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This research is related to the use of deep learning models on thermal images for object 

detection using Unmanned Aerial Vehicles (UAVs). Thermal imaging proves to be efficient 

in environments with minimal light and during nighttime, as it operates based on emitted 

heat rather than visible light. The ability to detect objects in thermal images enhances 

surveillance and security measures, particularly in dark conditions. During search and 

rescue missions, especially in settings with restricted visibility, thermal imaging aids in the 

identification of individuals or animals by detecting their heat signatures. This facilitates 

the process of locating them in diverse conditions. Detecting objects at night is challenging 

due to the lack of illumination. Experiments were conducted using the publicly available 

HIT-UAV dataset, consisting of 2898 images. This dataset includes several classes such as 

Person, Car, Bicycle, Other Vehicle, and DontCare. This study proposes the use of both 

YOLOv5 and YOLOv8 for object detection on this dataset. The YOLOv8 model is the 

latest model currently available. Both YOLOv5 and YOLOv8 variants were developed by 

Ultralytics. The experiment used five Yolo models: nano (n), small (s), medium (m), large 

(l), and extra-large (x). By using YOLOv8m, we achieved a mean Average Precision at IoU 

threshold 0.5 (mAP@0.5) of 0.855. The performance exceeds that of several previously 

proposed models, such as YOLOv4-tiny, Faster-RCNN, and YOLOv4, which yielded mAP 

scores of 0.504, 0.768, and 0.847, respectively. 
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1. INTRODUCTION

In recent years, the use of unmanned aerial vehicles (UAVs) 

has gained significant attention in various fields, including 

object detection. One of the key challenges in object detection 

is the ability to accurately detect objects in various 

environmental conditions. In this regard, the utilization of 

infrared thermal data has emerged as a promising solution. 

This research paper focuses on the importance of using 

infrared thermal dataset for UAV-based object detection. The 

use of infrared thermal data in object detection offers several 

advantages. Firstly, infrared thermal data provides a unique 

perspective by capturing the thermal energy emitted by objects, 

allowing for better differentiation and identification of objects 

in various lighting and weather conditions [1]. Additionally, it 

enables the detection of objects that are not visible in 

traditional visual imagery, such as those hidden behind 

obstacles or in low-light environments. Moreover, infrared 

thermal data enhances the accuracy of object detection by 

minimizing false positives and false negatives, thereby 

improving the overall performance of object detection systems. 

Furthermore, the use of UAVs for collecting infrared thermal 

data presents distinct advantages. 

UAVs offer a flexible and cost-effective means of collecting 

data over large areas, enabling comprehensive coverage and 

high-resolution data acquisition. The mobility and 

maneuverability of UAVs also allow for targeted data 

collection in specific areas of interest, enhancing the efficiency 

and effectiveness of object detection tasks. Additionally, 

UAVs provide a safe and non-invasive method of data 

collection, eliminating the need for human intervention in 

potentially hazardous or inaccessible environments. However, 

the use of infrared thermal data for object detection is not 

without challenges and limitations. Firstly, the interpretation 

and analysis of infrared thermal data require specialized 

knowledge and expertise. The complex nature of thermal 

signatures and the variations in thermal characteristics of 

different objects pose challenges in accurately identifying and 

classifying objects. Moreover, the availability and quality of 

infrared thermal datasets can be limited, hindering the 

development and evaluation of object detection algorithms. 

Additionally, the integration of infrared thermal data with 

other sensor modalities and data fusion techniques presents 

technical challenges that need to be addressed for optimal 

object detection performance. 

Infrared thermal data plays a crucial role in object detection, 

particularly in scenarios where visual light cameras may fall 

short. One of the key advantages of using infrared thermal 

images is that they capture information outside the spectrum 

of the human eye, providing data that is not visible to us [1]. 

While thermal infrared (TIR) images may not contain the 

detailed information present in visual RGB images, they still 
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hold value for object detection purposes. TIR allows object 

detection to overcome challenges posed by changes in light 

intensity that can affect color perception by the human eye. 

