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The objective of this study was to conduct a comprehensive evaluation of binary 

classification algorithms within data lakes, employing a diverse array of metrics. Binary 

classification algorithms, which categorize inputs into one of two distinct classes, were 

scrutinized to determine their efficacy. The research focused on the evaluation techniques 

applicable to these algorithms. Methods for assessing algorithmic efficiency were 

investigated, including logistic regression, error function, regularization, and ancillary 

training tools within the dataset. A detailed analysis of the parameters pertinent to classifier 

evaluation was performed, encompassing accuracy, confusion matrix, precision, recall, 

decision threshold, F1 score, and the Receiver Operating Characteristic (ROC) curve. A 

critical comparison between the ROC and Precision-Recall (PR) curves was conducted, 

with particular attention to the Area Under the Curve (AUC) metric. The study's 

methodology involved training a classifier on the UCI Machine Learning Repository’s 

Breast Cancer Wisconsin dataset, followed by the calibration of the precision/recall ratio. 

The findings of this study offer an in-depth examination of various evaluation metrics and 

threshold optimization techniques, thereby augmenting the comprehension of binary 

classifier performance. Practitioners are provided with guidance to select suitable metrics 

and thresholds tailored to specific contexts. Furthermore, the study's insights into the 

strengths and limitations of these metrics across heterogeneous datasets promote refined 

practices in machine learning and data analysis, facilitating more strategic model selection 

and deployment. 
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1. INTRODUCTION

Machine learning algorithms have reached a dynamic state 

where their diversity and complexity cater to various 

applications. Deep learning breakthroughs, automated 

machine learning, and a focus on ethical AI are key trends. The 

importance of machine learning in data analysis is undeniable. 

It empowers data-driven decisions by uncovering patterns, 

predicting trends, and enabling personalized experiences. 

From healthcare to finance, these algorithms transform 

industries through automation, optimization, and advanced 

analytics. However, concerns about bias and transparency 

highlight the need for responsible algorithmic development. In 

this evolving landscape, machine learning continues to shape 

data analysis into a potent tool for innovation and insight. 

Machine learning can be divided into 4 types based on 

whether it is conducted with human supervision: 

- supervised learning – is a type of machine learning where

the algorithm learns from labeled training data; 

- unsupervised learning involves training a model on

unlabeled data; 

- semi-supervised learning – is a hybrid approach that

combines elements of both supervised and unsupervised 

learning; 

- reinforcement learning – a type of machine learning where

an agent learns to make a sequence of decisions by interacting 

with an environment. 

Supervised learning differs from other types in that the 

training set contains target values of the algorithm (labels), and 

its main representatives are classification and regression. In 

classification, the goal of the algorithm is to match data to their 

classes. For example, a spam filter classifies messages into two 

classes – spam and non-spam. Classification is a common and 

important task: spam filter, classification, animals, poisonous 

plants, companies worth investing in and not worth investing 

in, and human faces. All of these are important tasks that can 

be performed by people or computers, which, unlike humans, 

do not get tired, and their performance is rapidly increasing 

over time, allowing them to execute more and more 

computationally complex algorithms in a reasonable amount 

of time. It is necessary to somehow evaluate the efficiency of 

such algorithms to know how well they cope with a particular 

task. Methods for evaluating such algorithms are discussed in 

this paper. 

Many modern scientific publications are devoted to the 

topic of machine learning. Cuzzocrea et al. [1] proposed the 

possibility of applying the concept of a data lake to process 

structured, semi-structured or unstructured data from Arctic 

expeditions, depending on the actual needs of the user, which 

will improve and simplify research processes. Machine 
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learning methods are also used in the aviation sector. Sun et al. 

[2] proposed the use of an aviation data lake for aircraft control. 

The results of the study confirmed the effectiveness of this 

method, as it provides timely, context-dependent metrics and 

forecasts. 

Cheng et al. [3] analyzed the operation and architecture of 

Generative Adversarial Networks, and their types, and applied 

them to the MNIST (Modified National Institute of Standards 

and Technology) dataset. The value of this study lies in the 

fact that the authors provided a comprehensive overview of the 

Generative Adversarial Networks models and identified the 

main disadvantages and limitations of the technology. Keerthi 

et al. [4] developed a methodology for recognizing 

handwritten digits based on machine learning to improve the 

accuracy of their identification, which can make banking 

operations easier and more error-free in the future. To 

recognize handwritten digits, Dharia et al. [5] combined a 

convolutional neural network, artificial neural network, and 

deep learning methods. As a result, the accuracy of digit 

recognition was 95%. Pei and Ye [6] used different clustering 

methods to process the MNIST dataset. It was found that the 

accuracy of the MiniBatchKMeans algorithm is about 87%. 

This figure is higher than that of the k-average algorithm. Thus, 

machine learning methods are used in many fields of activity. 

However, these studies did not use logistic regression to 

evaluate the performance of the binary classifier. 

Thus, the research aims to evaluate binary classification 

algorithms, for example, the classifier of digits from the 

MNIST dataset [7] and malignant tumors from the UCI ML 

Breast Cancer Wisconsin (Diagnostic) dataset [8] using the 

logistic regression algorithm using the Python language and 

the sklearn library. The logistic regression method implies a 

statistical technique used for binary classification, where the 

aim is to predict the probability that an instance belongs to a 

particular class based on input features, and the predicted 

probabilities are transformed using the logistic (sigmoid) 

function to make class predictions. 

