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Autonomous vehicles necessitate robust stability and safety mechanisms for effective 

navigation, relying heavily upon advanced perception and precise environmental 

awareness. This study addresses the object detection challenge intrinsic to autonomous 

navigation, with a focus on the system architecture and the integration of cutting-edge 

hardware and software technologies. The efficacy of various object recognition algorithms, 

notably the Single Shot Detector (SSD) and You Only Look Once (YOLO), is rigorously 

compared. Prior research has indicated that SSD, when augmented with depth estimation 

techniques, demonstrates superior performance in real-time applications within complex 

environments. Consequently, this research proposes an optimized SSD algorithm paired 

with a Zed camera system. Through this integration, a notable improvement in detection 

accuracy is achieved, with a precision increase to 87%. This advancement marks a 

significant step towards resolving the critical challenges faced by autonomous vehicles in 

object detection and distance estimation, thereby enhancing their operational safety and 

reliability. 
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1. INTRODUCTION

Recent advancements in autonomous vehicles (AVs) have 

garnered noteworthy attention, with a commensurate increase 

in research dedicated to this domain [1]. A critical component 

of AV technology is the object detection mechanism, which 

incorporates artificial intelligence and sensor-based 

methodologies to ensure driver safety [2]. Autonomous 

vehicles offer the promise to enhance driving comfort and 

reduce incidents resulting from vehicle collisions. These 

vehicles are engineered to sense and navigate their 

environment on highways autonomously, without human 

intervention [3, 4]. 

The suite of sensors distributed throughout the vehicle is 

integral to its functionality. An array of sensors, including 

LiDARs, radars, and cameras, is employed to survey and 

interpret the surrounding milieu [5]. The process of 

environmental sensing, or perception, encompasses several 

sub-tasks: object detection, object classification, 3D position 

estimation, and simultaneous localization and mapping 

(SLAM). Object detection itself involves localization—

determining an object's position within an image—and 

classification—assigning a category to each detected object, 

such as a traffic light, vehicle, or pedestrian [6]. 

In autonomous driving systems, object detection is deemed 

one of the most crucial processes for safe navigation. It is 

essential for enabling the vehicle's controller to anticipate and 

maneuver around potential obstacles [7]. Therefore, the 

employment of precise object detection algorithms is 

imperative. The complexity of the requisite system 

architecture is necessitated by the need to process a multitude 

of features within the vehicle [8]. 

In the present study, the objective is to refine object 

detection accuracy using robust tools such as the Zed Camera 

in conjunction with algorithms like SSD, which have 

demonstrated superior performance in real-time scenarios. 

The Zed Camera, in particular, has proven to be an invaluable 

sensor for the collection of depth data, especially in 

challenging and dynamic environments. A robust perception 

system, integrating multiple sensors and sophisticated 

algorithms, such as the proposed SSD Algorithm, is requisite 

for AVs to achieve accurate object recognition and informed 

decision-making. To enhance the vehicles' perceptual 

capabilities, reliability, and safety, a synthesis of various 

sensors and algorithms, including the Zed Camera, is often 

pursued by researchers in the field of autonomous vehicles. 

1.1 Self-driving vehicles 

The conceptualization of autonomous vehicles has 

undergone a remarkable evolution since the 1920s. Historical 

accounts reveal that in the 1980s, a self-navigating vehicle 

capable of achieving speeds up to 31 km/h was engineered. 

Progressing through the eras, the propulsion methods 

transitioned from steam to the combustion of gasoline and 

diesel, leading to the current paradigm shift towards electric 

propulsion. This industry has witnessed transformative 

advances over decades, setting the stage for the manufacture 

of vehicles that are not only faster but also embedded with 

utilitarian features. 
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In the accelerated pace of today's vehicular traffic, which 

has regrettably led to a rise in traffic incidents, the human 

driver has been frequently identified as the critical failure point 

in vehicular accidents. It has been posited that the theoretical 

elimination of human error through the deployment of 

autonomous vehicles could serve as a panacea to this issue [9]. 

Despite the availability of numerous tools and features that 

augment human capabilities, it is recognized that human 

oversight remains a pivotal element in the realm of 

automation. Systems such as cruise control, object detection, 

depth estimation, and the implementation of autopilot in 

vehicles exemplify technological advancements that support 

human decision-making processes [10]. 

 

Table 1. Level of automation in autonomous vehicle 

 

Levels 
Types of 

Automation 

Vehicle 

Operating 

Condition 

Driver 

Monitor 

System 

0 

"No 

Automation, 

Manual Only" 

Everything 

On 
Human 

Driver 

Involvement 
1 

"Driver 

Assistance" 

Hand On, 

Eyes On 

2 
"Partial Driving 

Automation" 
Feet Off 

3 

"Conditional 

Driving 

Automation" 

Hands Off 

ADAS 

System 

(Driver-less) 
4 

"High Driving 

Automation" 
Eyes Off 

5 
"Full Driving 

Automation" 
Mind Off 

 

According to the standard shown in Table 1, autonomous 

vehicles are divided into six tiers LOA (Level of Automation) 

according to the amount of automation that is supported. Level 

5 vehicles are always capable of operating without human 

intervention [11]. As for better functionality of autonomous 

vehicle it is required to have excellent system architecture with 

additional features, a quick overview of the development of 

system architecture is explained in the next section. 

