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This study aims to develop a new cost effectiveness analysis framework in the context of 

safety instrumented systems (SIS) design and operation. The primary objective is to 

achieve an optimal equilibrium among safety integrity, operational integrity, and lifecycle 

cost of SIS. It is essential to note that these objectives may often be in conflict; for 

instance, enhancing safety integrity could potentially diminish operational integrity and 

escalate costs. Achieving this balance is crucial to ensure that the risk level being 

addressed aligns precisely with the desired objectives while minimizing any adverse 

effects. The novelty of this paper lies in the refined formulation of a multi-objective 

optimization problem and the application of a recently developed swarm-based Manta-

Ray Foraging Optimization (MRFO) algorithm. The effectiveness of this approach is 

demonstrated through a typical SIS design challenge, which entails satisfying specific 

measures in terms of Safety Integrity Level (SIL), spurious trip activation rate, and 

lifecycle cost. These measures depend on variables such as the number and voting scheme 

of components, their types, and the intervals for potential proof tests. For validation and 

comparison, the problem was initially tackled using a conventional approach based on 

genetic algorithms. Subsequently, the MRFO algorithm was employed, yielding highly 

satisfactory results and confirming its proficiency in resolving real-world SIS 

optimization challenges. Notably, the MRFO algorithm produced a greater number of 

solutions compared to the genetic algorithm approach. This increase in solution options 

is advantageous, offering decision-makers a broader array of choices for optimal system 

design. This study contributes significantly to the field of SIS design, presenting an 

innovative, algorithm-driven approach to balancing safety, operational integrity, and cost 

in system development. It also contributes to understanding the life cycle costs of security 

barriers in general. 
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1. INTRODUCTION

The advent of significant technological and industrial 

advancements has been accompanied by the occurrence of 

major accidents, such as those in Seveso, Bhopal, and Piper 

Alpha. These incidents have underscored the necessity for 

comprehensive frameworks dedicated to the effective 

management of associated risks, encompassing a diverse array 

of processes, tools, and methodologies. Central to the 

protection of hazardous installations is the implementation of 

safety barriers, among which SIS is pivotal. SIS plays an 

instrumental role in detecting abnormal conditions, such as 

high pressure or gas leakages, and autonomously transitioning 

the equipment or installation to a safe state, such as process 

shutdown, thereby mitigating the escalation of process 

deviations into severe consequences with minimal or no 

human intervention. The criticality of SIS in ensuring safety is 

highlighted by incidents like the Buncefield disaster, 

predominantly attributed to the failure of an automatic 

overfilling system. This underscores the imperative for a 

robust framework to guide the effective design and operation 

of SIS, commensurate with the level of risk they are intended 

to mitigate. This necessity initially led to the development of 

the IEC 61508 functional safety generic standard [1], 

subsequently paving the way for sector-specific standards such 

as IEC 61511 for the process industry [2]. These standards 

delineate the requirements essential for ensuring the 

proficiency of SIS in executing their designated safety 
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functions. 

Designing a SIS that efficiently performs its risk-reducing 

functions necessitates the consideration of numerous factors. 

These factors include the behavior of the SIS under various 

conditions, as well as the requirements of the system being 

monitored and its environment. Beyond ensuring safety, the 

design process must also address potential operational 

disruptions that could arise from an unexpected activation of 

the SIS. Therefore, it is essential to strike a balance between 

the SIS's ability to ensure the safety of the protected equipment 

(referred to as safety integrity) and its capacity to operate 

without impeding normal functioning (operational integrity). 

This balance must be achieved at the lowest possible cost. 

Attaining this equilibrium is feasible through the application 

of cost-effectiveness analysis. This approach incorporates a 

lifecycle cost (LCC) model, which delineates the significant 

costs associated with the system's lifecycle, from design to 

decommissioning. The LCC model serves as a crucial tool in 

understanding and minimizing the expenses entailed in 

maintaining the SIS's functionality and integrity throughout its 

operational life. 

The design and optimization of Safety Instrumented 

Systems (SIS) have garnered significant interest within the 

field. For instance, Torres-Echeverria [3] introduced two novel 

techniques for optimizing SIS, with a particular focus on 

testing policies. Additionally, Torres-Echeverria et al. [4] 

delved into the multi-objective optimization of proof testing 

policies using a genetic algorithm (GA). This approach 

quantitatively integrates the average probability of failure on 

demand (PFDavg), spurious trip rate (STR), and LCC. 

Furthermore, Torres-Echeverria et al. [5] explored the 

impact of component redundancy and diversification in SIS 

subsystem architectures, demonstrating enhancements in SIS 

performance during the design phase. Torres-Echeverria et al. 

[6] investigated the multi-objective optimization of SIS design 

and testing policies, using K out-off N (KooN) redundancy 

and the multi-objective genetic algorithm NSGA-II. The study 

undertook two distinct optimization cases: one focused on 

system design, encompassing component selection and 

redundancy allocation, and the other on testing policy 

optimization. In the study of Innal et al. [7], the challenge of 

optimizing SIS architecture design was initially approached 

through a preliminary search for a balance between 

performance measures, based on the analysis of KooN 

architectures. This was followed by a comprehensive approach 

utilizing GA to optimize various performance indicators along 

with maintenance and purchase costs. Lastly, Touahar et al. [8] 

targeted maintenance strategies aimed at optimizing SIS 

performance and minimizing spurious shutdowns during the 

operational phase. This methodology was applied to the 

emergency shutdown system of a blower section, showcasing 

the practical applicability of these GA-based approaches in 

real-world scenarios. 

