files 

Camera parameter 
estimation 

2D bounding 
box 

IOU tracker 
RTS 

smoother 

Five 

Roundabouts 

Dataset [18] 

Intersections, 
roundabouts 

No 60 23000 60 
Vehicle with 

sensors 
Bike, car, 

truck 
Text 
files 

ID disambiguation 

Static/dynamic 
object flag 

Metadata creation  

_ _ _ 

highD [7] Highways No 16.5 11000 40 Drone Cars, trucks 
Text 
files 

Calibrate the drone 

camera 
Stabilized using 

OpenCV 

U-Net _ 

RTS 
smoother 

Constant 

acceleration 
model 

SinD [14] Intersections Yes 7 13248 53 Drone 

Car, tricycle, 

truck, 

pedestrians, 
bus, 

motorcycle, 

bike 

Text 
files 

Calibrate the drone 

camera 

Time 
synchronization 

Downsampling and 

stabilization 

YOLOv5 

IOU matching 

and linear 
Kalman 

filtering 

RTS 
smoother 

OpenDD [13] Roundabouts Yes 62 84774 20 Drone 

Car, van, 

truck, bus, 

trailer, 

pedestrian, 
bicycle, 

motorcycle 

Text 

files 
_ _ _ _ 

CitySim [15] 

Intersections, 

freeways, 

segment 

Yes 19 n/a 67 Drone Cars 
Text 
files 

Histogram color 

matching 

Scale-Invariant 
Feature Transform 

features 

Image blurring 

Mask R-CNN 

Spatial 

Reliability 
Tracker 

(CSRT) 

Enhanced 
Error 

Filtering with 

data fixing 
tool to further 

check 

potential 

errors 
UAH-

DriveSet [24] 
Urban No 8.34 n/a 37 

Vehicle with 

sensors 
Cars  

Text 

files 
_ _ _ _ 

HDBD [27] _ No 10240 n/a 27 Simulator Cars  

Text 
files 

Video/ 

Image 

Z-normalization 
synchronize and 

down-sample 

linearinterpolation 

CNN _ _ 

DBNet [16] _ No 20 n/a 20 
Vehicle with 

sensors 
Cars 

Video/ 

Image 

Frames Fusion 

Synchronization 

Addressing Errors 

_ _ _ 

CITR [9] 
Designed 

experiment 

(parking) 

No 0.5 340 24 Drone 
Pedestrian, 

golf-cart 

Text 

files 

Stabilization 
Scale-invariant 

feature transform 

algorithm 
Random sample 

consensus  

Coordinate 

transformation 
Kalman filter 

_ 

Correlation 

Filter with 
Channel  

Spatial 

Reliability 

_ 

Dut [9] Campus No 0.5 1793 32 Drone 
Pedestrian, 

vehicles 
Text 
files 

Stabilization 

Scale-invariant 
feature transform 

algorithm 

Coordinate 
transformation 

Kalman filter 

_ 

Correlation 
Filter with 

Channel  

Spatial 
Reliability 

_ 

HDD Dataset 

[23] 

Suburban, 

urban and 
highway 

No 104 n/a 1 
Vehicle with 

sensors 
Cars  

Text 

files 
Image 

The annotation by 

open source 
softwareELAN3 

LSTM _ _ 

NGSIM [17] 

Freeways, 

arterial 
segments  

No 1.5 n/a 25 
Infrastructure 

sensors 

Motorcycle, 

car, truck  

Text 

files 
Video 

_ _ _ _ 

SHRP 2 [19] Highways No 1 M n/a 19 

Vehicle, 

infrastructure 
sensors 

Cars  
Text 

files 

Smoothing 

Kalman filter 
_ _ _ 

100-car 

naturalistic 

study [20] 

_ No 43000 2 M + 20 
Vehicle with 

sensors 
Cars  

Text 
files 

 _ _ _ 

UDRIVE [21] 