 

1.2 System architecture of autonomous vehicle 

 

The architectures of Electrical and Electronic (E&E) 

systems in vehicles exhibit a spectrum of complexity, ranging 

from the rudimentary to the highly intricate, and may be 

bifurcated into hardware and software components. The 

hardware itself is further stratified into three distinct 

classifications: distributed, domain-based, and vehicle-

computer based systems. It is posited that the design of 

Autonomous Vehicles (AVs) is intrinsically aimed at 

diminishing temporal and spatial demands, curtailing fuel 

consumption, mitigating collision risks, alleviating traffic 

congestion, and augmenting mobility, particularly for 

populations such as the elderly and individuals with 

disabilities. The architecture employed within AVs is regarded 

as a universal standard, underpinning the operation of both 

automated and non-automated vehicles alike. In the context of 

AVs, these architectures consist of logical or functional blocks 

that are meticulously architected to align with the sequence of 

information flow and processing tasks, extending from data 

acquisition to vehicle control, inclusive of internal system 

monitoring [12, 13]. 

 

 
 

Figure 1. Functional block of autonomous vehicle 

 

Depicted in Figure 1 is the functional block diagram of an 

Autonomous Vehicle. The architecture of each autonomous 

system is compartmentalized into four essential blocks. The 

Perception block is tasked with the assimilation of sensory 

information; the Planning and Decision-Making block 

synthesizes the acquired data, orchestrating all planning 

activities and making pivotal decisions; the Motion and 

Vehicle Control block implements the directives formulated in 

the preceding phase; and the System Supervision block is 

responsible for the ongoing surveillance of operational 

activities, addressing any anomalies, and instituting feature 

enhancements or modifications. External interactions, 

including rule definitions, user interfaces, and environmental 

data acquisition, are also integral to the system's functionality 

[14]. 

 

1.3 Challenges in autonomous vehicle 

 

The acquisition of robust training datasets constitutes a 

significant impediment in the advancement of object detection 

systems within autonomous vehicles, with the accuracy of 

such systems being contingent upon the caliber of the training 

data. A comprehensive training dataset must encompass a vast 

array of objects that a vehicle is likely to encounter in various 

driving scenarios, including but not limited to street signs, lane 

markings, pedestrians, edifices, and other vehicles. 

Furthermore, the integrity of the dataset is paramount. During 

the processing stage, the quality of the images may influence 

the efficacy and interpretation of the algorithm. Factors such 

as image blur, the presence of visually similar but distinct 

objects requiring differentiated decision methodologies, or the 

ambient lighting conditions under which the images were 

captured can all pose challenges. For instance, the algorithm's 

ability to maintain detection accuracy irrespective of lighting 

conditions is a concern—whether an object bathed in 

excessive light can be equally discerned in dimmer conditions. 

In addition to these challenges, the state of the roadway 

itself can affect the precision of object detection algorithms. 

Road conditions are known to fluctuate markedly, ranging 

from smooth surfaces with well-defined lane demarcations to 

degraded paths devoid of such markings. Moreover, the 

operational efficacy of autonomous vehicles is expected to 

remain consistent across a spectrum of meteorological 

conditions, be it under clear skies, amidst precipitation, or 

enveloped by fog. 

The development of proficient object detection models for 

autonomous vehicles necessitates the procurement and 

annotation of an extensive corpus of high-fidelity data, which 
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is instrumental in augmenting perception and decision-making 

capabilities. In the context of this research, a Zed Camera was 

mounted on a vehicle to amass a dataset, with particular regard 

to the intricacies inherent in real-time outdoor environments, 

such as the labeling of the ground, walls, and various objects. 

Within the realm of object detection algorithms, 

Convolutional Neural Networks (CNNs) stand as a 

noteworthy example [15]. However, CNNs exhibit limitations, 

particularly in scenarios involving multiple objects within a 

single frame, where the propensity to overlook certain objects 

is a documented shortcoming. Herein, the utility of the sliding 

window technique becomes evident [16]. The focus of this 

scholarly article is the refinement of the Single Shot MultiBox 

Detector (SSD) model, with the aim of enhancing overall 

system accuracy and reliability. Object detection encompasses 

two principal stages: image classification and image 

localization. In this study, images are primarily employed for 

the identification and categorization of objects [17]. 

Subsequently, the SSD algorithm is utilized to ascertain the 

distance of an object from the vehicle and to determine its 

positional relationship thereto. 

Figure 2 displays the data flow process, from the acquisition 

by multiple sensors to the advanced sensor fusion core, also 

referred to as the Advanced Driver Assistance System 

(ADAS), situated within the vehicle. A sensor, in the form of 

a camera affixed to the automobile, transmits raw point data of 

the observed environment to the sensor fusion ADAS core 

Electronic Control Unit (ECU) via an Ethernet connection 

[18]. The data concerning objects, extracted from the raw 

sensor input, is processed within the sensor fusion core to 

generate a compilation of monitored object tracklets, which 

then serve as a dataset for perception and other advanced 

vehicular functions. 