It is observed that a majority of studies in the field of SIS 

optimization predominantly employ GA. However, the 

literature reveals the existence of numerous alternative 

methods that exhibit competitively high performance. 

Additionally, a notable limitation in many of these studies is 

the omission of SIS design constraints, which can result in 

suboptimal or inefficient outcomes. This oversight highlights 

the need for a more comprehensive approach in SIS design 

optimization, one that not only leverages diverse algorithmic 

strategies but also thoroughly incorporates all relevant design 

constraints to ensure the efficacy and reliability of the 

optimized systems. 

In this research, a more refined mathematical formulation 

of the SIS design problem is proposed, particularly with 

respect to the LCC. This includes the consideration of various 

cost factors beyond just maintenance and purchase. A 

significant contribution of this study is the application of the 

MRFO algorithm, a recently developed method, to address the 

SIS design optimization challenge. The MRFO algorithm has 

demonstrated commendable proficiency in handling single-

objective real-world problems and has been adapted to multi-

objective problems with linear and nonlinear constraints, as 

developed by Got et al. [9]. It is noteworthy that the 

application of the MRFO algorithm in the context of SIS or 

safety-related studies is unprecedented. To substantiate the 

efficacy of the results obtained through MRFO, comparisons 

are made with results derived using GA, ensuring that all 

relevant constraints are meticulously accounted for in the 

process. 

The remainder of this paper is structured as follows. Section 

2 is dedicated to the general presentation of SIS design 

problem, which involves many functional safety, LCC and 

cost-effectiveness analysis related concepts. Section 3 

provides a presentation of MRFO and its application in the 

context of SIS. Section 4 gives an illustrative example using 

both MRFO and GA. Section 5 summarizes a few conclusions.  

 

 

2. PROBLEM DESCRIPTION AND FORMULATION 
 

A SIS, through its safety functions, should achieve the 

required risk reduction established during the risk analysis 

process (safety integrity) without disrupting the normal 

operation of the protected system in the absence of a 

dangerous situation (operational integrity). Obviously, if 

spurious emergency shutdowns are too frequent, they prove to 

be economically detrimental. Furthermore, these two 

quantities (safety and operational integrities) are antagonistic. 

Thus, attempting to increase safety integrity, by reducing 

dangerous failures of the SIS, can also significantly reduce its 

operational integrity by increasing nuisance trips (the converse 

is true). In addition, the different costs related to the SIS life 

cycle should be taken into account when trying to satisfy the 

two above-mentioned performances. Therefore, the best 

policy to design an effective SIS is that of an optimal 

compromise between its safety integrity, operational integrity 

and the potential costs throughout its life cycle. The following 

subsections detail the different contributing parameters to the 

SIS design problem. 

 
2.1 Generalities about safety instrumented systems 
 

Safety instrumented systems (SIS) are the basis of 

functional safety, whose importance and criticality 

necessitated the creation of common practices covering all the 

stages of their life cycle from the initial design until their 

decommissioning. Several international standards have been 

developed for this purpose including mainly the IEC 61508 

generic standard [1], which covers the functional safety that 

can be ensured using Electrical / Electronic / Programmable 

Electronic (E/E/EP) systems, and the IEC 61511 standard [2] 

derived from the first one for the process industry sector. 

The IEC 61508 defines a SIS as “an E/E/PE system for 

safety applications that includes all system elements necessary 

to perform the safety function”, while the IEC 61511 considers 
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that “instrumented system used to implement one or more 

safety instrumented functions (SIFs) and a SIS consists of any 

combination of sensor(s), logic solver(s) and final element(s)”. 

Therefore, a SIS aims to implement one or more functions 

to ensure or achieve a safe state of the equipment under control 

(EUC) in relation to a specific dangerous event. These 

functions are called “safety instrumented functions (SIFs)”. A 

simple example of a SIF can be the opening of a coolant valve 

initiated by the rise in temperature of a reactor. These 

functions are measured using the concept of safety integrity 

level (SIL), where the SIL of a SIF represents the level of risk 

reduction it can or should achieve. In addition, the ability of a 

given SIS in performing efficiently its assigned safety function 

is also measured in terms of SIL. This ability is measured 

quantitatively according to the SIS operating mode (low 

demand, high demand and continuous demand), where: 

• PFDavg (the average probability of dangerous failure on 

demand): is used for low demand mode and refers to the 

average unavailability of the SIS. 

• PFH (probability of dangerous failure per hour): is used 

for high or continuous demand modes. It represents the 

average frequency of dangerous failure of the SIS.  

The IEC 61508 standard links SIL with PFDavg and PFH as 

shown in Table 1. 
 

Table 1. Safety integrity levels (SIL) defined according to 

PFDavg and PFH [1] 

 
SIL PFDavg PFH(h-1) 

1 [10-2,10-1] [10-6,10-5] 

2 [10-3,10-2] [10-7,10-6] 

3 [10-4,10-3] [10-8,10-7] 

4 [10-5,10-4] [10-9,10-8] 

 

As technical systems, SIS are exposed to different types of 

failures that can affect both their ability to appropriately ensure 

their required safety functions upon demand (safety integrity) 

and their ability to not activate that functions without a valid 

demand (operational integrity). Operational integrity refers to 

the SIS ability in avoiding spurious activations. These failures 

and their corresponding rates are summarized in Figure 1 [10]. 