The purpose of this study was to comprehensively assess the 

performance of a binary classifier by utilizing various metrics. 

Also, the study aimed to analyze the strengths and limitations 

of each metric and determine their applicability in different 

scenarios. The scope of this research encompasses a 

comprehensive assessment of a binary classifier's performance 

through diverse metrics, utilizing MNIST and Breast Cancer 

Wisconsin datasets, while also investigating decision 

threshold adjustment and implications for real-world 

applications. 

 

 

2. MATERIALS AND METHODS 

 

The data were split into stratified training, validation and 

test sets to maintain a balance of classes across sets. For the 

MNIST dataset, the classes were transformed for the binary 

classification task. Each feature was then standardized by 

subtracting the mean and dividing by the standard deviation 

calculated on the training set and applied to all splits. Before 

and after standardization visualizations were created to 

validate the process. For the breast cancer dataset, 

modification of the class labels was not necessary as there 

were already two classes (malignant and benign). 

Logistic regression was used to perform the study. If the 

probability is greater than a certain threshold, for example, 0.5 

(50%), it is a positive class, and less than 0.5 is a negative class. 

The details of the components of the above algorithm are given 

in Table 1. 

The sigmoid function is used to ensure that the model 

outputs �̂� are in the range [0, 1]. This is represented in Figure 

1. In addition, the presented function is differentiated, which 

allows the gradient descent algorithm to work. 

 

Table 1. Logistic regression algorithm descriptive statistics 

 
Parameters Description 

𝑥 = (1, 𝑥1, 𝑥2, 𝑥3 …) 
Data vector, where x1, x2, x3 – the 

values of its features 

𝑤 = (𝑤0, 𝑤1, 𝑤2, 𝑤3) Vector of model parameters 

𝑤0 Bias parameter 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑥)
 
The activation function of the model is 

shown in Figure 1, where its range of 

values=(0.1) 

𝑤 ∗ 𝑥 = 𝑤0 ∗ 1 + 𝑤1 ∗ 𝑥1 +
 … + 𝑤𝑛 ∗ 𝑥𝑛  

Scalar product of w and x 

�̂� = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤 ∗ 𝑥) 

Model output, estimation of the 

probability of x belonging to a positive 

class 

 

 
 

Figure 1. Sigmoid graph 

 

The following parameter is the error function. This is a 

logarithmic error (log loss). It takes values  𝑙𝑜𝑔(у̂)  for the 

positive class (ones) and  𝑙𝑜𝑔(1 − у̂)  for the negative class 

(zeros) (1): 

 

𝐿 = − ∑[𝑦 ∗ 𝑙𝑜𝑔(�̂�) + (1 − 𝑦) ∗ 𝑙𝑜𝑔(1 − �̂�)]

𝑛

1

 (1) 

 

where, y is labelled (1 for a true class and 0 for a false class). 

 

 
 

Figure 2. Logarithmic error 
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Figure 2 shows an example that demonstrates that for a 

negative class, the error decreases if the model’s predictions 

are close to 0, and for a positive class, the error decreases if 

the model’s predictions are close to 1. 

Another technique used to reduce model overfitting is 

regularization. For this purpose, an additional error is added to 

the total error, which penalizes the model for large parameter 

values, causing them to decrease [9]. There are many types of 

regularizations. This paper demonstrates three of them. Also, 

most types of regularizations are sensitive to the scale of data 

features, so the data should be scaled (standardized, 

normalized) before being fed to the algorithm. 

The first step is to consider the ridge regression (Tikhonov 

regularization) (2): 

 

𝐿𝑜𝑠𝑠 = 𝐿𝑔 + 𝛼
1

2
∑ 𝑤𝑖

2

𝑛

𝑖=1

 (2) 

 

where, Lg – main regression error; wi – model parameters.  

Least absolute shrinkage and selection operator (lasso) 

regression. Its primary characterisation is parameter bootleg 

ground wi, less relevant is xi of data vector x (3): 

 

𝐿𝑜𝑠𝑠 = 𝐿𝑔 + 𝛼 ∑|𝑤𝑖|

𝑛

𝑖=1

 (3) 

 

An elastic network is a combination of lasso and ridge 

regression. It has a parameter 𝑟 , that allows to adjust its 

proportion (4): 

 

𝐿𝑜𝑠𝑠 = 𝐿𝑔 + 𝑟𝛼 ∑|𝑤𝑖|

𝑛

𝑖=1

+ (1 − 𝑟)𝛼
1

2
∑ 𝑤𝑖

2

𝑛

𝑖=1

 (4) 

 

SGDClassifier from the sklearn package was used to train 

logical regression in the research. Classifier found for the 

dataset MNIST is presented in Figure 3. 

 

 
 

Figure 3. SGDClassifier from the sklearn package 

 

The choice of datasets aligns with the research’s aim to 

assess the performance of the binary classifier across different 

contexts: digit recognition and medical diagnosis. The MNIST 

dataset represents a more general image classification problem, 

while the Breast Cancer Wisconsin dataset presents a specific 

medical application with implications for healthcare decisions. 

By including both datasets, the research covers a broader 

spectrum of scenarios where binary classifiers are used, 

enhancing the validity and applicability of the findings. The 

found classifier for the UCI ML Breast Cancer Wisconsin 

dataset is shown in Figure 4. 