 

 

 
 

Figure 2. Constructed autonomous vehicle general system 

architecture for object detection 

 

 

2. RELATED WORK  
 

Object identification is one of the most researched topics in 

computer vision and self-driving vehicles. The process of 

object detection often begins with the extraction of features 

from the input picture using several algorithms, including 

RCNN, SSD, and YOLO. During the training phase, the CNN 

learns the feature in the object and detect the object. 

Localization, which includes locating an item inside an image, 

and classification, which entails giving the object a class (such 

as "pedestrian," "vehicle," or "obstacle"), are the two sub-tasks 

that make-up object detection. 

Carranza-García et al. [19] contrasted single-stage like Yolo 

V3 and two-stage detectors like Faster R-CNN. Before deep 

diving into object detection algorithm let us understand the 

taxonomy includes in the process which is explained in the 

next section. 

 

2.1 Taxonomy: Object detector 

 

Taxonomy of object detection is classified as type of 

network and type of data (Figure 3). Data for object detection 

is of two types; it can be of 2-Dimensional and 3-Dimensional. 

It can depend on the application, what type of object are being 

used for algorithm.  

 

 
 

Figure 3. Taxonomy of object detection 

 

2.2 Comparison of object detectors: Two-stage vs single 

stage 

 

The two main steps of the 2-stage neural network-based 

object identification approach for autonomous vehicles are 

region recommendations and object categorization. In an input 

image provided by a pair of stereo cameras, the object detector 

generates a large number of Regions of Interest (ROIs) that are 

likely to include objects that are important during the region's 

proposal stage [20]. The second stage involves selecting the 

most promising ROIs, classifying the items included inside 

them, and discarding the other ROIs. RCNN, Fast R-CNN, and 

Faster R-CNN are examples of common two-stage detectors. 

In contrast, one-stage object detectors classify items in the 

same stage and construct bounding boxes utilizing just one 

neural network with feed-forward function. These kinds of 

detectors are often less accurate even if they are faster than 

two-stage detectors. One-stage detectors include YOLO, SSD, 

MobileNet, and RetinaNet, which are all well-known in terms 

of accuracy and scalability etc. 

Pathak [21] discussed a deep learning system for spotting 

objects which is based on CNN. To increase the complexity 

while decreasing the number of parameters, CNN employs 

different types of pooling layers, such as max pooling, average 

pooling, deformation pooling etc. 

 

Table 2. Comparison of Faster R-CNN vs SSD algorithm 

 
Factors Faster R-CNN SSD 

Mean 

Average 

Precision 

(mAP) 

It performs 

worse for real-

time processing 

than SSD. 

It has the greatest mAP 

for real-time processing 

when compared to Faster 

R-CNN. 

IoU 

Thresholds 
0.3 and 0.7 0.5 

Memory 

Usage 

It utilizes 

highest 

Memory. 

Lowest memory 

utilization. 
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In Table 2, factors comparison for SSD, Faster R-CNN is 

listed in terms of mAP, Accuracy and Memory usage. In this 

paper we have used SSD algorithm which has better coverage 

on the location, scale and the aspect ratio which is very crucial 

for an autonomous vehicle. And also, by removing the 

delegated region proposal and using lower resolution images, 

the model can run at real-time speed and still beats the 

accuracy of the state-of-the-art Faster R-CNN. 

 

2.3 Divergence and comparison: 2D vs 3D object detection 

 

Object Detectors come in two functionalities: 2D and 3D. 

2D Image data is generally used by 2D object detectors to find 

the item. Four-degree-of-freedom bounding boxes are 

provided by 2D object detectors (DOF). The most popular 

technique for encoding bounding boxes in 2D is [x, y, height, 

width], whereas for 3D, the method is ["xmin", "ymin", 

"xmax", "ymax"] [22]. However, the position of an item in 2D 

can only be revealed via 2D object detection; it cannot reveal 

the item's depth. To increase performance in various 

autonomous tasks like path following and collision avoidance, 

depth of the object is crucial in predicting its size, shape, and 

location. 

Han et al. [23] presented a revolutionary "Wasserstein loss" 

approach for detecting objects from two layers. Level 1 

distinguishes objects from vehicles and people, whereas level 

2 distinguishes objects for detailed framework. Researchers 

further expressly suggest categorizing things for improved 

performance and reducing the degree of misperception for 

self-driving with increased Wasserstein loss. 

Xu et al. [24] proposed AutoFPN to look for a more efficient 

and effective detection system design. Their Auto-Fusion may 

be done naturally on multiple feature structures and even on a 

single stage detector on a specific dataset. They used their 

Auto Fusion module on top of SSDs and searched for VOC 

and COCO. With greater mAP, they received superior 

performance outcomes. 

Li et al. [25] implemented a hybrid framework to create a 

deep learning model. They targeted object detection with 

precision and quickness. Detection accuracy on a dataset is 

used to test many conventional detectors with cutting-edge 

algorithm performance. They recognized several objects with 

the Yolo V4 model, which has less parameters and can provide 

quicker processing speed and greater detection accuracy than 

the original. They employed the RISE (Randomized Input 

Sampling for Explanation) technique to explain the 

categorization results by creating a saliency mAP for each 

picture. 