While the safety integrity related performance of SIS is 

quantitatively measured using PFDavg or PFH, the average 

probability of failing safely (PFSavg) and the spurious trip rate 

(STR) are the main quantitative measure of the operational 

integrity aspect. These measures are practically obtained by 

summing the performances of the SIS three subsystems, 

namely sensors (S), logic solver (LS) and final element (FE) 

as expressed here after [7]:  

 

PFDavg
sis ≈ PFDS + PFDLS + PFDFE (1) 

 

PFHSIS ≈ PFHS + PFHLS + PFHFE (2) 

  

PFSavg
sis ≈ PFSS + PFSLS + PFSFE (3) 

 

STRSIS ≈ STRS + STRLS + STRFE (4) 

 

Several contributions have been made to quantify the 

individual terms in the right-hand side of the above equations 

using different methods including fault trees, Markov models, 

Petri nets, analytical expressions, etc. These latter have been 

the focus in many references starting from the IEC 61508 

standard, which provides analytical expressions related to 

PFDavg and PFH for only many common KooN architectures. 

The ISA standard [11] offers also expressions for PFDavg and 

STR for several typical KooN architectures. The Norwegian 

organization SINTEF [12] provides formulations for PFDavg, 

PFH, and STR as well as simplified equations for these 

indicators related to common KooN architectures. A 

generalization of the PFDavg equations given by ISA (2002) is 

provided by Oliveira and Abramovitch [13]. We can also find 

generalized analytical formulations developed by Innal [14] 

and Dutuit et al. [15] for the four afore mentioned quantitative 

performance indicators, which are detailed in the study of 

Innal et al. [7] as described below: 
 

PFDavg(KooN) =

AN
N−K+1λDind

N−K+1∏ MDTlooi + λDUCCF. (
T1

2
+N−K+1

i=1

MRT) + λDDCCF. MTTR  

(5) 

 

PFH(KooN) = AN
N−K+1λDind

N−K+1∏ MDTlooi +
N−K
i=1

λDUCCF + λDDCCF  
(6) 

 

PFSavg(KooN) ≈

AN 
K λSind

K . MDTsd[∏ MDTSlooi
K−1
i=1 ] + [β

SU
λSU +

β
SD
λSD]. MDTSD  

(7) 

 
Figure 1. SIS failures classification [10]  

977



STR(KooN) = AN 
K λSind

K . [∏ MDTSlooi
K−1
i=1 ] +

[β
SU
λSU + β

SD
λSD]  

(8) 

 

where: 
 

AN
N−K+1 = 

N!

(K−1)!
  (9) 

 

MDTlooi =
λDUind

λDind
. (

T1

i+1
+MRT) +

λDDind

λDind
. MTTR  (10) 

 

MDTSlooi =
λSUind

λSind
. (

T1

i+1
+MRTS) +

λSDind

λSind
. MTTRSD  

(11) 

 

2.2 The life cycle cost 
 

Each project has a life cycle and an underlying cost, called 

the life cycle cost (LCC). It is defined by the NF EN 60300-3-

3 standard [16] as “The cumulative cost of a product 

throughout its life cycle” and by ISO 15663-3 [17] as 

“Discounted cumulative total of all costs incurred by a 

specified function or piece of equipment during its life cycle”. 

The life cycle itself is defined by ISO 15663-3 as “the cycle 

which includes all stages of development, from the start of the 

study to the elimination of equipment or a function”. 

The life cycle of safety systems in general is divided into 

two parts: the construction phase and the operating phase, 

which include both direct and indirect costs. 

Dependability performances (reliability, maintainability 

and availability in particular) directly influence the cost of a 

system during its phases of use. For instance, increasing the 

purchase price often leads to the improvement of the 

performance of the considered system [16]. The LCC is 

fundamental for the successful implementation of a safety 

system and helps make the best choice as well as the optimal 

allocation of financial resources to achieve the desired 

objective. The first model specifically developed for process 

safety systems is based on the subsequent relation [18]: 
 

LCC= LAC+ LSC+LUC (12) 

 

where, LAC is the life acquisition cost, LSC is the life support 

cost, and LUC is the life unavailability cost. 

We also find the model proposed by Goble [19] for safety 

instrumented systems. It divides the main categories of costs 

into two parts: supply costs and operating costs. Martorell et 

al. [20] presented several models for the calculation of the 

operating cost, taking into account the test and maintenance 

strategy and also the cost of shutdowns and the cost of 

overhauling the system. Additionally, Torres-Echeverria [3], 

and Torres-Echeverria et al. [5] suggested another model to 

calculate the LCC based on that in the study of Goble [19]. 

The cost is divided into the cost of supply, operation and risk. 

We can also find studies focused on benefit and cost 

analysis as an interesting method for making decisions related 

to safety investments, where significant models for calculating 

costs and benefits are established. In this context and within 

the framework of process safety, we may cite the study 

conducted by Reniers and Brijs [21] where the cost was 

divided into six categories. Moreover, still in the same context, 

it is worth to mention the approach provided by Chen et al. 

[22] dedicated to the management of domino effects in 

chemical industrial areas through a cost-benefit analysis. In 

addition, a very interesting economic model for allocating 

safety measures has been developed by Villa et al. [23].  

Based on these studies, we developed and adapted the LCC 

model shown in Table 2 that displays the most important costs 

related to adding a new safety measure. This model is the basic 

reference to reach the optimal SIS design at the lowest costs in 

this study. 