 

 
 

Figure 4. Classifier for the UCI ML Breast Cancer 

Wisconsin dataset 

For the analysis of the metrics described below, the MNIST 

dataset was chosen [7]. This is 70 thousand black and white 

images of 28×28 pixels representing 10 classes. It consists of 

handwritten numbers from 0 to 9. Figure 5 shows a sample 

from this dataset. 

 

 
 

Figure 5. MNIST dataset selection 

 

This dataset was chosen because its analysis will not distract 

from the main objective of the study – methods of 

classification evaluation. This dataset makes it easier to 

analyses the selected metrics because it is visual. The 

presented dataset is divided into 2 samples – training and test 

data. The training data is used to train the algorithm, and the 

test data is used to evaluate the algorithm on real data. To 

select models, a separate validation sample must be created, 

because if the test sample is used for this purpose, the model 

will overlearn it and the final estimate will be with a large error 

[10]. To create a validation dataset, it is necessary to reduce 

the error, which is done using the cross-validation technique. 

It allows to evaluate the model without reducing the training 

and test datasets. To do this, the training set is divided into 

partsk, then the model is trained on set-1 and tested on 1. As a 

result, the estimates that can be averaged to obtain the final 

model estimate, are acquired (Figure 6). 

 

 
 

Figure 6. Cross-validation visualization 

 

Using this technique, the best model can be selected and 

then trained on the full training set, and the final evaluation 

can be performed on the test set. To divide the dataset into 

training and test data (80/20), the stratified sampling technique 

was used – when the proportions of data in classes in the 

original dataset and its parts are the same. This is to avoid a 

situation where the training set contains almost no classes at 

all, while the test set contains almost all its representatives. In 

this case, the algorithm will not be able to train properly. In 

addition, the algorithm should work well on real data, so for 

its training, and especially for correct evaluation, a set with a 

distribution that is similar to the real one is needed. Therefore, 

the proportions of classes should be similar to the initial set, 

which is a sample from the real distribution. Otherwise, the 

model may not perform well on real data (Figure 7). 
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Figure 7. Data proportions in sample classes 

 

Since the metrics under study are intended to evaluate the 

effectiveness of binary classification, the dataset is reclassified 

into 2 classes – units and non-units. The proportions of data 

after the redistribution of classes: 11.25% of units, and 88.75% 

of other numbers. Before feeding the data into the algorithm, 

it should also be standardized so that the error function is not 

lengthened along a feature compared to other features. This 

will slow down the model convergence. To do this, the average 

value of the images should be subtracted from the images and 

divided by the standard deviation. These indicators are 

calculated for the entire training set, in all pixels of the images. 

Then the same metrics are used to standardize the test set, to 

ensure that the algorithm’s performance on real data is as 

accurate as possible, and for the state of the real data (Figure 

8). 

 

 
 

Figure 8. Dataset data visualization MNIST digits: a) before 

standardization; b) after standardization 

 

To compare the performance of the algorithm and analyses 

the studied metrics, an experiment is conducted on another 

dataset – UCI ML Breast Cancer Wisconsin (Diagnostic) 

dataset [8]. It contains 569 vectors with 30 numerical features 

and corresponding class labels (0 – malignant, 1 – benign). 

Each of them characterizes the cell nuclei present in the breast 

image. Figure 9 shows a fragment of the studied dataset. 

To split the training and test data, a stratified sample by 

class was used. The principle of division is described above 

when dividing the MNIST digits dataset. The division resulted 

in two classes, where the amount of data for each class is: 

Class 0 – 37%, Class 1 – 63% (where 0 is the proportion of 

malignant cells and 1 – benign cells). The proportions of the 

two classes are shown in Figures 10 and 11. 

To scale the dataset, standardization by each feature was 

used. Two features were used to visualize the standardization 

(Figure 12). 

For binary classification tasks, classes are divided into two 

parts: Positive and Negative (units and non-units, respectively). 

All predictions are divided into 4 parts: 

1. True Positive (TP) – correct predictions of the Positive 

class (one is one). 

2. False Positive (FP) – incorrect predictions of the Positive 

class (not one is one). 

3. True Negative (TN) – correct predictions of the Negative 

class (not one is not one). 

4. False Negative (FN) – incorrect predictions of the 

Negative class (one is not one). 

 

 
 

Figure 9. UCI ML Breast Cancer Wisconsin (Diagnostic) 

dataset fragment 

 

 
 

Figure 10. UCI ML Breast Cancer Wisconsin (Diagnostic) 

dataset class ratio 

 

 
 

Figure 11. Data proportions in sample classes of the UCI ML 

Breast Cancer Wisconsin (Diagnostic) dataset 

 

 
 

Figure 12. Visualization of UCI ML Breast Cancer 

Wisconsin (Diagnostic) dataset data: a) before 

standardization; b) after standardization 
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3. RESULTS 

 

The classification methods were evaluated using a 

combination of accuracy, confusion matrices, precision, recall, 

F1 score, PR curves, ROC curves, PR and ROC threshold 

curves, and AUC. Cross-validation was utilized to create 

multiple train-test splits of the data and average the metrics 

across folds to obtain more reliable estimates. The metrics 

were first evaluated on the validation sets during model 

selection, and final performance was reported on the held-out 

test sets. Plotting PR and ROC curves showed the tradeoff 

between metrics like precision/recall and TPR/FPR at different 

threshold values and allowed selecting an optimal threshold. 