 

2.4 Various technological approaches in object detection 

 

There are many technologies in object detection for self-

driving but mainly three technologies are now in use and in 

development for autonomous driving functions: image 

recognition with camera systems, radar detection (RADAR), 

and light detection & ranging (LiDAR). Ultrasonic sensors 

(USS) are only utilised for close-range observation due to their 

narrow operational range, also there are more challenges of 

using USS. LiDAR is now used in research vehicles, whilst 

image recognition and radar technologies are used in mass-

produced automobiles worldwide. Although it represents the 

costliest technology, it has immense potential [26]. 

Image Recognition: Image Recognition using camera is 

one of the most popular ways of detecting the object. Also, 

Industry 4.0 uses the same technology for the upcoming 

products and research. The fundamental capabilities of 

utilizing CAMERA with computer vision, also known as 

machine vision, are utilised for object & motion detection, 

distance estimation, and the identification of certain 

(predefined) features or object properties, such as edges and 

corners. In this manner, it is used to identify lane markers, road 

boundaries, and the overall location of other cars or 

obstructions on the road or close by the study [27]. Enhanced 

computer vision capabilities enable more precise item 

detection, but they also call for a different, more involved 

strategy that incorporates machine learning techniques to train 

an AI to identify and categorize certain things. 

Zed Camera: Stereo depth cameras that can perceive 3D 

depth in high quality are called ZED cameras, created by 

Stereolabs. This sensor can be incorporated into the suite of 

sensors used by autonomous cars to detect obstacles. The ZED 

camera sensor can be used with solutions for obstacle 

detection like: 

Depth Sensing: To detect depth in its surroundings, the 

ZED camera uses stereo vision. It estimates depth by 

calculating the differences between corresponding locations in 

images taken with two lenses spaced apart by a baseline. For 

the purpose of identifying impediments and calculating their 

distance from the vehicle, this depth information is essential 

for the algorithm for better outcomes. 

Obstacle Detection: The ZED camera can detect obstacles 

in the route of the vehicle by using its real-time depth map 

creation capability. Road barriers, cyclists, pedestrians, and 

other items which can obstruct the vehicle's path could all be 

considered obstacles. 

Deep Learning Integration: Appropriate algorithms for 

obstacle tracking and classification can be combined with 

depth data from the ZED camera. Through model training 

using data gathered from the ZED camera, the system is able 

to identify and anticipate the movements of various obstacles. 

Angesh et al. [28] talked about the use of numerous cameras 

for object recognition to enhance results. They state that the 

tracking system for each camera configuration is solely rated 

based on the ground truth track seen in that camera 

arrangement. Tracker appears to perform quite well on all 

measures, regardless of the number of cameras utilized. A 

taxonomy of modern deep learning-based object detectors is 

shown in Figure 3. In this part, there is a classification of these 

object detectors and the numerous ways used to locate the 

item. 

RADAR: It is widely used in autonomous vehicle, but it is 

very expensive. Radar sensors can detect distances and speed 

relative to objects with great accuracy. An important 

advantage of radar-based technology is their consistent and 

reliable operation in a range of conditions related to the 

environment, including rain, dust, and pollution. The method 

uses fewer radar lobes than camera-based systems, which 

increases costs and leads to a less accurate representation of 

things [29]. Radar sensor systems and camera-based image 

recognition are frequently coupled to maximize the benefits of 

each technology. A good example is the employment of 

relative velocity measurement and obstacle recognition using 

radar sensors, which convey information about the kind and 

class of objects via a combined 2D camera system. This is an 

illustration of how to recognize pedestrians, identify traffic 

signs, or recognize traffic lanes. 

Wei et al. [30] constructed MmWave RADAR, however the 

most difficult aspect of using MmWave RADAR is the 
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scarcity of radar characteristics. MmWave radar provides 

relatively limited information and cannot significantly 

increase performance when compared to visual image 

recognition methods (Camera). However, for improved results 

and identification, our concept includes Camera technology 

for object detection. 

LiDAR: To realize the notion of self-driving cars while 

maintaining safety, LiDAR must be incorporated into the 

design process. A LiDAR system creates 3D maps of its 

surroundings by using laser pulses. For the untrained sight, 

these lasers are invisible. With its capacity to look in all 

directions and determine precise distances, LiDAR has many 

more capabilities than a pair of human eyes. LiDAR allows 

autonomous vehicles to make precise judgements without 

human error, which reduces their likelihood of crashes, with 

security being of the biggest significance [31]. The function of 

the technology is not impacted by ambient illumination 

conditions, as opposed to camera-based systems, because 

LiDAR produces laser light. Cameras, on the other hand, offer 

a better resolution and can distinguish between colors. LiDAR 

systems cost many tens of thousands of dollars currently, 

however new technological developments, such as stationary 

LiDAR without internal moving parts, can considerably 

reduce prices. Combining LiDAR with camera-based systems 

for self-driving automobiles offers the greatest potential for 

object and environment detection and distinction.  