In many cases, it is customary to calculate life cycle costs 

(operating costs) in terms of present value rather than future 

value. The present value of an annuity is the sum of the present 

values of all payments. It represents the amount of money that 

must be invested now in order to make the required future 

payments. The present value of an annuity can be obtained 

using the following formula [24], assuming that payments are 

made at the end of a period, for N payments of M (dinar, 

dollars, euro, etc.) at a rate-discount from R: 

 

PVA = M(1 + R)
−1+M(1 + R)−2+…+M(1 + R)−N= 

M. [1 − (1 + R)−N R]⁄  
(13) 

 

That is why we put notes under the costs of maintenance 

and examination to pay attention to the distribution of these 

costs during the life cycle years to give the correct value of the 

current costs. The same principle is applied for 

decommissioning costs. If the decommissioning cost was 

initially agreed upon, which is often the same as the 

installation cost, we will transfer the cost value to its current 

value (actualization). However, in the absence of agreement, 

it would be logical to consider the cost of decommissioning as 

the cost of future installation (capitalization). 

 

2.3 Cost-effectiveness analysis 

 

Cost-effectiveness analysis (CEA) is a method of analyzing 

and evaluating projects and it can be seen as a particular form 

of cost benefit analysis [25]. It is a research method that 

characterizes the costs of investment related to the amount of 

benefit that they yield. CEA provides standardized means of 

comparing investments to identify those that provide maximal 

effect per incremental unit of cost. Therefore, it is about setting 

an objective and minimizing the costs to achieve it. For 

example, one may seek to maximize the safety objective (for 

instance, the number of lives saved) with a given budget [25]. 

This optimization problem for determining the optimal 

combination of safety investments (measures) is similar to 

solving the so-called knapsack problem [26]. 

In fact, companies cannot implement all safety measures 

that are effective or that have passed cost-benefit analysis tests, 

because they face budgetary constraints, and therefore the 

choice is linked to the limits of the budget framework. The 

optimal combination of safety measures canthus be 

determined through a cost-effectiveness analysis and can be 

translated into the following mathematical equation, subject to 

constraints [26]: 

  

{

Max 𝐵𝑖𝑥𝑖
𝑠. 𝑡.

𝐶𝑖𝑥𝑖 ≤ 𝐵𝑢

𝑥𝑖 ∈ {0, 1}

  (14) 

 

This equation can be explained as follows [23]. The first 

term expresses the overall benefit from the portfolio of chosen 

preventative investments. The second term refers to the first 

constraint that expresses the overall cost of the chosen 

measures. It should not be greater than the safety budget (BU). 
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The last term (the second constraint) expresses a measure 

either completely taken or not taken at all. Within the 

limitations of the safety budget, the module’s output is the 

most advantageous combination of safety measures xi for each 

accident scenario j. 

 

2.4 SIS design optimization 

 

The IEC 61508 standard requires a certain minimum level 

of safety integrity that should be achieved in the SIS design ph 

as, in order to reduce the risk to a tolerable level, while 

satisfying extra objectives that are operational integrity and 

LCC. Therefore, as stated at the beginning of this section, the 

best strategy to design an effective SIS is that of trade-off 

between its safety integrity, operational integrity and the 

underlying costs throughout its life cycle. More precisely, in 

light of the developments in this section, the following three 

objectives should be simultaneously optimized: 

• PFDavg (or PFH) which are the basic measures for 

determining the SIL of the SIS (safety integrity). 

• STR that characterizes the number of times the SIS 

shuts down the protected system unexpectedly and 

induces production loss (operational integrity). 

High STR values can lead to loss of confidence in 

the system. For this reason, as said before, a 

compromise must be found between PFDavg (or 

PFH) and STR. One could specify a maximum 

allowed value for the STR. 

• LCC accompanying the achievement of the above 

desired objectives. Obviously, LCC is considered 

to consider the budget constraints relating to the 

SIS life cycle from design to decommissioning. 

Hence, SIS design problem is a multi-objective 

optimization problem in which the goal is to minimize the 

three above mentioned objectives. Solving this problem 

requires determining the appropriate values of the decision 

vector x which represents the problem coding. 

 

x = [NS, KS, Stype, ST1, NLS, KLS, LStype, LST1, NFE, 

KFE, FEtype, FET1] 
(15) 

 

where, N and K define the KooN architecture specified for 

each subsystem (S, LS, FE), type refers to the type of 

component, and T1 is the proof test interval. 
 

Table 2. Cost calculation model of safety barriers (in particular SIS) 
 

 
Construction Phase Cost 

The design cost Cdes ∑ Cij
des

ij or Cdes 

The purchase cost 

Buying price 

delivery costs 

Cp {
CBp
 Cd

 

∑ Cij
BP

ij . Nij  

Loading costs +non-refundable taxes + 

Unloading costs +other costs. 

The cost of installation 

The installation price 

production loss cost 

Cins {
Cins p
C p l

 
∑ Cij

ins p
ij . Nij  

Q. Tins. P 

The cost of training CTR ∑ CTr.Kk . N′k  

The start-up cost Cstart−up [Q(old)- Q(new)] T’ P+ Coth 

Operating Phase Cost 

Consumption cost CCn 
∑ Qijij . PUNIT(T − Tshutdown)  

T=1year = 8630h 

The maintenance 

cost 

Preventive 

maintenance 
CPM 

∑
1

Mij
. Cij
PM

ij . Nij  

Note: pay attention to the interval between 

maintenance. 