Additionally, TIR is sensitive to temperature changes, making 

it useful for detecting thermal variations in objects. In fact, 

studies have shown that infrared thermal cameras are better at 

identifying car and bicycle objects compared to visual light 

cameras, particularly in nighttime operations [2]. This 

highlights the importance of using infrared thermal data for 

object detection, as it provides superior performance 

compared to visual light cameras in identifying objects at night. 

Furthermore, the use of infrared thermal data contributes to the 

development of drone-based object detection tasks and has 

been shown to enhance the performance of detection models 

with limited image data [3]. The availability of datasets such 

as the High-altitude Infrared Thermal Unmanned Aerial 

Vehicle (HIT-UAV), which comprises high-altitude UAV-

based infrared thermal images, further emphasizes the 

significance of using this type of data for object detection and 

offers valuable resources for training and testing object 

detection algorithms. In summary, incorporating infrared 

thermal data into object detection processes allows for 

improved detection capabilities, especially in low-light or 

challenging environmental conditions, and opens up new 

possibilities for UAV-based applications such as search and 

rescue missions at night [4]. 

In recent years, the YOLO (You Only Look Once) method 

has become popular in object detection using UAVs or drones 

[5]. YOLO is a real-time object detection algorithm that 

enables UAVs to efficiently detect objects in images or videos 

directly. YOLO is designed to provide real-time object 

detection results, which are crucial in UAV applications such 

as monitoring and surveillance. With its ability to process 

images quickly, UAVs can detect and respond to objects 

rapidly. 

Certainly, the YOLO algorithm has outperformed 

alternative object detection algorithms like the Region-Based 

Convolutional Neural Network (R-CNN) and the Single-Shot 

Multi-box Detector (SSD) due to its exceptional real-time 

detection accuracy [6]. YOLO excels in both precision and 

speed [7]. YOLO has significant development leading up to 

YOLOv8. Each new version of the YOLO model brings 

improvements in accuracy, speed, and object detection 

capabilities. YOLOv8 is one of the latest iterations of this 

model, which is likely to continue enhancing its features and 

performance. 

Some studies such as Jia et al. [8] presents a forest fire 

detection strategy using pre-processed datasets and UAV-

captured images, with a focus on YOLOv8 technology. 

YOLOv8 offers the best balance between accuracy and speed. 

The proposed model, based on YOLOv8, accurately identifies 

fires and aids in mitigating forest resource damage. Also in 

Serrano and Bandala [9] which employs deep learning 

algorithms within the YOLO architecture, including YOLOv5, 

YOLOv6, YOLOv7, and YOLOv8, to classify terrain types 

based on aerial images. In simulations, YOLOv8 achieved the 

highest mean average precision (mAP@0.5:0.95) of 89.1 and 

an F1 score of 90.8, outperforming YOLOv5, YOLOv6, and 

YOLOv7. This demonstrates that YOLOv8 is superior in 

terrain classification based on mAP and F1 scores. 

In the previous study [10], several models such as YOLOv4, 

Faster-RCNN, and SSD-512 were employed on the HIT-UAV 

dataset. In that research, SSD-512 appeared to be more 

accurate than other models. YOLOv4 exhibited limitations in 

accurately identifying small objects [11]. In terms of speed, 

YOLO outperformed SSD-512. For real-time applications, 

both accuracy and speed are crucial. This study proposes the 

use of the latest version of YOLO, YOLOv8, for the HIT-

UAV dataset. 

Several parameters, such as epochs, batch size, and image 

size, are defined to test the model. Performance comparison is 

conducted with previous models, namely SSD-512, Faster-

RCNN, YOLOv4, and YOLOv4 tiny. 

2. RELATED WORKS

Suo et al. [10] presents the HIT-UAV dataset, which is a 

high-altitude infrared thermal dataset designed for object 

detection on Unmanned Aerial Vehicles (UAVs). The dataset 

contains 2,898 infrared thermal images extracted from videos 

captured by UAVs in various scenarios. Each image is 

annotated with object instances using bounding boxes of two 

types to handle the challenge of object overlap in aerial images. 

The dataset also includes flight data for each image, such as 

altitude and camera perspective. The authors trained and 

evaluated well-established object detection algorithms on the 

dataset and found that the algorithms performed exceptionally 

well compared to visual light datasets. They believe that the 

HIT-UAV dataset will contribute to various UAV-based 

applications and research. 