In Table 3, Sensor’s technology is listed with their 

challenges and comparison. According to survey, most used 

technologies is Camera due to its reliable and accuracy factors. 

According to literature review, there are 3 popular 

approaches for object detection i.e., Faster R-CNN, Yolo, 

SSD. The comparison criteria are speed, accuracy, and 

simplicity of implementation. In terms of speed, how quickly 

can the model produce results. For accuracy, results are correct 

or not. The ease with which we can apply these concepts and 

get started. 

 

Table 3. Challenges of different sensor technologies 

 
Sensor 

Technology 
Challenge 1 Challenge 2  Challenge 3 

Ultrasonic 

Sensor 

Very low 

range 

support i.e., 

up to 2m 

It cannot be 

used when 

vehicle is 

used for 

high-speed 

applications. 

Resolution is 

very low 

RADAR 

Range is 

between 5m 

to 200m 

Results 

more false 

alarms due 

to metal 

detection 

Images 

captured are 

of low 

resolution 

compared to 

LiDAR and 

Camera 

LiDAR 

Limited 

with 

maximum 

range i.e., 

200m 

False results 

in Bad 

weather 

conditions 

Very 

expensive as 

compared to 

RADAR 

Camera 

Range 

depends 

upon the 

lens of the 

camera. 

Combinatio

n of excess 

sensors data 

integration 

takes long 

time for 

high end 

applications 

Cannot be 

integrated 

with other 

sensors 

Table 4. Different algorithm outcomes 

 
Algorithm Speed Accuracy Ease of Implementation 

FR-CNN Bad Good Average 

YOLO Good Good Good 

SSD Good Best Good 

 

Table 4 illustrates the comparison between three models 

YOLO SSD and Faster RCNN. The first aspect is speed of 

inference, or how quickly a model can provide results. In this 

scenario, quicker R-CNN is clearly the loser. It is important to 

recall that faster R-CNN is derived from the R-CNN family, 

which consists of two short detectors. The algorithms in these 

detectors examine the image twice. One for obtaining 

backbone network properties and the other for estimating 

recent suggestions. Even though the speedier RCNN 

approaches the problem differently than previous models, it is 

still sluggish. SSD, on the other hand, have single shot 

detectors; these will look at the image once and deliver the 

results.  

Both the YOLO and SSD algorithms were meant to function 

in real time and on smaller devices such as mobile phones and 

IoT, hence their performance is relatively high when compared 

to the quicker R-CNN. Accuracy - In this regard, all three 

models are comparable, but one thing stands out: each of these 

models has its unique set of issues. SSD and YOLO are 

thought to provide faster speeds. However, they have 

limitations in terms of precision. SSD, for example, is 

ineffective in detecting very small objects. YOLO also has a 

trouble identifying items in images when they are close 

together. In terms of simplicity of implementation. It 

essentially refers to and includes two things. 

1) Framework or package required to use the model. 

2) The number of lines of codes that is required to write the 

smallest program. 

With SSD, we may utilize any hardware, but in other 

models, there is some reliance. In SSD, the number of lines is 

lower than in other systems. It simplifies system 

implementation by utilizing all open-source systems operating 

on a general-purpose CPU, eliminating the need for an 

embedded engineer to learn how to design specialist hardware. 

It's completely Linux-based, with an AI inference running on 

top of it. 

 

2.5 Strength and limitations of proposed SSD Algorithm 

 

One common object recognition technique that is well-

known for its real-time performance and efficacy in 

identifying things in images is the SSD (Single Shot Multibox 

Detector) algorithm. Knowing its advantages and 

disadvantages is essential when considering using it in 

autonomous vehicles: 

A. Strengths of SSD Algorithm for Autonomous Vehicles: 

• Real-Time Performance: Real-time object 

recognition is made possible by SSD's renowned for speedy 

envision processing. This ability is critical for safe navigation 

in autonomous vehicles, as quick and precise object 

identification in the surrounding environment is critical. 

• Multi-Scale Feature Extraction: SSD uses 

convolutional neural networks (CNNs) to carry out multi-scale 

feature extraction, which enables it to identify objects at 

various dimensions and levels within of a single network 

architecture. This feature is useful for identifying various-

sized items on the road. 
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• Single-Shot Detection: SSD is statistically more 

efficient than two-stage detectors since it can detect objects in 

a single forward run of the network. Autonomous driving and 

other real-time applications benefit from this efficiency. 

• High Accuracy: When it comes to object detection 

tasks, SSD can attain a comparatively high accuracy. 

Autonomous cars benefit from its ability to recognize several 

things in a picture with good accuracy, since it helps 

distinguish different objects in the surrounding environment. 

B. Limitations of SSD Algorithm for Autonomous 

Vehicles: 

• Detection Difficulty: SSD's standard anchoring box 

dimensions and ratios of aspect may make it difficult for it to 

precisely identify very small items in images. This restriction 

may have an impact on autonomous vehicles' ability to 

identify traffic signs and tiny obstructions. 

• Localization Accuracy for Overlapping items: SSD 

may have trouble correctly localizing and differentiating each 

item when several objects overlap in an image, which could 

result in mistakes in object borders and categorization. 

