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Asphalt-paved Road junctions frequently encounter deformation and degradation 

challenges due to heavy vehicular traffic and varying climatic conditions, such as 

temperature fluctuations and precipitation. This study employs a multifaceted approach, 

incorporating a Multilayer Perceptron (MLP) model, ancillary machine learning 

techniques, and optimization methodologies, to address these challenges effectively. The 

primary objectives are the prediction and analysis of pavement deformation, the 

optimization of maintenance strategies, and the evaluation of road effectiveness. Our 

findings underscore the substantial contribution of heavy vehicles to road erosion and the 

profound impact of vehicular retention and braking at intersections. A Multilayer 

Perceptron (MLP) model is utilized to simulate future pavement degradation accurately at 

a specific intersection, leveraging real-time traffic flow data. This approach showcases the 

advantages of using real-world traffic data to model the lifecycle of asphalt dependencies 

dynamically at the intersection level. Mitigation of road deterioration is proposed via 

controlled traffic flow and optimization of relevant parameters, such as minimization of 

intersection wait times. The integration of machine learning substantially enhances road 

conditions and reduces vehicular waiting times at intersections. The implementation of 

this study's findings in pavement design and preservation practices could enable 

transportation authorities to improve road safety, reduce maintenance costs, and decrease 

the incidence of road accidents. Overall, this paper presents a comprehensive approach 

towards sustainable and efficient road infrastructure management, highlighting the 

potential of AI in tackling pressing infrastructure challenges. 
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1. INTRODUCTION

Investigating the influence of traffic flow on the 

deformation of asphalt surfaces constitutes a significant 

domain within transportation engineering. Insight into the 

interaction between vehicles and asphalt deformation can 

inform the creation of more durable, cost-efficient roadways, 

given that road degradation is intrinsically linked to traffic 

flow dynamics. 

Presently, road construction relies on robust calculations 

encompassing weather conditions and vehicular volume, with 

an assumed minimum lifespan of roadways spanning ten to 

thirty-five years. However, this study challenges these 

assumptions, revealing that the alteration of traffic flow at 

intersections significantly impacts road erosion, rendering 

calculations based on these assumptions potentially flawed. 

Particularly, the research indicates that a ten-year lifespan 

might not always be a realistic expectation for road segments 

at intersections.  

To explore this phenomenon, data were extracted and 

processed from video footage to procure real-time vehicle 

movement and asphalt impact information. Subsequent 

analysis via computational algorithms, such as the 

backpropagation algorithm, unveiled patterns and correlations 

between traffic flow and asphalt deformation. Consequently, 

this analysis facilitated the identification of key factors 

influencing asphalt deformation and contributed to the 

development of predictive models for estimating asphalt 

lifespan. The results of this research are modeled using 

machine learning (ML) technique with the previously 

mentioned limitations. 

The emphasis on road intersections in this study is justified 

by several factors: 

• High Traffic Volume: Intersections, being 

convergence points of multiple roads, handle higher vehicular 

volume than other road segments, thereby increasing 

pavement strain and susceptibility to deformation. 

• Complex Traffic Patterns: Intersections are

characterized by intricate driving patterns, encompassing 

frequent acceleration, deceleration, and changes in direction. 
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These abrupt shifts may induce pavement wear and 

deformation. 

• Vehicle Braking and Acceleration: Rapid stopping 

and acceleration at intersections exert stress on the pavement, 

potentially accelerating asphalt degradation. 

• Safety Concerns: Deformations in asphalt at 

junctions can result in uneven surfaces and potholes, 

escalating the risk of accidents, particularly in adverse weather 

conditions [1]. 

• Maintenance Costs: Intersections' susceptibility and 

high traffic volume necessitate regular, intensive maintenance, 

thereby increasing costs for road authorities. 

• Improved Intersection Design: An understanding of 

the impact of traffic flow on pavement deformation at 

intersections can inform the development of more durable and 

safer intersection designs. 

Overall, studying the impact of traffic flow on asphalt 

surface deformation at road intersections provides valuable 

insights into optimizing road design, reducing maintenance 

costs, and promoting safer and more efficient transportation 

infrastructure [2]. 