Different 

European 
regions 

No 53157 n/a 344 

Vehicle, 

infrastructure 
sensors 

Cars  
Text 

files 

Decryption, 

Conversion, 

Synchronization, 
Harmonization 

Data enrichment 

_ _ _ 

Driver 

behavior 
dataset [22] 

Urban No 0.8 n/a 8 
Vehicle with 

sensors 
Cars  

Text 

files 
_ _ _ _ 

 

3.3 Synthesis 

 

In general, there are three main approaches for collecting 

data in ITS: 

1. On-board sensors: Datasets collected from on-board 

sensors include two types of systems. The first type involves 

motion data of surrounding entities obtained from on-board 

LiDAR and front cameras, as exemplified by the Stanford 

Drone Dataset. The second type includes data on the 

movements of multiple vehicles collected from on-board GPS, 

as seen in a 100-car naturalistic study. 

2. Drones: Drones equipped with high-resolution cameras 

can provide a "bird's-eye view" perspective, enabling the 

recording of traffic data with accurate vehicle geometry and 

distances between vehicles, as demonstrated in the highD 

dataset. 

3. Driving simulators: Data captured from driving 

simulators allows for the simulation of traffic scenarios in a 
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controlled and safe environment. This approach offers the 

advantage of having complete experimental control over the 

conditions under which the data is collected. 

Each of these data collection approaches has its unique 

benefits and applications, and researchers can choose the most 

appropriate method based on their specific research goals and 

requirements in the field of ITS. 

In the upcoming sections, we will introduce the Weighted 

Scoring Model (WSM) approach to validate and compare the 

data source methods and datasets presented in our research 

analysis. Through the application of the WSM approach, we 

aim to provide an objective and comprehensive evaluation of 

the data sources and datasets under consideration. 

 

 

4. METHODOLOGY: WEIGHTED SCORING MODE  

 

Multiple Criteria Decision Making is a subset of operations 

research dedicated to assessing and comparing various options 

or alternatives using multiple criteria or factors. It includes a 

variety of methods, like Weighted Scoring Model (WSM), 

Analytic Hierarchy Process (AHP), Analytic Network Process 

(ANP), etc. In this paper, we used the WSM [29] based on its 

simplicity and flexibility to compare data sources and datasets. 

In this approach, each criterion is assigned a weight, signifying 

its relative importance in the decision-making process. 

Subsequently, each option is evaluated and scored against 

these criteria. To calculate a weighted score for each option, 

the WSM multiplies the score of each criterion by its 

corresponding weight and then sums up these weighted scores. 

This process enables decision-makers to quantitatively 

analyze and rank the options, considering both the significance 

of each criterion and the performance of each option against 

those criteria. The WSM Method is utilized in this paper to 

compare the data source and dataset used in Intelligent 

Transport Systems (ITS). The application of this strategy 

involves the following steps: 

Determine criteria: Firstly, the criteria that constitute the 

data collection methods are identified. These criteria serve as 

the basis for evaluating and comparing the data sources and 

datasets. 

Assign weight to the criteria: Each criterion is assigned a 

weight that reflects its relative importance in comparison to 

the other criteria. The weights are determined based on the 

significance of each criterion in achieving the research 

objectives. 

Create a table of criteria and measurement methods: A table 

is constructed, listing the chosen criteria and the corresponding 

measurement methods used to assess the data sources and 

datasets. 

Table of weight: Next, a table is created that displays the 

assigned weights for each criterion. The scores indicate how 

well each element performs with respect to each criterion. 

Calculation of method score: The WSM calculates a 

weighted score for each criterion in data source and dataset by 

multiplying the score of each criterion by its assigned weight 

and then summing them up. This results in an overall score for 

each element. The element with the highest weighted score is 

the one that you should choose. 