• Vulnerability to Object Aspect Ratios: It may not be 

possible to reliably detect objects with extreme aspect ratios 

due to SSD's default anchor box design's lack of optimization 

for all object aspect ratios. 

• Minimal Contextual Data: SSD processes images on 

their own, without taking temporal sequences or more 

comprehensive contextual information into account. Its 

inability to comprehend context may impair its capacity to 

manage intricate scenarios or dynamic events while driving. 

 

 

3. METHODOLOGY  
 

Object detection in Autonomous Vehicle is very important 

feature to make the vehicle more advanced. Multiple things 

will need to be recognized in a single image. Multiple item 

detection in an image and distance estimation are some 

difficult issues, but with our work applied, it is possible to do 

so accurately and in real time [32]. We have implemented 

improved SSD ("Single shot detector") in our Algorithm 

model to have accurate and reliable results. SSD is a well-liked 

object detection method that has become known for its 

accuracy and speed in real time. By utilizing both the camera's 

precise depth data and the algorithm's object detection 

abilities, we combined the SSD with stereo depth information 

from the ZED camera, potentially improving object detection 

capabilities. 

 

 
 

Figure 4. Block diagram representing integration of SSD and 

ZED camera 

 

A high-level block diagram shows in Figure 4 explaining 

the general steps involved in merging the ZED camera and the 

SSD algorithm is shown below: 

1. ZED Camera Input:  

• Stereo Images: The ZED camera provides left and 

right image inputs by employing its two lenses to capture 

stereo images. 

• Depth Map: The ZED camera uses stereo vision to 

determine depth details and produce a corresponding depth 

map in addition to the stereo envision pair. 

2. Preprocessing:  

• Image Rectification: To make sure that 

corresponding spots in the left and right images align correctly 

for stereo vision algorithms, the stereo images from the ZED 

camera may need to be rectified. 

• Processing of the Depth Map: To improve its quality 

and prepare it for fusion with object identification algorithms, 

the depth map may go through preprocessing operations like 

normalization or filtering. 

3. Improved SSD Algorithm: 

• Feature Extraction: Using the stereo pictures that 

were acquired from the ZED camera, the SSD algorithm 

extracts features in order to identify things. In order to extract 

pertinent information at various scales, convolutional neural 

networks (CNNs) are used to process the images. 

• Boundary Box Prediction: SSD creates bounding 

boxes around things it detects and makes predictions about the 

positions and class probabilities of those objects inside the 

image. 

4. Depth-Aware Fusion:  

• Combining Depth Data: The bounding box data 

produced by SSD is integrated with the depth map acquired 

from the ZED camera. 

• Depth-Aware Object Localization: Depth 

information can be integrated with SSD to enable depth-aware 

object localization, which increases the precision of 

determining the size and distance of objects that are identified. 

5. Object Recognition Results: 

• Findings for Detection: For each object recognized in 

the scene, the integrated system returns object detection results 

that include bounding boxes, class labels, and depth-related 

data. 

6. Decision Making:  

• Environment Perception: By combining data, the 

autonomous system is able to gain a better awareness of its 

surroundings and make judgments based on the items it has 

observed and their connections to one another. 

Figure 5 shows the flowchart of methodology used to 

implement object detection in Autonomous Vehicle. The 

initial step in object detection is regarding the hardware 

installation. First the camera is installed inside the vehicle for 

which stereo cameras has been used.  

Stereo cameras calculate detailed information, and the data 

is examined to see whether it is adequate or need more input. 

If the data is not sufficient the process will not work further. If 

it's sufficient then data analysis takes place. There are two 

targets. The target 1 is object detection by designing the SSD 

algorithms. We implement these algorithms into our model. 

Python script has been used for estimating the distance 

between the objects. 

Improved SSD Algorithm: By altering the basis network 

MobileNet, we were able to enhance feature extraction and 

object localization while maintaining the original SSD 

Algorithm. Improvements in precisely localizing objects, 

lowering false positives, and improving bounding box 

predictions are also achieved by making adjustments to the 
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algorithm to speed up inference without sacrificing 

accuracy—a necessity for autonomous vehicles. 

Our model, which comprises of many layers for 

categorizing supplied objects into one of the stated classes, 

was developed using convolutional neural networks. With the 

use of higher resolution feature maps, recent advancements in 

deep learning techniques for image processing have rendered 

it possible to identify these objects. "MobileNet SSD object 

identification" has been implemented in our model, which 

takes the input picture to compute the output bounding box and 

object class. This "Single Shot Detector" (SSD) object 

detection model, which can quickly detect objects, leverages 

MobileNet as its structural support [33]. In order to determine 

the final bounding box and object class, an object detection 

model known as MobileNet SSD utilises the image that is 

input. Considering the use of MobileNet as a backbone, this 

"Single Shot Detector" (SSD) object detection technology 

could provide fast object detection. 