By thoroughly evaluating the methods using these varied 

metrics on train/validation/test splits of the data, their 

performance could be robustly assessed and optimized. 

The class ratio in the UCI ML dataset Breast Cancer 

Wisconsin (Diagnostic): 11.25% of units, and 88.75% of other 

numbers. And if the algorithm always classifies a number as 

not a unit, it is almost 89% accuracy. That is, it is not suitable 

for evaluating datasets with different proportions of classes (5): 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (5) 

 

Using cross-validation on 5 blocks and averaging the model 

estimates on them, the accuracy values were obtained – 0.988. 

The Confusion matrix evaluation method describes the 

algorithm’s work in more detail, allowing to find what 

mistakes the model makes [11]. It shows how many times class 

element A was selected as class B (Figure 13). 

 

 
 

Figure 13. Confusion matrix for the data under study 

 

In Figure 13, the row index of the Confusion matrix 

indicates the true class, and the column index indicates the 

predicted class. That is: 

• 49477 – 0 class, the model predicted as 0 – TN; 

• 221 – 0 class, the model predicted as 1 – FN; 

• 385 – 1 class, the model predicted as 0 – FP; 

• 5917 – 1 class, the model predicted as 1 – TP. 

This shows that the algorithm’s performance is not as 

perfect as the accuracy calculations show. It is quite good at 

predicting class 0, but worse at predicting class 1. A confusion 

matrix provides a lot of information about the algorithm’s 

performance, but sometimes a more concise metric that is easy 

to graph is needed. Therefore, Precise will be used, which is 

the ratio of the number of correct predictions of the Positive 

class to the total number of predictions that the algorithm 

considers to be Positive. This metric indicates how often 

incorrect predictions occur among the predictions of the 

Positive class (6): 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑒 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (6) 

 

The calculation of precise for the covariance matrix shown 

in Figure 13 is (7): precise=5917/(5917+385)=0.94. But this 

metric is not enough, because it can be maximised if the 

algorithm simply learns to predict only 1 correct element of 

the Positive class and assigns all the others to the Negative 

class, i.e., precise=1/(1+0)=1. Therefore, it is necessary to 

have an additional evaluation that gives an understanding of 

how many elements of the Positive class are correctly 

predicted. To do this, it is necessary to use the recall metric – 

the proportion of Positive class images that the algorithm 

correctly recognised following all Positive class images (7): 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (7) 

 

The recall calculation for the covariance matrix shown in 

Figure 13 is as follows: recall=5917/(5917+221)=0.96. A 

recall is also called Sensitivity or True Positive Rate (TPR). 

Using these metrics, the algorithm can be tailored to a specific 

task. For example, the task is to classify sick people: sick – 

positive class, healthy – negative class. For this task, 

completeness is more important than accuracy, because if 

there is a healthy person among the predicted patients, it is not 

so bad. After all, they can be retested, but if not, all patients 

are classified as sick, it is an issue. Because the patient will not 

receive timely treatment and may infect others. 

Another example is the classification of safe substances. A 

positive class is a safe substance, and a negative class is a 

hazardous substance. Accuracy is more important here 

because if not all hazardous substances are classified as safe, 

this will lead to minimal negative consequences. However, if 

a hazardous substance is classified as safe, the consequences 

can be dire [12]. The quality of the classification also depends 

on which class is chosen as positive and which is negative. 

That is, if in the example of classifying sick people, a healthy 

person is a positive class, and a sick person is a negative class, 

then the data that accurately reflects the class will be 

interesting, not the completeness of the class. 

Another equally important metric is the Decision Threshold. 

It determines which class the predictions belong to. If the 

prediction value is higher than the threshold, it belongs to the 

Positive class, and if it is lower, it belongs to the Negative class. 

It can be interpreted as follows: if the probability that this 

image belongs to the Positive class is greater than the threshold, 

then it is assigned to the Positive class, otherwise – to the 

Negative class. It is inconvenient to determine the �̂� threshold 

by the output of the algorithm since most predictions are either 

close to 0 or 1. Therefore, the threshold is estimated by the 

sigmoid argument (w*x). To ensure the desired ratio of 

precision and recall, a threshold must be selected. For this 

purpose, the Precision-Recall-threshold curve (PRtc) is used 

[13]. This graph shows precision and recalls as a function of 

the decision threshold. Figure 14 shows that as the threshold 

increases, precision increases and recall decreases, and vice 

versa. 

 

 
 

Figure 14. PR threshold curve graph presentation 
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For a better comparison of precision and threshold, they are 

also plotted on a separate graph – The Precise-Recall curve 

(Figure 15). 

 

 
 

Figure 15. Representation of the PR curve 

 

The next step is to determine the threshold value that gives 

the best accuracy-to-completeness ratio for a given task [14]. 

Figure 15 shows the best classifier that achieved maximum 

completeness with maximum accuracy. To determine the 

dependence of accuracy and completeness on the decision 

threshold, the scalar productx*w should be calculated for a 

sample of images from the MNIST digits dataset. To do this, 

5 images with FP and 5 with TP features should be selected 

(Figure 16). 

 

 
 

Figure 16. Representation of the scalar product of a value 

x*w for 5 images with FP and 5 with TP features 

 

As such, the larger the value x*w, the closer the predicted 

class will be to 1, and the smaller the value will be to 0. Figure 

16 shows that the algorithm evaluates some values from the 

zero class as if they were closer to the one class, taking them 

for real ones. The values are sorted based on their scores 

(Table 2). 