In this paper, the Weighted Scoring Model (WSM) method 

is applied at the data source level to determine the best method 

for data collection. The WSM method is further applied to 

choose the best dataset among the datasets presented in section 

2. Figure 7 illustrates the step-by-step process of this approach. 

 
 

Figure 7. Our methodology 

 

 

5. WSM FOR DATA SOURCE ANALYSIS 

 

5.1 Criteria 

 

The choice of comparison criteria is based on intelligent 

transport system studies, with a specific focus on driver 

behavior. These criteria represent common characteristics that 

are widely considered standards used by many researchers to 

collect data on these topics. A detailed explanation of the 

comparison criteria can be found in Section 3 of the paper (: 

Scenario description, Naturalistic behavior, Efficiency, 

Flexibility, Time of monitoring, Mistakes), where each 

criterion is elaborated upon. 

 

5.2 Comparison study 

 

Table 4 presents the comparison between the data source 

methods and the criteria for comparison. In this table, the 

scores are provided, with a maximum score of 5 and a minimal 

score of 0, indicating the performance of each data source 

method against the established criteria. Figure 8 illustrates 

how the score of detailed criteria is calculated. 

 

 
 

Figure 8. Criteria score for data sources 

 

5.3 Application of Weighted Scoring Model 

 

Table 5 shows the WSM results for each data source. 

According to how important a criterion is, weighting 

percentages are assigned. According to their importance, these 

two criteria: Scenario description and naturalistic behavior are 

given precedence. A weight of 0.2 is assigned to each of these 

criteria. Effectiveness, flexibility, time of monitoring, and 

mistakes are given the second category of priority for the 

criteria. This criterion is given a weight of 0.15. The sum of 

the weights is equal to 1. 
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Figure 9, which displays the comparison of data source 

methods in terms of the six requirements, presents the results 

in a radar chart format. The radar chart allows for a visual 

representation of how each data source method performs 

across the different criteria. Based on the previous results and 

Table 5, the drone method emerges as the best data source for 

collecting a dataset for driver and vehicle studies, achieving a 

total score of 3.44. Following closely behind is the data 

collection from vehicles with sensors, which obtains a total 

score of 3.31. The infrastructure sensors rank next with a total 

score of 2.89, and simulators have a score of 2.47. 

The radar chart offers a concise overview of the 

performance of each data source method concerning the 

requirements, enabling researchers to identify the most 

suitable data source for their specific research objectives, 

particularly when focusing on driver and vehicle-related 

studies. These findings provide valuable insights into the 

strengths and limitations of each data source method, aiding in 

informed decision-making for data collection in the field of 

ITS. 

 

 
 

Figure 9. Multicriteria spider graph for data sources 
 

Table 4. Comparative study for data sources 
 

Criteria Detailed Criteria Drone 
Vehicle with 

Sensors 
Simulator 

Infrastructure 

Sensors 

Scenario 

description 

·Object detection 0,71 0,71 0,71 0,71 

·Scene flow 0,71 0 0,71 0,71 

·3D visual odometry 0,71 0 0,71 0 

·Road user types 0,71 0,71 0,71 0,71 

·HD maps with semantics 0,71 0 0 0 

·Traffic light states 0,71 0,71 0,71 0,71 

·User movements 0,71 0,71 0 0,71 

Total (natural number) 5 3 4 4 

Naturalistic 

behavior 

·No occlusions by road users 2,5 2,5 2,5 2,5 

·Behavior recorded is natural 2,5 2,5 0 2,5 

Total (natural number) 5 5 3 5 

Efficiency 

·Ease of installation 1,25 1,25 0 0 

·Difficulty in installation 0 0 0 1,25 

·Easy to use 0 1,25 1,25 0 

·Use a person to control 1,25 1,25 1,25 0 

Total (natural number) 3 4 3 1 

Flexibility 

·Weather patterns 0 0,71 0,71 0,71 

·Different types of sensors 0 0,71 0 0 

·Low cost 0 0,71 0 0 

·Expensive 0,71 0 0,71 0,71 

·Lightweight 0,71 0,71 0 0 

·Need specific settings 0,71 0 0,71 0,71 

·Difficult to change 0 0 0 0,71 

Total (natural number) 2 3 2 3 

Time of 

monitoring 

·Specific time 2,5 2,5 2,5 0 

·Any time 0 0 0 2,5 

Total (natural number) 3 3 3 3 

Mistakes 

·Errors due to weather conditions 1,25 0 0 0 

·Errors due to noise 0 1,25 0 0 

·Errors of hardware collection of 

data 
1,25 1,25 0 1,25 

·Errors due to the difference 

between the simulator 

environment and the real 

0 0 1,25 0 

Total (natural number) 3 3 1 1 
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Table 5. Table of WSM results 