 

 
 

Figure 5. Flowchart of implemented methodology 

 

 
 

Figure 6. Constructed SSD layered architecture 

 

Figure 6 shows the Layered architecture of SSD (Single 

shot detector). As opposed to RPN-based systems like the R-

CNN series, which required two shots, one for developing 

region proposals and the other for identifying the target of each 

proposal regional proposal network (RPN) based techniques 

just need one shot. we have used SSD implementation for our 

model because it only need one shot to detect multiple objects 

within the image. Therefore, SSD is significantly quicker as 

compared to other object detecting strategies. For feature 

extraction in our model, SSD employs an auxiliary network. 

This also goes by the name base network [34]. For detection, 

further convolution layers are added, and the intermediate 

tensors are retained. It concludes in a stack of feature maps of 

various sizes. As a result, there are k alternative bounding 

boxes, each with a probability score, for each location of the 

items that have been located. 

SSD uses stepwise methodology for the implementation, 

designed steps are: 

Step 1: Firstly, Image is processed via several convolutional 

layers, which extract feature maps at various locations across 

the model. 

Step 2: Each location in every one of those feature maps 

makes use of a filter in order to evaluate a small, low default 

box in the provided image. 

Step 3: Determine the bounding box offset for each box with 

boundaries. 

Step 4: Class possibilities for every box of boundaries 

should be predicted. 

Step 5: Employing IOU, the actual boxes are compared to 

the anticipated boxes. 

Step 6: The outcome leverages the best-assured loss for each 

default box rather than all the Negative cases. 

Evaluation Metrics:  

The performance measures that are used to assess how well 

the modified SSD algorithm predicts boundary boxes and truth 

boxes for object classification [35]. For future aspects, data 

optimization can also be integrated for optimizing the overall 

vehicle system as suggested in research [36]. Eq. (1) below is 

used to compute the accuracy, which might be more accurate 

than the original dataset. The average precision (AP) of all 

classes divided by the mean is called the mAP. In (2), the 

mathematical equations are displayed, with N(C) representing 

the class numbers. Recall (R) and precision (P) both affect AP. 

The mathematical formulas in (3), (4), and (5) are displayed, 

with FP and TP denoting the proportion of True Positive and 

False Positive, respectively. False Negative (FN) is the 

quantity. By dividing the number of images by the image 

detection time, the frame rate (FPS) is obtained. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑂𝑏𝑗𝑒𝑐𝑡 (𝑂 𝐶𝑜𝑟𝑟𝑒𝑐𝑡)

𝑇𝑜𝑡𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡 (𝑇 𝑜𝑏𝑗)
 (1) 

 

𝑚𝐴𝑃 =  
∑𝐴𝑃

𝑁(𝐶)
 (2) 

 

𝐴𝑃 =  ∫ 𝑃(𝑅)𝑑𝑅
1

0

 (3) 

 

𝑅 =  
𝑇𝑃

𝐹𝑁 +  𝑇𝑃
 (4) 

 

𝑃 =  
𝑇𝑃

𝐹𝑃 +  𝑇𝑃
 (5) 

 

(O correct) in the equation stands for the number of properly 

identified objects, and (T obj) for the overall number of images 

dataset. 
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4. RESULTS AND DISCUSSION 

 

We have examined the implementation part in this section 

and the results that are derived from the analysis. We can 

divide the implementation part into various categories and is 

defined below: 

Input Data:  

The main task in deep learning is the construction of the 

algorithm that can learn from the data or to make predictions 

on this data. This SSD algorithm is used for data driven 

predictions. For our implementation, ZED camera has been 

used in the vehicle to capture the images. The camera is 

installed at the front of the vehicle so that it can capture the 

images appearing in the front. For this application we have 

taken both color and depth images that can be seen in Figures 

7 and 8. The advantage of using the depth image is to calculate 

the distance of the object from the vehicle. 

 

 
 

Figure 7. Depth image (input) 

 

 
 

Figure 8. RGB image (input) 

 

In the above images, it can be clearly seen that depth image 

and color image also called RGB-D Images taken as input for 

object detection and predicting the distance from vehicle to 

object. The depth of the image tells us the amount of color 

information contained in a pixel. It is important as the vehicle 

doesn’t collide into the objects. This information is very 

critical for an autonomous vehicle so that it can be safe.  

Performance Evaluation: 

This experiment evaluates the revised model's performance 

using a customized dataset gathered by the real-time outdoor 

environment and compares it to Fast R-CNN, Faster R-CNN, 

SSD, and YOLO to verify the validity of the changed 

approach. Table 5 presents the comparative end outcomes of 

different networks. 

 

Table 5. Comparative end outcomes of different networks 

 
Methods Backbone mAP FPS Environment 

Fast RCNN VGG 71 9 Nvidia GPU 

Faster RCNN VGG 72.6 11 Nvidia GPU 

SSD MobileNet 75.2 18 Nvidia GPU 

YOLO VGG 74 17 Nvidia GPU 

Ours MobileNet 78.4 20 Nvidia GPU 

 

Labelling Of Images: 

This is the process where the image is labelled with various 

details of the image. This step is important as we have used 

supervised machine learning models. In supervised methods, 

for each image we should have the information of the target 

feature. The labelling has been completed using the tool to 

specify the target objects. These labels have been saved in the 

json files. These files contain the target object name, their 

coordinates and the image name and shape.  