Corrective 

maintenance 
CCM 

∑ Fij
CM. Cij

CM
ij . Nij  

Note: pay attention to the guarantee period. 

The cost of testing CT 
∑

1

TIij
. Cij
T

ij . Nij  

Note: pay attention to the interval between tests. 

Cost of spurious trip CSTR 

STR. CSD 

CSD = SDtime. SDloss 
Each STR causes a system restart so, we have to 

add the cost of start-up (Cstart−Up) 

The Decommissioning 

Cost 
The decommissioning cost Cdec 

Cins(1 + R)
−N 

In case of prior agreement Cdec= Cins 

Cins(1 + R)
N 

In the absence of a prior agreement about the 

decommissioning cost 

Other costs Coth _ 

i: subsystem subscript; j: technology kind subscript;Cij
des: design cost for ij component;Cij

BP: bying price for ij component;Nij: number of ij component; Cij
ins p

: 

installation price for ij component; Q: the quantity of hourly production;Tins:installation time (h); P: the product unit price; k: the type of training;CTr.K: the 

training (k) cost; N′k: the number of people trained (training k); Q(old): the hourly production quantity before stopping production; Q(new): the quantity of 

hourly production after stopping production; T’: the duration between the moment when the production line is reactivated and time to return to initial production 

capacity; P: the product unit price;Qij: the quantity consumed (energy) a unit of time for ij component;PUNIT: the unit price of energy; Tshutdown: shutdown time; 

Mij: maintenance frequency of ij component; Cij
PM: preventive maintenance cost of ij component; Fij

CM: repair frequency of ij components; Cij
CM: corrective 

maintenance (repair) cost of ij component; TIij: test interval of ij component; Cij
T: functional test cost of ij component; STR: spurious trip rate; CSD: cost of 

shutdown event; SDtime: restart time after shutdown; SDloss: cost of loss production per hour; R: rate-discount. 
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3. USING MANTA RAY FORAGING OPTIMIZATION 

ALGORITHM TO SOLVE THE SIS DESIGN 

PROBLEM 

 

The use of evolutionary algorithms (EAs) to solve such 

multi-objective problem is a common practice in this field.  

Genetic algorithms (GA), developed by Holland [27], are 

one of the most popular meta-heuristics belonging to the class 

of EAs. They have been extensively used in the context of 

designing SIS. GA is inspired by the process of natural 

selection which depends on factors with a biological profile 

such as: Mutation, crossover and selection. Obviously, the 

main goal of GA is to find the optimal configuration for a 

given optimization problem by applying a good balance 

between exploitation and exploration of the search space. 

Detailed descriptions of GA can be found in the study of Gen 

et al. [28], Katoch et al. [29], Bendine [30], Fonseca and 

Fleming [31]. Figure 2 summarizes the main steps of GA 

algorithm. 

 

 
 

Figure 2. Flowchart of a genetic algorithm [30] 

 

In the last few decades, many other prominent algorithms 

have been developed to deal with different complex real-world 

problems. Under this context, we can quote the so-called 

MRFO, which represents a novel bio-inspired optimization 

approach developed by Zhao et al. [32] in 2019. MRFO is a 

meta-heuristic belonging to the class of swarm intelligence 

algorithm. Studies and comparisons have shown that this 

approach is often superior to other well-known algorithms [32]. 

MRFO presents a strong global optimization ability on both 

constrained and unconstrained problems and it is very suitable 

for handling real-world problems, including SIS design 

problem. 

Manta Ray is one of the largest known marine creatures 

belonging to the genus Mobula. They are classified among the 

Myliobatiformes and are placed in the family Myliobatidae. 

They have the largest brains and brain to body ration of all fish. 

The average life span of these fish is 20 years [33]. These fish 

attract attention and interest due to their ability to find 

plankton whatever the circumstances (a grown-up manta ray 

can eat 5 kg of plankton on everyday), this is due to its unique 

and clever foraging strategy. That's why it inspired researchers 

to create a new optimization method simulates the cooperative 

behavior observed in manta ray to provide food. These fish 

rely on many strategies to search for food, which are: straight, 

surface, chain, piggy-back, bottom, and sideways [34]. But 

MRFO algorithm simulates the following three methods 

foraging: chain, cyclone, and somersault [32], which can be 

described as follows: 

 

✓ Chain Foraging 

In this strategy, a group of manta rays move in the form of 

an organized line, lining up one behind the other, they travel 

forward and backward their fins open in front of their mouth 

[35]. We also notice in this movement the support of the 

smaller male manta rays by the females, by swimming over 

their back bellies [36]. The first manta ray updates its location 

(current position) based on the best solutions obtained so far, 

while the rest of the manta ray updates its current position 

according to the best solution and the location of the manta ray 

in front of it in the search area. This can be translated by the 

following equation [9, 32]: 

 

xi
t+1 =

{
 
 

 
 xi

t + r(Gbest
t − xi

t) + 2. r. √|log(r)| . (Gbest
t − xi

t)

i = 1

xi
t + r(xi−1

t − xi
t) + 2. r. √|log(r)| . (Gbest

t − xi
t)

i = 2 , …N

  
(16) 

 

where, r is a random vector in [0, 1], N is the size of population, 

xi
t is the position or the ith manta ray in the iteration t and xi

t+1 

is its new position in the next iteration, and Gbest represent the 

global best solution within the entire population. 