 

Criteria Weight Drone 
Vehicle with 

Sensors 
Simulator 

Infrastructure 

Sensors 

Scenario 

description 
0,2 0,99 0,57 0,71 0,71 

Naturalistic 

behavior 
0,2 1,00 1,00 0,50 1,00 

Efficiency 0,15 0,38 0,56 0,38 0,19 

Flexibility 0,15 0,32 0,43 0,32 0,43 

Time of monitoring 0,38 0,38 0,38 0,38 0,38 

Mistakes 0,15 0,38 0,38 0,19 0,19 

Score 1,00 3,44 3,31 2,47 2,89 

 

 

6. DATASET QUALITY ASSESSMENT WITH WSM 

 

In this section, we developed a comparative study of the 

most important datasets on ITS using the WSM method. 

 

6.1 Criteria 

 

The choice of criteria for comparing datasets is extracted 

from previous works that have contributed to the construction 

of datasets related to intelligent transport systems in general 

and driver behavior in particular. The comparison criteria 

adopted are map, hours, features, data source, and road user 

type. 

 

6.2 Comparison study 

 

Table 6 shows for each criterion, the value that corresponds 

to each criterion is assigned. The values are derived from 

previous work conducted in sections 2 and 3 of the paper, and 

the calculations are illustrated in Figure 10 and Table 7. Each 

dataset is evaluated and assigned a score for each criterion, 

ranging from 0 to 5. These scores represent the performance 

of each dataset concerning the specific criteria established in 

the research. 

 

6.3 Application of Weighted Scoring Model 

 

The results in Table 8 show the WSM results for each 

dataset. The measurement method is given a weight of 0.3. 

Hours, features, and road user type are given the second 

category of priority for the criteria. This criterion is given a 

weight of 0.2. The last criteria is map; this criterion has a 

weight of 0.1. The sum of the weights is equal to 1. 

 

Table 6. Comparative study of criteria for each dataset 
 

Datasets Map Hour Features Data Source Road User  

SDD [8] 0 1 0 5 4 

rounD [12] 0 1 3 5 5 

inD [11] 1 1 3 5 4 

Interaction [10] 1 1 1 5 2 

Five Roundabouts Dataset [18] 0 1 4 4 3 

highD [7] 0 1 3 5 2 

SinD [14] 1 1 3 5 5 

OpenDD [13] 1 1 2 5 5 

CitySim [15] 1 1 4 5 1 

CITR [9] 0 1 2 5 2 

Dut [9] 0 1 2 5 2 

HDD [23] 0 1 1 4 1 

NGSIM [17] 0 1 2 3 3 

SHRP 2 [19] 0 5 1 4 1 

100car naturalistic study [20] 0 3 2 4 1 

UDRIVE [21] 0 3 5 4 1 

Driver behavior dataset [22] 0 1 1 4 1 

UAHDriveSet [24] 0 1 2 4 1 

HDBD [27] 0 1 2 2 1 

DBNet [16] 0 1 2 4 1 

 

Table 7. Criteria score for hours for datasets 
 

Hours/Features 
Interval of Number of 

Hours 

Interval of Number of 

Features 

1 1-20000 1-20 

2 20000-40000 20-40 

3 40000-60000 40-60 

4 60000-80000 60-80 
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Table 8. Table of WSM results 