Although environmental factors do contribute to asphalt 

degradation, their exclusion in this study is justified by the 

micro-scale analysis focus on a singular junction. This 

approach allows for a detailed exploration of the direct impact 

of traffic flow patterns, eliminating potentially confounding 

factors. This study's structure is as follows: the introduction 

and literature review provide a succinct overview of the 

current research landscape. The methodology section outlines 

the approaches adopted for future erosion rate calculations. 

The results section discusses the findings and their 

implications using the proposed models. The conclusion offers 

distinct suggestions and directions for future research. 

 

 

2. MATERIALS AND METHODS 

 
2.1 Introduction to asphalt deformation and lath and nail 

method 

 
Rutting deformation, specifically in asphalt pavement, is a 

significant issue in the transportation sector because of its 

negative impact on road safety and performance. The study 

incorporated meteorological data implicitly into the on-site 

measurements performed at an actual intersection. In light of 

the ever-changing and unpredictable characteristics of the 

environment, we made the decision to exclude meteorological 

data as explicit input parameters in our analysis. The 

determination is based on the realistic difficulties that arise 

when striving to regulate or influence meteorological 

circumstances while conducting field observations. Our study 

relied on the real-world changes caused by the different 

weather conditions at the junction. The dataset utilized for 

research already incorporates the impact of weather on 

pavement conditions, accurately depicting the intersection's 

genuine performance under varying environmental conditions. 

This methodology guarantees a comprehensive and accurate 

comprehension of how the pavement reacts to the intricate 

interaction of environmental elements. This, in turn, enhances 

the credibility and practicality of our discoveries in real-life 

scenarios. 

The "lath and nail method" is one fundamental technique 

used to comprehensively evaluate pavement erosion. It 

precisely measures the depth of cracks and abnormalities on 

asphalt surfaces. This approach entails using an aluminum lath 

with precise dimensions and a specified cross-section, together 

with accurate measurements obtained by inserting nails into 

the pavement. 

The aluminum lath is meticulously chosen for its robustness 

and pliability, enabling it to effortlessly adapt to the shape of 

the pavement. For measurements to be consistent and accurate, 

its precise dimensions are vital. An unchanging point of 

reference for determining the depth of diverse pavement 

features is the cross-section of the lath. 

In order to implement the "lath and nail method," scientists 

strategically place nails into the pavement at predefined 

intervals all throughout the length of the lath. These nails 

penetrate asphalt cracks, holes, and irregularities to indicate 

depth. Subsequently, the profundity of these insertions is 

quantified, yielding significant information regarding the 

degree of degradation or impairment to the pavement surface. 

By utilizing this approach, scientists are capable of 

quantifying and analyzing the extent of erosion, thereby 

facilitating the identification of potential areas that require 

maintenance or restorations. The lath and nail method 

facilitates a thorough comprehension of pavement condition 

through the systematic measurement of crack and irregularity 

depths. This knowledge is crucial in the formulation of 

efficient maintenance strategies and in guaranteeing the 

durability and safety of road surfaces. 

Numerous studies have been carried out in order to gain an 

understanding of the underlying causes and make predictions 

regarding the deformation that big vehicle loads will have on 

asphalt surfaces. One of which is a prediction model for 

asphalt pavement deformation using artificial neural networks. 

The model considered various environmental factors, such as 

temperature and rainfall, in addition to traffic volume. The 

model accurately predicted heavy vehicle load asphalt 

pavement deformation [3, 4]. Laboratory tests examined 

asphalt's rutting deformation under heavy-load vehicles [5]. 

Tire pressure and axle load impacted rutting. Axle load and 

tire pressure affected asphalt pavement rutting, according to 

the findings. 

Similarly, the study [6] presented a prediction model for 

asphalt pavement deformation using an artificial neural 

network. Different data parameters were used to train and 

validate the model. Results indicated that the model was able 

to accurately predict the deformation of asphalt pavement 

under heavy vehicle loads. The support vector machine (SVM) 

optimized using a genetic algorithm (GA) and created by the 

study [7] predicts asphalt pavement rutting based on field test 

data and was evaluated using mean absolute error, root mean 

square error, and correlation coefficient. The model accurately 

predicted asphalt pavement rutting. Likewise, the study [8] 

investigated asphalt pavement deformation using a genetic 

algorithm optimized back-propagation neural network. Root 

mean square error and correlation coefficient were used to 

evaluate the field test-based model. The findings proved that 

the model accurately predicted the deformity of asphalt 

pavement. 