 

✓ Cyclone Foraging 

This strategy is used in places rich in food, where dozens of 

manta ray fish gather to form a spiral. This circle’s diameter is 

proportional to the number of manta rays (approximately 15-

20 m), and this cyclone always rotates and clockwise this is to 

create a current that attracts prey outside the feeding circle 

towards them [35]. To simulate this motion, a spiral equation 

is used to update the position of the population [9, 32]: 

 
xi
t+1

=

{
  
 

  
 Gbest + r. (Gbest

t − xi
t) + 2e

r1
Tmax−t+1
Tmax . sin(2πr1) .

(Gbest
t − xi

t)i = 1

Gbest + r. (xi−1
t − xi

t) + 2e
r1
Tmax−t+1
Tmax . sin(2πr1) .

(Gbest
t − xi

t) i = 2,… , N

 
(17) 

 

where: Tmax is the maximum number of iterations and r1 is a 

random number in [0, 1]. In order to improve the exploratory 

ability, each individual updates his position away from the 

current best position and according to a new random position 

in the entire search space as follows [8, 32]: 

 
xi
t+1 =

 

{
 
 

 
 xrand + r. (xrand

t − xi
t) + 2e

r1
Tmax−t+1

Tmax . sin(2πr1) .

(xrand
t − xi

t)i = 1

xrand + r. (xi−1
t − xi

t) + 2e
r1
Tmax−t+1

Tmax . sin(2πr1) .

(xrand
t − xi

t) i = 2,… , N

  
(18) 
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where, xrand is a random reference point in the search space 

given by: 

 

xrand = LB + r. (UB − LB) (19) 

 

LB: lower boundary of the search space. 

UB: upper boundary of the search space. 

✓ Somersault Foraging 

This strategy of feeding is typically used when the prey is 

concentrated near the surface to limit mobility and improve 

feeding effectiveness [35]. The manta ray performs a series of 

backwards somersaults, which are random, repetitive, local 

and cyclical movements, and it is one of the most beautiful 

scenes in nature [32]. In this strategy, the manta ray update 

their position around the best position found so far by 

performing a somersault movements. Therefore, its 

mathematical model is given by [9, 32]: 

 

xi
t+1 = xi

t + S. (r2. Gbest − r3. xi
t), i = 1 ,… , N (20) 

 

S is the somersault factor that defines the somersault range 

of manta rays and it is set to 2. r2 and r3 are random numbers 

between 0 and 1. 

Based on the above description of MRFO algorithm, it is 

clear that there is a big difference between MRFO and GA 

algorithms. Indeed, and according to our point of view, the 

main difference between them is in the manner of how they 

deal with exploration and exploitation strategies during the 

optimization process. Hence, GA ensures the exploration by 

applying crossover operators, and exploitation by applying 

mutation operators, while MRFO performs some random 

movement to ensure the exploration, and it performs some 

oriented movements by following the current global best 

position at the hope of exploiting the promising regions in the 

search space. 

The MRFO [32] starts by creating a random population in 

the domain of the problem, after this step, each individual 

updates its position on each iteration with relation to the 

individual in front of it as well as the reference position. The 

change in the value of t T⁄  allows exploratory and exploitative 

research to be conducted: for t T⁄ < 𝑟𝑎𝑛𝑑  the current best 

solution is selected as the exploitation reference position, and 

for t T⁄ > 𝑟𝑎𝑛𝑑  is selected as a reference position for 

exploration. And according to the value of rand, the MRFO 

can switch between the two strategies chain foraging and 

cyclone foraging. Then, by foraging somersaults the 

individuals update their positions in relation to the best 

position found so far. These operations and calculations are 

done interactively and stop when the specified stop conditions 

are met. Finally, the fitness value and the position of the best 

individual are returned. 

To solve the multi-objective SIS problem, we use Multi-

Objective Manta Ray Foraging Optimizer (MOMRFO) [9]. 

This algorithm uses an external archive to maintain historical 

record of Pareto solutions by storing the non-dominant 

solutions obtained so far. However, and for runtime reasons, 

this archive should be limited to a given maximum size 

(T_max). Hence, it will be carefully updated during the 

optimization process to identify the solutions that will be 

accepted to be stored, and those that are not accepted (because 

the archive is limited). Moreover, the archiving strategy 

should maintain a good balance between convergence and 

diversity of solutions in the search space. For this reason, the 

MOMRFO algorithm adopts an effective archiving strategy 

based on the grid adaptive mechanism. This technique consists 

of dividing the external archive into a certain number of hyper 

cubes containing a certain number of solutions. So, the number 

of solutions in each hypercube represents the density of this 

hypercube, and this density helps to identify the most and the 

less crowded regions in the archive. Accordingly, if the 

archive is full, the removed solutions will be removed from the 

high crowded regions, and when a new solution is added, it 

will be added in the less crowded regions. The MOMRFO 

algorithm also depends on the way of choosing the Global best 

solution global, knowing that this solution guides the 

population towards well-distributed regions in the Pareto front. 

For this reason, a roulette wheel is used to identify the area that 

may contain probably these solutions for improving both 

convergence and diversity. Finally, the algorithm returns the 

final archive containing the resulting Pareto front . 

It is worth mentioning that the computational complexity of 

MRFO algorithm is of O(TN), where T is the maximum 

number of iterations, and N is the number of individuals. On 

the other hand, the complexity of the update archive procedure 

is of O(N2). Accordingly, the complexity of MOMRFO can be 

estimated by O(N2). This complexity is similar to that of the 

selected GA algorithm. 
 