 

Table 2. Calculation of sorted labels and scores of MNIST digits dataset images 

 
Tag and Rate Images 

True tag 0 8 1 1 1 8 8 1 8 1 

Mark 0.26 0.69 1.021 2.47 3.87 4.038 4.54 5.53 5.66 6.96 

 

Now, the accuracy and completeness values will depend on 

the threshold set. If the threshold is set to 6, then the accuracy 

will be maximum: precise=TP/(TP+FP)=1/(1+0)=1. However, 

the completeness will be low, because along with non-units, 

units that the algorithm cannot recognise well will be 

eliminated: recall=TP/(TP+FN)=1/(1+4)=0.2. At the same 

time, if the threshold is reduced (to 0.9), the completeness will 

increase, because all units will be captured in the positive class. 

However, the accuracy will decrease, because, among the units 

in the positive class, there will be non-units that the algorithm 

cannot distinguish from units: 

precise=TP/(TP+FP)=5/(5+3)=5/8=0.625 and 

recall=TP/(TP+FN) =5/(5+0)=1. Thus, by decreasing one 

value, it is necessary to increase the other and vice versa. 

Therefore, by changing the threshold, it is impossible to 

increase 2 values at the same time. To increase recall and 

precision at the same time, a better classifier model that will 

give the correct score for images of different classes can be 

made. Another way is to increase the amount of training data 

so that the model can train well, or to clean the data if it is 

noisy [15]. The steps to be taken for this will depend on the 

purpose of the study. 

The next step is to apply the f1 score metric. It combines 

accuracy and completeness, which determines the overall 

assessment of data classification. The geometric mean is used 

for this purpose [16]. Unlike the arithmetic average, this value 

shows a high score when both accuracy and completeness are 

high. The use of this metric is useful when accuracy and 

completeness are of equal importance for a particular task (8): 

 

𝑓1 = 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑒 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙/(𝑝𝑟𝑒𝑐𝑖𝑠𝑒 + 𝑟𝑒𝑐𝑎𝑙𝑙) (8) 

 

Calculating the f1 score for precision and recall, the 

example of calculations given above is as follows: 

f1=2*0.94*0.96/(0.94+0.96)=0.9498. Figure 17 shows the f1 

score and mean as a function of precision and recall, both of 

which are equal to 0.5. 

 

 
 

Figure 17. a) Presentation of f1 score as a function of precise 

with a static value of recall=0.5; b) Presentation of mean as a 

function of precise with a static value of recall=0.5 

 

Figure 17 shows the f1 score and mean as a function, as the 

graph would look the same in the reverse. From Figure 17, the 

f1 score is growing more slowly than the mean function. The 

next metric to study is specificity. It refers to the proportion of 

correct predictions of the negative class to all predictions that 

are classified as negative class. It is also called the True 

Negative Rate (TNR) (9): 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑁) (9) 

 

Therefore, False Negative Rate (FNR) is determined by the 

formula (10): 

 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) = 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 
= 𝐹𝑁/(𝐹𝑁 + 𝑇𝑁) 

(10) 
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The calculation of the specificity and FNR for the 

covariance matrix shown in Figure 13 is as 

follows:  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
49477

(49477+221)
= 0.995  and False 

Negative Rate (FNR)=1-specificity=1-0.995=0.005. 

Receiver Operating Characteristic (ROC) is a curve similar 

to the PR curve, but it shows a comparison of TPR (recall) and 

FNR (1-specificity) on a graph. Figure 18 shows the ROC 

curve for the trained model in orange, and the ROC curve for 

the model that classifies the data with a probability of ½ for 

each class in the black dashed line. Figure 18 also shows that 

as TPR (completeness) increases, FPR also increases. 

 

 
 

Figure 18. Representation of the ROC curve 

 

Therefore, the ROC curve of an effective classifier should 

stretch as far to the left as possible to have maximum 

completeness at zero FPR [17]. Figure 19 shows a drop in TPR 

at higher threshold values. This is determined by the threshold 

value exceeding the scores of the units, so they fall into the 

non-unit class, reducing the TPR. 

 

 
 

Figure 19. Representation of the ROC threshold curve 

 

Figure 19 also shows a sharp decrease in the FPR as the 

threshold decreases. This is determined by the model generally 

giving lower scores to non-units than to units. If the threshold 

is increased sufficiently, then most non-units will fall into the 

non-unit class, while units will remain in the unit class (e.g., 

with a proxy of 0.0). The ROC curve is used when the positive 

class has a larger proportion of data than the negative class. Or 

when it is more important that the algorithm does not classify 

a positive class as negative. PR is used when it is more 

important that the algorithm does not classify a negative class 

as positive [18]. Drawing an analogy with the example of 

disease tests, then: A positive class is sick, and a negative class 

is healthy. In this case, the ROC curve graph will be more 

useful as it is more important not to classify patients as healthy. 

If the positive class is healthy, and the negative class is sick, 

then the PR curve will be more interesting. Area Under Curve 

(AUC) is another metric for comparing classifiers. It measures 

the area under the curve. The most efficient classifier will have 

an area under the ROC curve (ROC AUC) close to 1, and a 

random classifier (probability of classes is equal) will have an 

area under the curve of 0.5 (Figure 20). 