Another study investigated the relationship between traffic 

flow and asphalt deformation using video data extraction and 

processing. This study analyzed the data with a back-

propagation algorithm to determine the impact of traffic flow 

on asphalt deformation. Findings indicated that traffic flow 

significantly affected asphalt deformation, and the model had 

good accuracy in predicting the deformation [9, 10]. Finally, 

references [11, 12] studied the effects of vehicle speed on 
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rutting deformation of asphalt pavement using real-time traffic 

data. The study used a regression analysis to identify the 

relationship between vehicle speed and rutting deformation. 

Deformation caused by rutting was found to be significantly 

affected by vehicle speed. 

 

2.2 Different types of testing and mixture effects 

 

The Yong study analyzed the effects of graphene on 

asphalt's performance and the effectiveness of Stone Matrix 

Asphalt (SMA) in pavement. Based on a Gansu Province 

highway project, graphene enhanced asphalt was used [13]. To 

prepare CRCM asphalt, which includes CRCM-SBS, CRCM-

Sasobit/BRF, and CRCM-RARX, the same amount of crumb 

rubber and various amounts of composite additives were 

added [14]. Long-term road performance is assessed and 

predicted for self-ice-melting asphalt surfaces equipped with 

salt-storage materials in this lab study [15]. Employing 

Dynamic Mechanical Analysis, MA tested three variations of 

an asphalt mixture used for the surface course and six standard 

RIOH Track structures [16]. Zhang et al. [17] proposes a new 

fatigue life prediction that takes temperature load into account, 

which could be disregarded in inspections of steel deck welds 

on suspension bridges subjected to dynamic vehicle load. Liu 

makes use of the data that is reflective of the weather for a 

period of twenty-four hours during the summer [18]. Two-

dimensional image technology obtains air-void data acquired 

from rutting sample sections with varied loading cycles (500, 

1000, 1500, 2000, 2500, and 3000 times) [19]. Wu intends to 

conduct a comprehensive investigation to determine the law of 

skid resistance attenuation of SMA pavement [20]. Langa 

examines how high-density polyethylene (HDPE) modified 

asphalt binder changes in terms of its physical, rheological, 

and thermal properties after soybean oil is added [21]. 

To aid in the right decision-making processes, a long-term 

strategy for pavement preservation should include a thorough 

evaluation of the current road state. To predict flexible 

pavements' durability over time, the study [22] puts forward 

integrating Non-Destructive Testing (NDT) and ground truth 

data. Shaffie [23] proves RSM's statistical efficacy. Cao 

simulates the thermodynamic, diffusion, and adhesion effects 

of asphalt cement aging using molecular dynamics [24]. The 

study [25] carried out a model-based farm-scale exploratory 

study using two farms as case studies. In the study [26], 

researchers looked at 15 extracts from the peels of 5 different 

cultivars to determine their phytochemical makeup, 

antioxidant activity, tyrosinase influence, in vitro SPF, and 

cytotoxicity. As the service life increases, the actual load-

carrying capacity of bridges gradually decreases due to the 

combined action of the environmental corrosion and repeated 

vehicle loads, resulting in shortened bridge service life. Nie 

studied fatigue reliability analysis and traffic load control of 

steel bridges based on artificial neural network [27]. The 

fatigue reliability index of a steel girder bridge over its whole 

life is investigated based on artificial neural networks. Hussein 

wants to emphasize the significance of planning marsh 

management, which may revitalize the marshes' natural world 

before drying through the Center for Marsh Revitalization in 

southern Iraq [28]. Cepa presents the main types of sensors and 

their applications in tunnels [29]. As discussed in the study 

[30], assessing pavement condition effectively helps making 

good decisions and provides longer-lasting pavement mixes. 

In conclusion, the materials and methods employed in this 

research, particularly the lath and nail method, have proven to 

be instrumental in comprehensively evaluating pavement 

erosion. With its aluminum lath of a specific length and cross-

section, the lath and nail method yield’s precise measurements 

which demonstrate wear, structural, and instability rutting. 

On-site measurements inevitably incorporate weather in-

formation because environmental conditions affect pavement 

deterioration and rutting. Although data on weather was not 

explicitly used as an input parameter for machine learning 

(ML) instruction, it was unambiguously accounted for in the 

real-world metrics used in the training process. The lath and 

nail method and on-site measurements implicitly include 

weather effects, improving research reliability and leading to 

more accurate erosion coefficients and robust pavement 

management strategies. 