 

4. APPLICATION EXAMPLE 

 

The widespread use and applications of SIS operating in 

low demand mode is evident across a variety of industrial 

sectors. The general form of processing such usage is almost 

the same despite in the involved diversity in the measured 

parameters, the provided functions and the nature of the 

applications themselves. To highlight the utility of the 

discussed algorithm, we take as a basis a simple example 

treated by Innal et al. [7] of designing a SIS operating in a low 

demand mode. Obviously, the realization of the optimal SIS 

requires the consideration of several design options since the 

optimization is centered on the variability of the redundancy 

and the diversity of the SIS subsystems elements. Supposing 

that a SIL 3 is required, the value of PFDavg of the entire SIS 

will be constrained as follows: PFDavg
sis ≤ PFDavg

max = 1E − 3. 

Therefore, this multi-objective problem with constraints takes 

the form: 

 

{

Y = F(X) = (PFDavg(X); STR(X); LCC(X))

PFDavg ≤ 10−3

K1 ≤ N1;  K2 ≤ N2;  K3 ≤ N3

  (21) 

 

The employed data in the original application by Innal et al. 

[7] in addition to some supplementary factors are shown in 

Table 3. 

 

4.1 Using genetic algorithms to solve the problem 

 

At this level, we follow the conventional method of solving 

the SIS design problem using GA. For this we use the GA-

based solver in the optimization toolbox in MATLAB [37]. 

For this, we take the following parameters: population size 

(150), selection type (Tournament), crossover function (Two 

points), crossover fraction (0.8), mutation function (Adaptive 

feasible), the stopping criterion (maximum number of 

generations=200). Setting these values is performed by testing 

different possible alternatives focusing on the reasonable 
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combination of the computation time and the fitness levels. 

Some of the obtained non-dominated solutions with their 

relative values for the three evaluated objectives are also 

included (Pareto front) are given in Table 4. Additionally, 

Figure 3 shows the Pareto front related to the various studied 

objectives given in a 2D presentation (PFDavg and STR; PFDavg 

and cost; STR and cost) and in a 3D presentation (PFDavg, STR 

and cost). 

All of the resulting solutions represent optimal SIS systems, 

and the choice between them will be in the hands of decision 

makers based on personal preferences, values, and trade-offs 

in relation to the objectives being examined. 

 

4.2 Using the Manta Ray foraging algorithm to solve the 

problem 

 

At this level, MRFO is used to solve SIS design problem. 

Since the dimension of SIS problem includes 12 parameters, 

each manta ray is defined in 12-dimensional search space (12 

positions) so as each dimension refers to a given parameter 

each position represented a decision variable. The positions of 

this Manta Ray take variable values between the lower limits: 

[1 1 1 1 1 1 1 1 1 1 1 1], and the upper limits: [55 3 4 3 3 3 3 4 

4 3 4]. 

 

To achieve KooN vote that represents the linear inequality 

constraints we use the static penalty method for guide the 

search to feasible regions, by adding a penal value in the 

objective function as follows [38]: 

 

fm(x) = fm(x) + ∑ Pi. max(gi(x), 0) +
p
i=1

∑ Pi. max(|hi(x)| − δ, 0)K
i=1   

(22) 

 

where: 

fm(x), m=1, 2, … M are the objective function to be 

optimized. 

Gi(x)≤0, i=1, 2… P are inequality constraints. 

Hi(x) =0, i=1, 2 … K are equality constraints. 

Pi and δ are respectively the penalty factor and the tolerance 

on the equality constraints to consider it as feasible. 

For constraints on the objective function PFD≤10-3, it will 

be achieved by rejecting solutions that do not meet this 

condition from the external archive of MOMRFO during the 

optimization process. The used parameters are: population size 

(150), Maximum Number of Iterations (200), the maximum 

size of archive (100). 

Some of the obtained results are given in Table 5, while the 

visual presentation of the obtained solutions is given in Figure 

4. 

Table 3. Input data 

 
Data Types of Components: λ 10 -6(h); MTTR(h); 𝐂P(u);𝐂T(u);𝛃DU=𝛃=𝛃SU=2𝛃D=2𝛃SD T1(h) 