Shaniya et al. [12] focuses on using drones and a 

combination of RGB and thermal infrared (TIR) images for 

detecting small objects, particularly humans, from aerial 

perspectives. The researchers train the YOLOv4 object 

detection model on both RGB and TIR datasets captured by 

drones. They demonstrate that YOLOv4 accurately detects 

humans in both types of images. The study highlights the 

potential of this technology for improving surveillance and 

search-and-rescue missions. The YOLOv4 model is enhanced 

with additional layers and methods, achieving faster and more 

accurate detection compared to other models. The research 

utilizes the VisDrone 2021 RGBT dataset, showcasing 

YOLOv4's successful performance in overcoming real-world 

challenges. Overall, this study contributes to saving lives and 

enhancing security measures through the advancement of 

drone-based object detection. 

Perdana et al. [13] used special cameras called thermal 

cameras on drones to find and rescue people during disasters. 

The researchers use a computer program called deep learning 

Convolutional Neural Network (CNN) to help the cameras 

detect people accurately, even in difficult situations. By 

changing the structure of the deep learning network, they 

improve accuracy without needing a lot of computer power. 

They train the model using various datasets and annotate the 

data using an image annotation tool. The study shows that their 

approach can locate victims more effectively and save lives 

during disasters. The research was supported by the Ministry 

of Research, Technology, and Higher Education in Indonesia, 

and references various sources for learning about thermal 

camera detection and deep learning techniques. 

Mantau et al. [14] demonstrates the utilization of the 

advanced object-detection technique known as YOLOv5. This 

method is applied to a dataset comprising visual images 

captured from a UAV (RGB imagery) combined with TIR for 

the purpose of poacher detection. The research employs seven 

distinct training approaches involving both RGB and thermal 

infrared data to identify the most effective model, which will 
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subsequently be deployed on the Jetson Nano module. The 

experimental outcomes reveal that a novel model, employing 

transfer learning with a pre-trained model from the MS COCO 

dataset, enhances the ability of YOLOv5 to detect humans and 

objects within the RGBT image dataset. 

Wang et al. [15] focuses on improving UAV object 

detection, where small objects and resource constraints pose 

challenges. The proposed UAV-YOLOv8 model optimizes 

YOLOv8 for aerial photography scenarios. They introduce 

Wise-IoU v3 for better localization, employs the BiFormer 

attention mechanism, and designs the FFNB feature 

processing module to enhance feature integration. The model 

achieves superior detection performance, with 7.7% higher 

accuracy compared to the baseline model and outperforming 

other mainstream models. While it excels in small object 

detection, future research will address further improvements 

for feature-less objects like bicycles. Wu et al. [16] propose a 

robust and real-time tracking algorithm for infrared drones, 

incorporating a feature attention module and an expansion 

strategy for searching the target. The algorithm is designed to 

track drones in real-time, addressing the challenges of real-

infrared scenes with high efficiency. The proposed algorithm 

is based on the Anti-UAV infrared dataset, which has been 

used to analyze the performance of thermal and infrared (TIR) 

tracking comparisons. The paper aims to track the drone in a 

video, considering the drone's size and texture, as well as the 

presence of buildings, trees, and false similar targets. The 

proposed algorithm is expected to be more efficient than 

existing object tracking algorithms, making it a valuable tool 

for detecting and tracking UAVs in various applications. 

A deep learning-based approach is proposed by Ding et al. 

[17] for detecting and tracking small targets in infrared images. 

The authors enhance the network architecture of the Single 

Shot MultiBox Detector (SSD) specifically for infrared small 

target detection, introducing a modified version called Single 

Shot MultiBox Detector for Small Target (SSD-ST). By 

eliminating low-resolution layers and enhancing high-

resolution layers, the performance of the network is improved. 

To further refine the detection results, the researchers 

introduce an Adaptive Pipeline Filter (APF) that utilizes 

temporal correlation and motion information. This filter 

effectively corrects the detection outcomes. The proposed 

method is evaluated using a dataset comprising 16,177 

infrared images and 30 trajectories. The results demonstrate a 

recall rate exceeding 90% and a precision exceeding 95%. 