 

 
 

Figure 20. Presentation of the AUC metric 

 

It can also be compared by the area under the PR curve (PR 

AUC). Classifiers are compared by the area under the curve 

that is best suited for a particular task. Table 3 groups all the 

metrics presented in this study. Each metric is presented with 

positive and negative aspects of its application. 

Next, the evaluation of the UCI ML Breast Cancer 

Wisconsin (Diagnostic) dataset classifier is described, and the 

decision threshold is set to achieve the desired precision/recall 

ratio. To begin with, the classifier is evaluated using the 

accuracy metric, using the cross-validation technique, and 

averaging the scores for all blocks [19]. As a result, the 

accuracy is 0.86. Since the dataset is skewed (different 

proportions of data in the classes), the inaccuracy matrix (built 

using cross-validation) should be used to better evaluate the 

algorithm (Figure 21). 

 

 
 

Figure 21. Calculation of the inaccuracy matrix 

 

The results in Figure 21 show that the algorithm makes 

fewer errors. It does not classify the second class as the first 

class (healthy as sick) because 10/(10+275)<11/(11+159). 

This behavior is expected since the amount of training data for 

the second class is larger. It is necessary to measure the 

precision and recall metrics using cross-validation: 

precision=0.91, recall=0.94. For this task, it is more important 

not to classify patients as healthy, i.e., high accuracy is the 

priority. To achieve it, the decision threshold should be 

changed. The results show that the positive class has a higher 

ratio and is more important for the algorithm not to classify the 

negative class as positive (sick to healthy). To do this, a PR 

curve should be plotted to select the best precision/recall ratio, 

and a PR curve with a decision threshold to select the threshold 

to achieve the posterior ratio (Figure 22). 
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Table 3. General table of the studied metrics 

 
Metrics Advantages Disadvantages 

Accuracy 
A brief assessment that gives a general 

understanding of the algorithm 
Not detailed, it is not clear on which classes the algorithm works 

better/worse 
Confusion 

matrix 
A detailed description of the algorithm 

Sometimes a more concise assessment is more useful, for example 

for visualisation 

Precise 
A brief assessment that gives an understanding of 

how often the classifier assigns a negative class to a 

positive class 

Does not provide an understanding of the total number of elements of 

a positive class 

Recall 
A brief assessment for an understanding of the total 

number of elements of a positive class 
Does not give an understanding of how often the classifier assigns a 

negative class to a positive class 

f1 score 

The concise score, which combines precision and 

recall, gives a general understanding of the 

classifier’s performance and is harder to maximise 

than the average 

Sometimes it is necessary to ensure a certain precision/recall ratio, so 

the overall score is less important 

PR curve 

Allows to select the desired precision/recall ratio 

Works best when FPs are more important than FNs, 

or the negative class has a larger proportion than the 

positive class 

It does not allow to select the decision threshold to achieve the 

selected ratio. The classifier performs poorly when FN features are 

more important than FP, and when the positive class has a larger 

proportion than the negative class 
PR – 

threshold 

curve 

Allows to select the decision threshold to achieve 

the selected precise/recall ratio 
Sometimes it’s harder to find the right precision/recall ratio 

ROC curve 

Allows to select the desired TPR/FPR ratio 

Works best when FN features are more important 

than FP, or the positive class has a larger proportion 

than the negative class 

Does not allow to select the decision threshold to achieve the 

selected ratio 

The classifier scores worse when FP is more important than FN, and 

when the negative class has a larger proportion than the positive class 
ROC – 

threshold 

curve 

Allows to select the decision threshold to achieve 

the selected TPR/FPR ratio 
Sometimes it is harder to find the right TPR/FPR ratio 

AUC 
Provides a brief overall evaluation of the classifier’s 

performance, separate for PR, and ROC 
Does not describe in detail the operation of the classifier, does not 

give an estimate of the TPR/FPR or precise/recall ratios 

 

 
 

Figure 22. Presented: a) PR – decision threshold curve; b) 

PR curve 

 

Figure 22b shows that to achieve approximately 97% 

accuracy with 85% completeness, i.e., 97% of patients will be 

classified as sick, but also 15% of healthy patients will be 

classified as sick. Therefore, the results in Figure 22a can be 

used to set the desired decision threshold. By setting the 

decision threshold to 5, an accuracy of 0.984 was achieved, 

with a completeness of 0.873. The threshold was set using the 

validation datasets obtained through cross-validation. The 

next step is to train the model on the full training data set. To 

do this, set the threshold to 5 and evaluate the accuracy and 

completeness. It is not possible to adjust the threshold to the 

test set, as the algorithm will be retrained on the test data. 

Therefore, the classifier’s score on the test data will not 

correspond to its performance on real data. After doing this, 

the precision is 1 and the recall is 0.916. The better result on 

the test data is explained by the increase in the training dataset 

since there is no need to allocate part of it to the validation data 

set [20]. The results obtained are correct for the study and 

confirm the need to use the above metrics for a deeper analysis 

of the classifier’s behavior and its impact on it. Since without 

their use to change the decision threshold, the algorithm will 

work worse for the task (precision=0.91, recall=0.94). After 

changing the threshold – (precision=0.984, recall=0.873). 

The PR curve was selected to analyses the classifier. The 

precision and recall metrics were used for a detailed analysis 

of the classifier performance. A PR-threshold curve was 

constructed to select the optimal value of the decision 

threshold to achieve the desired precise/recall ratio for the task 

of classifying malignant tumors. For the task at hand, it is more 

important that the algorithm does not classify patients as 

healthy. To do this, it is necessary to select a decision threshold 

that will ensure maximum precision with an acceptable recall. 