 

 

3. METHODOLOGY 
 

3.1 Data collection  

 

Traffic flow's effect on road conditions is the study's main 

objective. Machine learning algorithms are used to analyse and 

simulate traffic flow data. In order to measure different types 

of asphalt erosion or decay, different measuring methods can 

be applied [31, 32]. Research results focus on the lath and nail 

method and future erosion coefficient will be lath and nail 

method related. For the lath and nail method, the changes in 

the pavement are measured by using an aluminium lath that is 

4 meters in length. Typically, they have a rectangular cross-

section and are made of solid wood or light metal, leaving no 

room for speculation. It is crucial that the measuring lath has 

no fewer than two supports. Figure 1 displays a sand patch and 

lath-and-nail method. 

 

 
 

Figure 1. Visualizing data collection with sand patch and 

lath/nail method 

 

Samples and data are collected at the intersection of roads 

M223 and R363 near Tuzla, Bosnia and Herzegovina. The data 

is collected at the crossing point entrance from Tuzla city side 

where black-top thickness layers are 7 cm and 5 cm where the 

5 cm layer is the best one liable for connection with the tire 

while the other one is obligated for the heap pressure taking 

care of, also the path width given to be 2.75 m and the black-

top blend qualities given as BB11s for the top layer and AGNS 

22sA for the base layer with the tampon thickness given in 

reach from 31 to 40 cm. For this location, the traffic flow data 

is obtained from two different sources. 

First source is a video document source using road 

surveillance cameras with a 15-day period, which was used for 

sampling. A linear support vector machine model extracts 

vehicle number, class, speed, heading, and time from the 

recorded footage [10]. The weather and temperature factors 

are not considered as the measurements and modelling is 
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performed on nearby lanes. Figure 2 depicts the detection of 

on-road vehicles in an area of interest, a key data collection 

point [10]. HOG and SVM gather data in the region of interest. 

HOG data includes boundaries from vehicle-free and vehicle 

present images. 

Positive set is a region of interest with identified vehicles 

excluded from source recordings. Likewise, the negative set is 

no vehicles from roads, structures, etc. 2954 images of 

vehicles make up the positive training set. The negative 

training set has 2860 vehicle-free images. A 64x64 pixel 

resolution is applied to these images. We count the number of 

directions in each square. Find more than 9 directions. Each 

square has 8 pixels that show us which way things are 

pointing. We create histograms with 2 squares for every larger 

square. This results in a new, smaller image that depicts the 

various directions in the original image. It has a size of only 

16 by 16 pixels. 

HOG descriptor, spatial picture vector, and situated angles 

histogram make up element vector. With given details, a 

Linear SVM can precisely identify objects of significance and 

those that are not. 70% and 30% of the train and test sets 

received the new vector. The utilized clip sets have 98-100% 

precision [10]. 

As mentioned before from the video data, we have 

identified breakdown of vehicle’s type, time, travel direction 

and stopping action at the intersection for the 15-day period. 

 

 
 

Figure 1. Linear support vector machine (Linear-SVM) vehicle detection and classification 

 

Second source of traffic data is governmental sensor flow 

data between 10/26/2015-06/12/2020. The actual sensor flow 

measurements are taken on the main Tuzla-Sarajevo Freeway. 

The data contains type, number of vehicles, and direction of 

travel. 

The input dataset is created by combining video data with 

traffic department sensor data and road erosion measurements 

as follows: 

• Number of LW vehicles—The complete count of light 

vehicles (LW) for a given interval; 

• HW vehicle count—The overall count of heavy vehicles 

(HW) for a particular period; 

• Date range (h)—From 27.10.2015 to 12.06.2020, 

inclusive, to determine specified intervals; 

• Time on the intersection/junction (h) for HW—

Determined from footage data averages and multiplied by the 

total number of (HW) vehicles; 

• Time on the intersection/junction (h) for LW—The total 

count of (LW) vehicles multiplied by the average value 

derived from video data; 

• Number of HW that are coming to a full stop—Calculated 

with respect to the percentage amount; 

• Road erosion (lath) Machine learning models use 

percentage assumptions; 

Daily datasets are created for the two road intersection 

lanes. This study ignores weather and temperature because the 

lanes are adjacent. The total amount of records that comprise 

the final data set is 3382 days across the two lanes. Table 1 

shows examples of the dataset based on daily left lane traffic 

flow [11]. 