These findings indicate that the proposed method outperforms 

traditional approaches in complex scenes, successfully 

accomplishing the task of detecting and tracking infrared small 

targets. The utilization of infrared imaging has gained 

significant attention due to its affordability, resistance to 

interference, and capability to operate in various weather 

conditions. Nonetheless, the detection and tracking of small 

UAV targets in infrared images pose considerable challenges. 

The researchers also address the difficulties associated with 

atmospheric cloud radiation and imaging noise, which lead to 

a relatively low signal-to-noise ratio (SNR). 

 

 

3. METHODS 

 

3.1 Dataset 

 

The HIT-UAV is a public dataset, which gathered from 

numerous videos recorded in public spaces like schools, 

parking lots, streets, and play areas. The dataset includes 2,898 

infrared thermal images captured by unmanned aerial vehicles 

(UAVs) across different settings, such as schools, parking lots, 

roads, playgrounds, and more. The HIT-UAV dataset offers 

dual types of labeled bounding boxes for every object depicted 

in the images: oriented and standard. The oriented bounding 

box addresses the challenge of substantial overlap among 

object instances in aerial images, while the standard bounding 

box facilitates efficient utilization of the dataset. The dataset 

includes five object types: People, Cars, Bicycles, Other 

Vehicles, and DontCare, including a total of 24,899 annotated 

objects. The category labeled DontCare is reserved for objects 

that could not be precisely classified by the annotators. 

Annotation files in XML and JSON formats are provided, 

aligning with the VOC and MS COCO dataset formats, 

respectively. Figure 1 shows the sample of HIT-UAV thermal 

images. The dataset consists of 2,029 images for training, 290 

images for validation, and 579 images for testing. 

 

 
 

Figure 1. Samples of HIT-UAV Thermal Images 

 

3.2 Experimental design 

 

For object detection, the YOLOv8 model is employed in 

multiple versions, including YOLOv8n, YOLOv8s, 

YOLOv8m, YOLOv8l, and YOLOv8x. YOLOv8n, the nano 

version of Yolo, could be a smaller and lighter version of Yolo, 

suitable for resource-constrained environments such as edge 

or IoT devices. YOLOv8s is usually refers to a smaller version 

of the Yolo model, designed for faster processing on less 

powerful hardware. YOLOv8s may sacrifice some accuracy 

for speed. YOLOv8m is likely a mid-sized configuration that 

aims to balance between accuracy and speed. It might be 

suitable for applications where real-time processing is 

necessary, but with a bit more emphasis on accuracy compared 

to smaller versions. YOLOv8l is a larger and more complex 

version of Yolo, likely designed to achieve higher accuracy at 

the cost of increased computational resources. It might be 

suitable for applications where accuracy is critical and 

computational power is less of a constraint. The last version is 

YOLOv8x, which refers to an even larger or more feature-rich 

version of Yolo, potentially with additional capabilities or 

improvements over the large version. These five Yolo versions 

are used to determine which model is suitable for the dataset. 

Figure 2 depicts the YOLOv8 network structure, which 

comprises mostly of a backbone, neck, and head. The 

experiment was conducted utilizing the NVIDIA DGX A100 

Server equipped with a GPU capacity of 40 gigabytes (GB). 

NVIDIA DGX A100 is designed specifically to provide high 

computational performance, especially in deep learning 

workloads. By default, the dataset follows the COCO format, 

where the information for each object is stored within a JSON 

file. To convert this format into YOLO format, the annotations 

are saved in a TXT file, with each image in the dataset having 

a corresponding single text file. 
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The YOLO model was trained using an image size of 

512x512 with 150 epochs and 16 batch size. Table 1 shows the 

parameter value of YOLO model. This research employs a 

larger number of epochs compared to previous study [10] 

because involving more epochs provides the model with more 

opportunities to adapt to patterns and features present in the 

training data. This can enhance the model's ability to 

comprehend more abstract and complex representations. In 

some cases, involving more epochs can aid in addressing 

overfitting issues. By extending the training process, the 

model has more chances to adapt to the training data without 

generating poor generalization on the test data. 