Using the PR curve and the PR-threshold curve, a threshold of 

5 is chosen, which allowed to achieve 100% accuracy with 

91% completeness and an f1 score of 95.6% on the test data. 

Some notable unexpected results were the high accuracy on 

MNIST but lower precision than recall, indicating false 

positive bias, and the lower optimal threshold for the cancer 

dataset, likely due to class imbalance. Additionally, more 

overfitting was observed from validation to test performance 

than typical. These surprising trends point to model limitations 

like class imbalance bias, insufficient regularization, and 

dataset differences. 

The analysis and evaluation of classification metrics on the 

digit and cancer datasets demonstrates that no single metric 

fully captures model performance. Rather, metrics like 

precision, recall, ROC curves, etc. each provide unique 

insights that allow a deeper understanding of the tradeoffs and 

behavior of a model. The results highlight the importance of 

choosing appropriate metrics based on the use case priorities, 

whether that be optimizing for precision versus recall, or false 

positives versus false negatives. Thoughtfully evaluating 

models using train/validation/test splits, cross-validation, and 

tailored metrics provides a rigorous framework for assessing, 

selecting, and tuning optimal classification models for the 

problem at hand. 
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4. DISCUSSION 

 

Following Santoso et al. [21], binary classification is the 

most challenging task in machine learning. The authors 

propose to use genetic programming instead of classical 

regression and artificial neural network. As a result of the 

experiment, it was noted that genetic programming has a high 

data processing speed, and the average accuracy is 

approximately 95%. Kini and Thrampoulidis [22] evaluated 

the classification error of gradient descent for the logistic and 

Gaussian mixture models. The researchers determined the 

dependence of the transition threshold and global minimum of 

the curve on the loss function, learning model, and sample size. 

The error of gradient descent with logistic losses undergoes a 

double descent, which has been proven. Moreover, the double 

descent depends on both the size of the model and the training 

epoch [23-25]. Deng et al. [26] studied the phenomenon of 

double descent and developed a logistic regression model 

based on gradient descent with logistic losses. Using Gauss’s 

minimum-minimum theorem, the authors characterized 

support vector machine solutions. Curves characterizing the 

classification error at different values of the phase transition 

threshold were obtained [27, 28]. Similar to the study [21, 22, 

26], the current evaluation examined logistic regression 

models and accuracy metrics. However, more advanced 

classifiers like Santoso’s et al. [21] genetic programming 

achieved higher accuracy, exposing limitations of my basic 

methodology. 

Dokeroglu et al. [29] proposed a multi-objective algorithm, 

Harris’ Hawks Optimisation, for solving binary classification 

problems. For this purpose, a new discrete perching and 

besieging learning operator was used. The accuracy of the 

prediction of the selected features was calculated using the 

methods of extreme learning machines, logistic regression, 

decision trees and support vector machines. To test the 

effectiveness of this algorithm, experiments were conducted 

on the benchmark datasets of the University of California, 

Irvine, and the coronavirus disease. Following the results, 

Harris’ Hawks Optimisation has higher accuracy than classical 

algorithms. Zhao et al. [30] developed a binary classification 

model of a quantum neural network based on an improved 

Grover algorithm on partial diffusion. The Younes algorithm 

was used to perform a quantum search using the local diffusion 

operator. According to experimental data, this model has a 

high level of accuracy [31, 32]. Adopting modern optimization 

and modeling methods could thus improve the author results. 

The use of machine learning methods in biomedical 

research is discussed in Klen et al. [33]. The authors proposed 

an algorithm called “probabilistic contrasts”. This is a binary 

classifier that uses mixed and logarithmic models for decision-

making [34-36]. This algorithm was compared with twelve 

other approaches using simulated and three real-world data 

sets. As it turned out, the probabilistic contrasts method 

demonstrated high accuracy on simulated data, but the 

performance on real data sets was lower. Nevertheless, the 

reliability of the proposed algorithm is higher compared to 

others. Pirouz et al. [37] applied binary classification, neural 

network, and regression analysis to identify confirmed 

COVID-19 cases. They developed a binary classification 

model based on a neural network with a group data mining 

algorithm. The input dataset included the following factors: 

minimum, maximum, and average air temperature, relative 

humidity, wind speed, and population density. The output 

dataset includes the number of confirmed cases of coronavirus 

disease within thirty days. The trend analysis was conducted 

in five provinces of China: Guangdong, Zhejiang, Henan, 

Hubei, and Hunan. The study revealed the following: the 

developed algorithm has a high forecasting accuracy, and this 

indicator was tested based on a dataset from Wuhan. The 

number of confirmed cases is most affected by relative 

humidity and maximum air temperature per day. The relative 

humidity of approximately 78% in the study had a positive 

impact on the indicators, while the maximum temperature of 

15.4℃ had a negative impact. 

To carry out high-quality monitoring of the population’s 

health, it is important to develop an effective intelligent 

healthcare system [38, 39]. Medical datasets play an important 

role in this process. Many existing datasets are unbalanced, 

making it difficult to train classifiers [40]. Subsequently, this 

leads to a decrease in reliability, accuracy, misclassification. 