 
 Map Hour Feature Data Source Road User  Score 

Weightage 0.1 0.2 0.2 0.3 0.2 1 

SDD [8] 0 0,2 0 1,5 0,8 2,5 

rounD [12] 0 0,2 0,6 1,5 1 3,3 

inD [11] 0,1 0,2 0,6 1,5 0,8 3,2 

Interaction [10] 0,1 0,2 0,2 1,5 0,4 2,4 

Five Roundabouts Dataset 

[18] 
0 0,2 0,8 1,2 0,6 2,8 

highD [7] 0 0,2 0,6 1,5 0,4 2,7 

SinD [14] 0,1 0,2 0,6 1,5 1 3,4 

OpenDD [13] 0,1 0,2 0,4 1,5 1 3,2 

CitySim [15] 0,1 0,2 0,8 1,5 0,2 2,8 

CITR [9] 0 0,2 0,4 1,5 0,4 2,5 

Dut [9] 0 0,2 0,4 1,5 0,4 2,5 

HDD [23] 0 0,2 0,2 1,2 0,2 1,8 

NGSIM [17] 0 0,2 0,4 0,9 0,6 2,1 

SHRP 2 [19] 0 1 0,2 1,2 0,2 2,6 

100-car naturalistic study [20] 0 0,6 0,4 1,2 0,2 2,4 

UDRIVE [21] 0 0,6 1 1,2 0,2 3 

Driver behavior dataset [22] 0 0,2 0,2 1,2 0,2 1,8 

UAH-DriveSet [24] 0 0,2 0,4 1,2 0,2 2 

HDBD [27] 0 0,2 0,4 0,6 0,2 1,4 

DBNet [16] 0 0,2 0,4 1,2 0,2 2 

 

 
 

Figure 10. Criteria score for dataset 

 

 
 

Figure 11. Multicriteria spider graph for datasets 

 

 

In this analysis, we compare the datasets based on the five 

requirements. The comparison results are depicted in a radar 

chart format, as shown in Figure 11. According to the findings, 

the SinD dataset achieves the highest score of 3.4, followed 

closely by the rounD dataset with a score of 3.3. The OpenDD 

and inD datasets both obtain a score of 3.2 for each. Other 

dataset scores are shown in Table 8. 

The radar chart visually illustrates the performance of each 

dataset concerning the established requirements, offering a 

clear and concise overview of their strengths and capabilities. 

These results enable researchers to make informed decisions 

when selecting the most suitable dataset for their specific 

research objectives in the domain of intelligent transport 

systems.  

By considering the scores obtained by each dataset against 

the requirements, researchers can identify the datasets that 

align best with their research goals, ensuring the optimal 

choice for conducting in-depth studies on driver behavior and 

other related aspects in the field of intelligent transport 

systems. 

7. CONCLUSIONS 

 

The paper initiates a comparative analysis of various data 

sources and datasets within the realm of ITS. Furthermore, it 

presents a comparative study employing a Weighted Scoring 

Model. It involves assigning weights to various criteria or 

factors that are relevant to the comparison of data sources and 

datasets. These criteria may include scenario description, 

naturalistic behavior, efficiency, flexibility, monitoring 

duration, and mistakes for data sources. On the other hand, 

criteria such as maps, hours, features, data source quality, and 

road user type are used to compare datasets. Each data source 

and dataset are then evaluated and scored against these criteria, 

considering their respective weights. The WSM calculates a 

weighted score for each data source and dataset, representing 

its overall performance based on the specified criteria. The 

results indicate that the drone method is the best measurement 

method to collect a dataset for the driver and vehicle, with a 

total score of 3.36. Additionally, the SinD dataset receives the 

highest score of 3.4. These models of WSM provide a 
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quantitative and systematic approach to objectively compare 

data sources and datasets in the context of ITS, aiding 

decision-making processes and facilitating the selection of the 

most suitable data source and dataset for a given application. 

While this study is certainly important, it is worth noting that 

the choice of a dataset or data source also depends on various 

conditions, choices, and possibilities available to researchers. 

In future work, we explore the potential of machine learning 

and deep learning algorithms to study drivers' behavior. 
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