 

Table 1. Overview of sample dataset (HW-Heavy vehicles, LW-Light vehicles) [10, 11] 

 

Day 
# of LW 

Vehicle 

# of HW 

Vehicle 

Time 

Period (h) 

Time on Junction 

(h) HW 

Time on 

Junction (h) LW 

# of HW Going to a 

Complete Stop 

Road Erosion 

(lath) 

1 2977 225 24 0.87 9.74 51 0.021 

2 6235 424 48 1.64 20.40 96 0.041 

3 9423 625 72 2.42 30.83 142 0.062 

4 12784 839 96 3.25 41.83 190 0.083 

5 16018 996 120 3.86 52.41 225 0.103 

6 18627 1069 144 4.15 60.95 242 0.124 

7 21828 1251 168 4.85 71.42 283 0.145 

8 24944 1437 192 5.57 81.62 325 0.166 

3.2 Asphalt erosion measurement 

 

With Lath measurement of 60 mm in 2020 used as output 

parameter, we have applied machine learning/ regression 

methods to develop a model for future erosion coefficient 

prediction.  
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3.3 Machine learning algorithms 

 

Assuming linear decay, we have trained the model to 

associate the vehicle behaviour to road decay over time. We 

used decision tree, linear, random forest, and gradient boosting 

regression models [11]. 

Aim of research is to measure that impact by combining 

experimental and theoretical data sets and to apply machine 

learning methods (ML) or neural networks which are basic 

versions similar to a human brain that involve input, hidden 

and output layers. Our objective is to generate meaningful 

outputs for a provided input. After implementing different ML 

methods, which were tested out, results have shown that the 

multi-layer perceptron back propagation algorithm was able to 

correlate input and output data parameters [11]. The most 

common neural network approach is called a multi-layer 

perceptron (MLP). The neurons and hidden layer are arranged 

such that in each layer, the nodes only get inputs from the 

nodes in the previous layer and only send their outputs to the 

nodes in the next layer [33]. The input data set is traffic flow, 

and the output is road erosion. After running different error 

matrices, the MLP model was confirmed to be accurate and 

was used for future road erosion prediction. Throughout 

training, the MLP learns to recognize input-output 

correlations. MLP can learn a non-linear regression 

approximation from input variables and a target or output 

value. Figure 3 illustrates an MLP framework with a single 

concealed layer. 

 

 
 

Figure 3. MLP with one hidden layer 

 

The left side displays a set of input parameters denoted by 

x that are actually elements from Table 1. On-road degradation 

measured by lath-nail technique is the target value or Y(x). 

The hidden layer weights are recalibrated through the process 

of determining the amount by which the target values differ 

from the predicted values. 

 

 

4. RESULTS AND DISCUSSION 
 

Erosion of roads and how it affects the flow of traffic are 

discussed. The predicted "lath" measurements are put forward 

in this paper. Figure 4 depicts the MLP model's prediction for 

the "lath" dataset set compared to the actual statistical value. 

 

 
 

Figure 4. MLP "lath" predictions vs measured statistical 

value 

 

The test stage includes 30% of the dataset, the calculation 

of the overall test set average absolute difference is 4.88%, 

R2=0.9948 and (Mean squared error) MSE=0.00042. 

Enhancements to the model are range and size dependent. 

Figure 4 presents a prediction based on the normalized and 

linearized samples. The MLP projections use a dataset that has 

been arbitrarily divided into 70% training data and 30% testing 

data. Stochastic gradient descent is used for optimization, and 

the back-propagation algorithm is used for learning in the 

MLP model, with square error as the loss function. Table 2 

gives a sample of test set. Last column (Predicted value) shows 

MLP results so we can compare to measured/statistical values 

Road erosion (lath). MLP takes rest of the table as input. 

MLP prediction is accurate because predicted and measured 

values match. Heavy vehicles erode roads, as shown. 

In Table 3, we show the result from right lane learned data 

set, meaning based on trained MLP model, we input new data 

points to understand the underlying impact of different inputs. 