Kumar et al. [41] evaluated the performance of logistic 

regression, artificial neural network, k-nearest neighbour, 

naive Bayes classifier, decision tree, support vector machine, 

and seven balancing methods on imbalanced medical datasets. 

The study found that there is no universal balancing method 

that can provide high accuracy for any dataset. For example, 

the k-nearest neighbour method proved to be the most suitable 

for recognising liver diseases. Also, the accuracy of this 

method in detecting coronary heart disease is 92.2%, and when 

using logistic regression, this value increased to 99.2%. For 

the diabetes dataset, the k-nearest neighbour method proved to 

be the most effective, with an accuracy of about 96.2%. The 

author’s lack of preprocessing and imbalance mitigation likely 

degraded my evaluation versus these leading practices. 

Chicco and Jurman [42] propose to use the Matthews 

correlation coefficient to increase the information content and 

veracity when evaluating binary classifications. The study 

described a task consisting of two classes: n-positive and n-

negative. The model predicts the class of each data sample by 

assigning a positive or negative label to each. At the end of the 

procedure, the sample falls into one of four categories: true 

positive, true negative, false negative, and false positive, 

which was also done in this article. Analyzing such a large 

amount of data takes a long time, so it is suggested to use 

statistical indicators. Using the Matthews correlation 

coefficient, it becomes possible to consider the imbalance of 

the data set and class substitution [43-45]. In this case, this 

criterion has demonstrated high accuracy of forecasts in all 

four categories [46]. 

The use of the Sugeno integral in the context of machine 

learning is highlighted in the study by Abbaszadeh and 

Hullermeier [47]. The authors consider a binary classification 

method using the Sugeno integral as an aggregation function 

that combines local estimates of a sample with different 

features into one overall estimate. This approach is suitable for 

learning from ordinal data [48]. An algorithm based on linear 

programming was developed that converts the original feature 

values into local estimates. To control the flexibility of the 

classifier and improve the retraining process, this algorithm 

was generalized to k-maximum capacity, where k is the 

parameter to be trained [49]. The study compares the Sugeno 

classifier with other types. Given the prediction accuracy, this 

algorithm is competitive. However, it has limited performance 

in comparison with more powerful approaches, such as the 

Shoke integral. 

Maheshwari et al. [50] applied a variational quantum 

classifier for binary classification on three datasets: synthetic, 

public, and private. Amplitude and basis coding methods were 
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used, which had a positive impact on the prediction speed of 

the datasets. The performance of the variational quantum 

classifier was different for the three datasets: 68.7%, 71%, and 

75%, and the values of the amplitude coding of the variational 

quantum classifier were 67.3%, 74.5%, and 98%. The 

developed model was compared with the state-of-the-art 

models, which revealed that the model of the variational 

quantum classifier outperformed the state-of-the-art analogues 

[51-53]. Thus, this study did not consider the impact of 

artificial intelligence and correlation coefficients on 

improving the accuracy of the binary classifier. However, 

many existing metrics have been studied, and their advantages 

and disadvantages have been identified. The use of these 

advanced methods described in this research provided a deeper 

understanding of the topic. 

Limitations like small dataset size, lack of model and 

hyperparameter optimization, class imbalance, limited feature 

engineering, and oversimplified simulations using only two 

datasets and binary classification mean the results may not 

fully generalize. Expanding the evaluation to larger and more 

diverse real-world datasets, optimized models, multi-class 

problems, and more complex use cases could provide more 

robust guidelines for rigorous classification evaluation and 

tuning. The limited scope means performance on real 

applications may differ from these initial findings. 

 

 

5. CONCLUSIONS 

 

Using the studied metrics, the performance of the binary 

classifier was evaluated in detail. Each of them has its 

advantages and disadvantages. Therefore, it is necessary to use 

certain metrics depending on the task and the purpose of the 

evaluation. The UCI ML Breast Cancer Wisconsin 

(Diagnostic) dataset was evaluated, and the decision threshold 

for achieving the required precise/recall ratio was established. 

These metrics were measured using cross-validation. Within 

this dataset, it was necessary to change the decision threshold, 

as well as to build a PR curve to select the most optimal 

precise/recall ratio, and a PR-decision threshold curve to select 

the threshold to achieve the desired ratio. Using these curves, 

a threshold of 5 was chosen, at which the accuracy reached 

100% with completeness of 91%, and the f1 score was 95.6% 

on the test data. 

This study demonstrated a rigorous framework for holistic 

classification model evaluation using a variety of metrics 

beyond basic accuracy, established guidelines for metric 

selection based on use case factors, showcased optimization of 

precision-recall tradeoffs by tuning decision thresholds, and 

provided practical examples of metric analysis on image and 

tabular datasets. The key contributions emphasize the need for 

confusion matrices, PR/ROC curves, cross-validation, and 

other techniques to thoroughly assess model limitations and 

lay groundwork for improving optimization, preprocessing, 

and tuning in future work. 

This research provides guidelines for optimizing 

classification models on real-world tasks through robust 

evaluation techniques, threshold tuning to balance metric 

tradeoffs, and identifying areas like class imbalance to 

improve performance. Suggested future work involves 

expanding the evaluation to larger real-world datasets using 

advanced classifiers, implementing imbalance mitigation, 

optimization, feature engineering, new metrics, visualizations, 

and standardized frameworks. This broader benchmarking is 

key for developing robust and generalizable practices for 

optimizing, interpreting, and trusting classification models on 

practical applications. 
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