Table 1. Parameter value of YOLOv8 

Parameter Value 

Image size 512 

Epoch 150 

Batch 16 

Figure 2. The architetture of YOLOv8 [15] 

3.3 Performance metrics 

This study evaluates the proposed model using the well-

known metrics, such as precision (P), recall (R), and mean 

average precision (mAP). Recall measures the model's ability 

to detect all true instances of objects in an image. It is 

calculated as the number of true detections divided by the total 

number of actual objects. High recall indicates that the model 

is less likely to miss actual objects but may produce many false 

positives. 

Precision measures how accurate the model's detections are. 

It is calculated as the number of true detections divided by the 

total number of positive detections (both true and false). High 

precision indicates that the model is less likely to provide 

many false positives but may miss some actual objects. mAP 

is a more comprehensive metric used to evaluate the 

performance of object detection by considering precision at 

various levels of recall. It measures how accurately the model 

detects objects at different recall levels. mAP is calculated by 

computing the area under the Precision-Recall curve and then 

taking the average of these areas for all object classes. mAP is 

a useful metric since it provides a better understanding of the 

model's performance across different object classes and 

difficulty levels in the object detection task. Using these three 

metrics give more complete picture of how well the model 

performs in object detection. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2) 

𝑚𝐴𝑃 =
1

𝑁
∑

𝑇𝑃𝑐
𝑇𝑃𝑐 + 𝐹𝑃𝑐

𝑁

𝑐=1

(3) 

where, 𝑇𝑃  denotes the quantity of accurately identified 

positive samples as positive, while 𝐹𝑃 indicates the quantity 

of incorrectly identified negative samples as positive. 𝐹𝑁, on 

the other hand, signifies the count of erroneously predicted 

negative samples as negative when they are actually positive. 

4. RESULTS

In this section, YOLOv5 and YOLOv8 are compared to 

previous researchers [1] who used YOLOv4-tiny, Faster-

RCNN, SSD-512 and YOLOv4 with the same dataset. Table 

2 and Table 3 show the performance results of YOLOv5 and 

YOLOv8 on the testing dataset. In both of these models, x 

model produced a low mAP@0.5 score 0.818 and 0.812, while 

m model was able to achieve a high mAP@0.5 score 0.852 and 

0.855, respectively on YOLOv5 and YOLOv8. 

In YOLOv8, if there is no improvement in performance 

within 50 epochs, the iteration will stop. In general, the 

computation time during the training process of YOLOv8 is 

competitive with YOLOv5. With the same number of epochs, 

which is 150, YOLOv8n has a training time of 24 minutes, 
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which is faster than YOLOv5n, which has a training time of 

25.62 minutes. Conversely, in Yolo v5l, the training time is 

faster at 45.66 minutes compared to YOLOv8l, which has a 

training time of 46.08 minutes. The faster training process is 

beneficial during the development of detection models. In 

some cases, rapid training can lead to the quicker deployment 

of models into production or practical use. This can reduce the 

time between model development and implementation. 

Table 2. The performances of various YOLOv5 models on 

testing dataset 

Model P R mAP@0.5 mAP 
Training 

Time (min) 
Epoch 

YOLOv5n 0.895 0.756 0.833 0.555 25.62 150 

YOLOv5s 0.862 0.801 0.852 0.569 27.12 150 

YOLOv5m 0.877 0.814 0.852 0.565 34.38 150 

YOLOv5l 0.878 0.798 0.847 0.572 45.66 150 

YOLOv5x 0.881 0.78 0.818 0.543 66.66 150 

Table 3. The performances of various YOLOv8 models on 

testing dataset 

Model P R mAP@0.5 mAP 
Training 

Time (min) 
Epoch 

YOLOv8n 0.885 0.721 0.81 0.528 24 150 

YOLOv8s 0.875 0.819 0.853 0.559 23.64 142 

YOLOv8m 0.868 0.828 0.855 0.568 34.8 150 

YOLOv8l 0.872 0.79 0.836 0.562 46.08 150 

YOLOv8x 0.851 0.775 0.812 0.544 50.94 123 

Figure 3. Confusion Matrix on YOLOv8n 

Figure 4. Confusion Matrix on YOLOv8m 

Figure 5. Precision Recall Curve on YOLOv8m 

Figure 6. HIT-UAV thermal images with object detection for 

Car (Purple), Bicycle (Yellow), and Person (Green) 