 

Table 2. MLP "lath" predictions by means of data normalization [10, 11] 

 

# of LW 

Vehicle 

# of HW 

Vehicle 

Time Period 

(h) 

Time on 

Junction (h) 

HW 

Time on 

Junction (h) 

LW 

# of HW 

Going to a 

Full Stop 

Road 

Erosion 

(lath) 

Predicted 

Value 

11551382 1144688 40584 57.51 9787.6 10064 16 16 

11551382 1144688 40584 100 19000 20000 30 30 

 

Table 3. MLP "lath" predictions with right lane data [10, 11] 

 

# of LW 

Vehicle 

# of HW 

Vehicle 

Time Period 

(h) 

Time on 

Junction (h) 

HW 

Time on 

Junction (h) 

LW 

# of HW 

Going to a 

Full Stop 

Predicted 

Value 

0 0 0 0 0 0 0.021 

1000000 100000 10000 400 100 100 0.41 

1000000 100000 10000 4000 100 1000 7.18 

1157278 156707 8544 575 4057 35385 13.5 
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After 4.6 years since the road was completed, the actual 

measurement of road erosion (lath) is 60 mm. The limitations 

are related to the dataset as only data from one intersection was 

used for modeling. Traffic can drastically alter street 

conditions. Using AI, we can predict the erosion and 

significantly improve control of the traffic flow to optimize 

road erosion due to the traffic. The real test uses measurements 

from the 2nd intersection. The introduction to a new 

intersection data is the next step before the model is applied. 

The "Lath" measurement can be seen in Figure 5.  

With the "Lath" standard reading equal to 16 mm, procedure 

on how the "Lath" standard reading is done can be seen from 

the Figure 5. 

In Figure 6, intersections sketch is provided with indicated 

points of observations. 

 

 
 

Figure 2. "Lath" with measurements taken 75m from the 

intersection 

 
 

Figure 6. Intersection two sketch with indicated points of 

observations as T1 and T2 (meter) 

 

All the measurements are summarized in Table 4, and all of 

them are for T1 location. 

Both Table 4 input parameters are derived from 

traffic/statistical data, and the time interval is identical to that 

of the initial intersection. Table 4's first two parameters, 

determine the next three parameters. Since the first 

intersection was observed at 25 m and the second at 75 m, the 

values have to be considerably smaller than those from the first 

intersection. MLP Road erosion (lath) model prediction is 

16.62 mm. 

Finally, MLP that learned from right lane is used to predict 

the behavior in the left lane (shown in Figure 7 as T2 point). 

This impact is shown in Table 5 and Figure 8. 

 

Table 4. The dataset derived from the new junction, with measurements taken 75 meters away [10, 11] 

 

# of LW 

Vehicle 

# of HW 

Vehicle 

Time 

Period (h) 

Time on 

Junction 

(h) HW 

Time on 

Junction 

(h) LW 

# of HW 

Going to a 

Full Stop 

Road 

Erosion 

(lath) 

Road 

Erosion 

(sand) 

Road 

Erosion 

(SRT) 

11551382 1144688 40584 4206 5049 40000 16.62 60 40 

 

 
 

Figure 3. A visual representation of the intersection used. T1 

lane is used to teach AI the erosion and T2 is used for 

prediction 

 

The following inputs for heavy and light vehicles are 

calculated by applying the known spectrum of past years 

which is later used to calculate the number of vehicles in the 

future. Other input variables are calculated with respect to the 

average and percentage values for the left lane which is 

explained in detail before. 

 
 

Figure 8. Model based visualization for the 10-year road 

erosion (lath) 

 

Figure 8 is a visual representation of Table 5. After 7-8 

years, asphalt characteristics are decaying much faster. With 

this result we can say that focusing on the road intersection 

segment quality and traffic fluidity is a higher priority than the 

other road segments. 
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Table 5. Road erosion (lath) value predictions for the left lane 

 

Year 
# of LW 

Vehicle 

# of HW 

Vehicle 

Time 

Period (h) 

Time on 

Junction 

(h) HW 

Time on 

Junction 

(h) LW 

# of HW 

Going to a 

Full Stop 

Road 

Erosion 

(lath) 