The metadata for one of the images is explained as below: 
{ 

"Object_Name ": "CAR", 

"lat_Cordinates": "2.9", 

"long_Cordinates": "3.4", 

"Image_name ":"CAR_1", 

"ROI_shape ": “0:720,415:865” 

} 

Json data visualizer:  

JSON is a relatively simple data standard that can express 

extremely complex datasets using layered data structures. In 

Figure 9, we can view the complicated data of our image json 

file in a fully structured manner. 

 

 
 

Figure 9. Structured data with Json visualizer 

 

Training and Testing: 

Training in machine learning methods is to learn important 

and useful information from the data. Training consists of 

different steps: First is collecting the required dataset. In our 

case we have taken the images, but this depends on the 

problem statement that we are trying to solve. Next step is to 

prepare the data called preprocessing. Brightness correction, 

Noise reduction, grey scale, Translation, Blur removal etc. are 

the steps that we have applied on the dataset. To train the 

model, we have taken the images captured by the zed camera 

and fed into the pre-trained SSD model. The total dataset has 

been divided in to 70:30 ratio for training and testing 

respectively. For distance estimation, depth image dataset has 

been used. Hyperparameter tuning has been also applied on the 

model. We tried with multiple epoch values, stochastic 
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optimization methods called Adam, RMSprop, Nesterov etc. 

 

 
 

Figure 10. Pie chart for trained model classes 

 

During training the model, the learning rate is very crucial 

and important. This determines the convergence of the 

training. If it sets too low, the convergence will be slow and 

will take too much time to train the model. If it sets too high, 

it might overshoot the optimum value. For this implementation 

we have taken 0.9 learning rate, we started with 0.001 with 

batch size of 10. The total dataset is 1500 real images collected 

in outdoor environment. Data augmentation has also applied 

on those collected images. mAP (Mean Average Precision) has 

been used as a loss function. This function calculated the 

average precision of each class of the dataset. When every 

class is detected and evaluated, the mean of all the average 

precision is taken as the result. For the validation of the 

models, the model has tested on the unknown input data and 

that is called Test Set. Training loss indicates how well the 

model can learn from the data and the validation loss is how 

well the model is able to fit the new data. Is the trained model 

capable of predicting the test set correctly? For a good fit, 

validation loss and training loss both should decrease to a point 

of stability and should have small gap between them. Our 

proposed model has been trained for 21 classes and Figure 10 

illustrates pie graph which depicts the contribution of each 

data class to the overall picture. A pie chart is a circular 

statistical visual that is broken into slices to show the 

numerical fraction of each class for which the model has been 

trained. 

Output:  

The accuracy of the model is 87% that is successfully able 

to capture the objects in the image and the distance from the 

vehicle as shown in Figure 11. But there are scenarios of false 

positives as well. By training the model on more data, it is 

possible to enhance it. 

Jupyter Notebook Output Window Result:  

This result shows the distance estimation from the vehicle, 

it is only possible with our customized SSD Model approach 

with Zed Camera implementation. 

{ 

Object is 6.436 meters away. 

      } 

 
 

Figure 11. Output image with detected object 

 

 
 

Figure 12. Training vs validation graph 

 

Figure 12 shows the final testing and verification in real-

time environment by considering all the required parameters. 

In most cases, model has a processing time of 20 FPS with 

high accuracy of 87% and a confidence rate close to 100%. 

This performance might be improved by utilizing much better 

GPUs. 

 

5. CONCLUSION 

 

In this research, we have studied about the Autonomous 

Vehicle and its system architecture. It has two parts one is 

hardware which includes various sensors such as Camera, 

LiDAR, RADAR which perceives the information from this 

hardware and then fed into the software part of the vehicle. 

The software architecture is the core of the entire system 

which has the operating system, algorithms which takes the 

input data from different sensors and apply logic for the 

decision-making. This logic’s output is then taken by the 

control modules which regulates the acceleration, motion of 

the vehicle. Advanced technologies like machine learning 

computer vision are being applied for this process. There are 

various algorithms available like Convolutional Neural 

Networks (CNN), R-CNN, YOLO etc. but our customized 

SSD model is preferable for real time predictions and 

considerably has less localization errors, computationally 

inexpensive and require less storage & processing power for 

the obstacle detection. The object distance estimate algorithm 

was created using the mono-depth technique. The overall 

model has been trained on stereo data and draws inferences on 

monocular views. Also, we have tested the suggested software 

model and algorithm in real-time environment with Zed 
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Camera mounted on the vehicle which gives the outstanding 

results with accuracy of 87%. We may combine the object 

detection technique with the estimation distance to share the 

feature extraction layers, thereby improving its efficiency. The 

possible benefits of incorporating the SSD algorithm with the 

ZED camera in self-driving vehicles are demonstrated by 

applications such as the autonomous golf buggy in the golf 

course, load automobiles on construction sites, and for other 

autonomous industries. Such applications allow for improved 

perception, increased safety, and effective navigation in a 

variety of dynamic environments. Autonomous vehicles will 

be far more reliable if their algorithms can adjust to varied 

lighting situations, diverse surroundings, and different object 

orientations. 
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