Table 4. Comparison with the SOTA models on HIT-UAV 

dataset 

Ref Model mAP@0.5 

Suo et al. [10] YOLOv4-tiny 0.504 

Suo et al. [10] Faster-RCNN 0.768 

Suo et al. [10] YOLOv4 0.847 

Suo et al. [10] SSD-512 0.856 

Ours YOLOv5m 0.852 

Ours YOLOv8m 0.855 
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Figure 3 and Figure 4 show the confusion matrices for 

YOLOv8n and YOLOv8m. In YOLOv8n, there are still error 

detections, specifically, the Car object being detected as 

Bicycle. Cars and bicycles can have similar shapes and sizes, 

especially when viewed from a distance or at certain angles. 

YOLO relies on the features it has learned during training, and 

if the differences between these classes are subtle, it may lead 

to confusion. This issue does not occur in YOLOv8m. Based 

on the confusion matrix, YOLO is capable of effectively 

distinguishing between the objects Person, Car, and Bicycle. 

However, there are still many error detections where these 

three objects are mistakenly classified as the Background. 

Thermal images capture heat radiation rather than visible light, 

and this can introduce complexities that differ from traditional 

color images. Objects like cars, persons, and bicycles might 

have limited variability in their thermal signatures, making it 

difficult for YOLO to distinguish them clearly, especially if 

the temperature differences between objects and the 

background are subtle. Figure 5 shows the Precision-Recall 

Curve for YOLOv8m. The results of object detection using 

YOLOv8 can be seen in Figure 6. 

Table 4 presents a comparison with previous publications 

on the same dataset. The mAP@0.5 value for Yolo v8 is better 

compared to YOLOv5 and YOLOv4, although the difference 

is slight. The difference in mAP@0.5 values for YOLOv8 is 

quite significant when compared to YOLOv4-tiny and Faster-

RCNN, which only yield mAP@0.5 values of 0.504 and 0.768, 

respectively. However, when compared to SSD-512, the 

performance of YOLOv8 is still slightly inferior, with a 

difference of only 0.001. 

While the difference is very slight, in some cases, small 

variations in the performance of detection models can impact 

the overall accuracy of the application. For instance, in 

applications that require highly accurate object detection, even 

slight differences can be critical. In the context of security or 

surveillance, minor differences in detection capabilities can 

have serious implications. Errors in detecting specific objects 

may affect the effectiveness of the security system. Small 

differences may be more relevant in situations where resource 

savings (such as computational power or memory) are crucial. 

Models with nearly equivalent performance but greater 

efficiency may be a preferable choice. 

5. CONCLUSION AND FUTURE WORK

The object detection application through UAV at night not 

only requires a fast model but also demands high accuracy. 

YOLO is a model suitable for its real-time processing 

capabilities; however, the accuracy shown in previous 

research is still low. In this study, the use of the latest version 

of YOLO is proposed. In this study, YOLOv5 and YOLOv8 

models are proposed for use with a public dataset called HIT-

UAV. This dataset consists of a collection of thermal images 

with various objects within them, such as Cars, Humans 

(Persons), Bicycles, and Other Vehicles. The experimental 

results show that YOLOv5 and YOLOv8 achieved mAP@0.5 

scores of 0.852 and 0.855, respectively. From the experimental 

results, the performance of YOLOv8 and SSD is slightly 

different. YOLOv8 can be a choice when applied to real-time 

thermal detection applications. Accurate models can enhance 

the UAV's ability to detect objects or obstacles at night, 

enabling safer navigation and more effective obstacle 

avoidance. Accurate models allow UAVs to monitor the 

environment at night, including monitoring forest fires, 

changes in surface temperatures, or detecting air pollution in 

low-light conditions. For future work, it is essential to provide 

an explainable AI (XAI) such as SHAP or LIME to explain the 

results. The use of XAI helps to enhance users' trust in the 

outputs of intelligent system applications. Thus, AI models, 

known for being black box systems, can be avoided. 
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