2016 1260235 59554 8760 231.0 4123.6 9410 0.19 

2017 2466064 116648 17520 452.4 8069.1 18431 4.73 

2018 3703982 176937 26280 686.2 12119.7 27957 9.44 

2019 4973366 242763 35040 941.5 16273.2 38357 14.25 

2020 6244993 307140 43800 1191.1 20434.0 48529 19.10 

2021 7544905 375202 52560 1455.1 24687.4 59282 24.10 

2022 8873103 446951 61320 1733.3 29033.3 70619 29.63 

2023 10229586 522386 70080 2025.9 33471.8 82538 36.66 

2024 11614355 601507 78840 2332.7 38002.9 95039 46.68 

2025 13027410 684314 87600 2653.8 42626.5 108122 59.98 

 

The predicted outcomes that have been provided possess 

considerable importance within the domains of road 

maintenance and traffic management. Gaining insight into the 

relationship between traffic patterns and road erosion enables 

the implementation of proactive strategies to enhance road 

quality and durability. The MLP model possesses predictive 

capabilities that empower stakeholders, including 

transportation authorities and urban planners, to foresee 

forthcoming road deterioration and execute focused 

interventions. The scope of these interventions may 

encompass strategic road maintenance schedules and the 

optimization of traffic flow patterns, both of which ultimately 

contribute to the sustainability of infrastructure. Furthermore, 

an in-depth examination of the economic ramifications of 

these projections could assist policymakers in the judicious 

allocation of resources and the prioritization of high-impact 

areas. Fundamentally, a more comprehensive examination of 

the pragmatic implementations and ramifications of the 

outcomes of the MLP model would augment the research's 

worth in the domains of infrastructure management and 

transportation engineering. 

Taking advantage of projected values enables the evaluation 

of pavement surface flatness by identifying areas of elevation 

or hollow that require grinding or filling. The High-Low 

Detector or Rolling Straight Edge gauges vertical deviations 

in increments of 0.125" (1 mm), with magnified readings 

spanning up to 0.25" (6.4 mm), indicating high or low areas. 

In accordance with these measurements, our methodology 

initially recorded a significantly elevated reading for low areas 

(60 mm) at the training intersection. The acceptable 

discrepancy between the predicted and actual values is clearly 

illustrated in Figure 4, where the mean absolute difference is 

recorded as 4.88%. Moreover, by including a wider range of 

intersections and fluctuating traffic flows, a more diverse 

dataset could potentially strengthen the model's ability to adapt 

to data fluctuations. 

 

 

5. CONCLUSIONS 

 

The progress made in artificial intelligence and image 

processing has created novel opportunities for engineering 

investigation, providing significant data for the assessment of 

road infrastructure and safety. The primary objective of this 

research endeavor was to evaluate the influence of heavy 

vehicles on the degradation of a particular intersection in 

Bosnia and Herzegovina. The study recognized the significant 

impact that vehicle retention and braking have on roadway 

conditions. Nevertheless, the research acknowledged certain 

constraints, such as its dependence on a restricted dataset, 

absence of meteorological data, and utilization of civil 

engineering measurements. 

The research effectively utilized traffic data to develop a 

MLP model that predicted road erosion with remarkable 

precision, specifically in identifying heavy vehicles as 

substantial contributors to the erosion process. Recognizing 

the necessity for data originating from various intersections, 

the study put forth suggestions for future research avenues. 

Assessment of newly collected intersection data from a 

distance of 75 meters yielded road erosion predictions. Placing 

considerable emphasis on the pragmatic implications for road 

maintenance and traffic management, the research 

underscored the model's capability to evaluate pavement 

surface flatness and pinpoint regions necessitating repair and 

maintenance. 

It was emphasized that a diverse dataset is crucial for the 

robustness of a model, which suggests directions for future 

research. Looking into the future, it is imperative to thoroughly 

examine the effects of traffic flow management on road 

conditions while also integrating intelligent solutions to 

mitigate road erosion and improve safety. Additionally, for the 

benefit of a more sustainable future, research should 

investigate how climate conditions and vehicle fuel 

consumption affect road development strategies. 

Further developments in AI and image processing 

technologies may enable future studies to analyze road 

deterioration and pavement deformation using larger datasets. 

By embracing state-of-the-art research and innovation, the 

engineering community possesses the capacity to make a 

positive impact on society and commuters alike by developing 

roads that are more intelligent, secure, and durable. 
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