Sub-systems Type 1 Type 2 Type 3 

4380 

8760 

13140 

17520 

PT 

N1Max=5 

𝜆𝐷=0.151 

DC=0.318 

𝜆𝑆=0.383 

DCS=0.692 

𝛽 = 0.02 

MTTRDD=4 

MTTRSD=8 

CP=4844 

CT=60 

𝜆𝐷=1.9 

DC=0.51 

𝜆𝑆=2.16 

DCS=0.56 

𝛽 = 0.02 

MTTRDD=8 

MTTRSD=10 

CP =2306 

CT =30 

𝜆𝐷=4.11 

DC=0.1 

𝜆𝑆=6.81 

DCS=0.1 

𝛽 = 0.02 

MTTRDD=10 

MTTRSD=10 

CP =500 

CT =20 

LS 

N2Max=3 

𝜆𝐷=0.01 

DC=0.9 

𝜆𝑆=0.01 

DCS =0.2 

𝛽 = 0.01 

MTTRDD =4 

MTTRSD =4 

CP=4000 

CT =70 

𝜆𝐷=10 

DC=0.9 

𝜆𝑆=10 

DCS =0.2 

𝛽 = 0.01 

MTTRDD =8 

MTTRSD =8 

CP=2800 

CT =50 

𝜆𝐷=15 

DC=0.67 

𝜆𝑆=15 

DCS =0.2 

𝛽 = 0.01 

MTTRDD =8 

MTTRSD =10 

CP=2000 

CT =40 

8760 

13140 

17520 

SDV 

N3Max=4 

𝜆𝐷=3.35 

DC=0.25 

𝜆𝑆=3.94 

DCS =0 

𝛽 = 0.02 

MTTRDD =8 

MTTRSD =8 

CP =6940 

CT =90 

𝜆𝐷=5.44 

DC=0.20 

𝜆𝑆=3.17 

DCS =0 

𝛽 = 0.05 

MTTRDD =8 

MTTRSD =10 

CP =6500 

CT =70 

𝜆𝐷=7.9 

DC=0.1 

𝜆𝑆=9.17 

DCS =0 

𝛽 = 0.1 

MTTRDD =10 

MTTRSD =15 

CP =6000 

CT =60 

4380 

8760 

13140 

17520 

Design/install/commissioning PLC=500(u) 

Repair PLC =500 (u/event) 

Shut down time =24(h) 

Maintenance PLC=150 (u/event) 

Design overall instrumentation =2000 (u) 

Installation/commissioning per instrument =300 (u) 

Maintenance per instrument =70 (u/event) 

Repair cost per instrument & PLC = 200 (u/event) 

Cost loss of production =2000 (u/h) 

SIS life =15 (years) 

R=4% 

guarantee period=1year for each component 
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Table 4. Some selected solution using GA 

 

No. 
Variables Objective 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 𝐏𝐅𝐃𝐚𝐯𝐠
𝐬𝐢𝐬  𝐒𝐓𝐑𝐚𝐯𝐠

𝐬𝐢𝐬  (𝐡−𝟏) 𝐂𝐨𝐬𝐭(u) 

01 5 1 1 1 3 1 1 1 4 3 1 1 1,1508E-4 2,0036E-6 1,1240E+5 

02 3 2 1 1 3 2 1 1 3 3 1 1 1,1530E-4 8,4481E-8 9,5993E+4 

03 1 1 1 2 1 1 1 2 2 2 3 3 9,2623E-4 4,8470E-7 3,4059E+4 

04 1 1 1 1 1 1 1 1 2 2 1 1 3,4108E-4 4,7180E-7 3,9948E+4 

05 4 2 1 1 1 1 1 1 3 2 1 1 1,1946E-4 9,4972E-8 7,1013E+4 

06 1 1 1 1 1 1 1 1 2 2 1 2 4,5114E-4 4,7180E-7 3,7945E+4 

07 1 1 1 2 1 1 1 2 2 2 1 4 8,9898E-4 4,7180E-7 3,5648E+4 

08 5 2 1 1 3 1 1 1 4 2 1 1 1,1508E-4 1,1557E-7 1,0357E+5 

09 2 1 1 3 1 1 1 2 2 2 1 1 1,3127E-4 8,4979E-7 4,7080E+4 

10 3 1 1 1 3 2 1 1 2 2 1 1 1,1509E-4 1,2179E-6 7,2797E+4 

11 2 2 1 1 2 2 1 1 2 2 1 1 6,7713E-4 8,4093E-8 5,0814E+4 

12 2 2 1 1 3 2 1 1 4 3 1 1 5,5831E-4 8,4093E-8 8,1123E+4 

13 5 2 1 1 2 1 1 1 4 2 1 1 1,1508E-4 1,0566E-7 9,6274E+4 

14 4 3 1 1 1 1 1 1 4 3 1 1 3,8923E-4 4,8470E-7 3,6523E+4 

15 1 1 1 1 1 1 1 2 2 2 3 1 5,6706E-4 8,4093E-8 7,3874E+4 

16 2 2 1 1 2 2 1 1 4 3 1 1 1,1510E-4 8,5062E-8 8,5463E+4 

17 4 2 1 1 3 2 1 1 3 3 1 1 7,5232E-4 4,7180E-7 4,2395E+4 

18 3 2 2 3 1 1 1 2 2 2 2 1 4,9495E-4 1,7466E-7 4,9383E+4 

19 4 2 1 1 2 2 1 2 2 2 1 1 1,2820E-4 8,5062E-8 6,7146E+4 

 

 
(a) PFDavg vs STRavg (GA) 

 
(b) PFDavg vs LCC(GA) 

 
(c) STRavg vs LCC(GA) 

 
 

(d) PFDavg and STRavg vs LCC(GA) 

 

Figure 3. Obtained Pareto solutions using GA 
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Table 5. Some selected solutions using MRFO 

 

No. 
Variables Objective 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 𝐏𝐅𝐃𝐚𝐯𝐠
𝐬𝐢𝐬  𝐒𝐓𝐑𝐚𝐯𝐠

𝐬𝐢𝐬  (𝐡−𝟏) 𝐂𝐨𝐬𝐭(u) 

01 3 1 1 1 3 1 1 1 3 2 1 1 1,1508E-4 1,2475E-6 8,3465E+4 

02 3 2 1 2 1 1 1 1 2 2 1 2 2,3482E-4 9,4965E-8 4,9048E+4 

03 2 1 1 1 1 1 1 1 2 2 1 1 1,1953E-4 8,4979E-7 4,9146E+4 

04 3 3 1 1 2 2 1 1 2 2 1 2 8,9875E-4 8,3900E-8 5,8246E+4 

05 5 4 1 2 3 2 1 3 4 4 1 1 1,2227E-4 8,3900E-8 9,8498E+4 

06 1 1 1 1 1 1 1 1 2 2 1 3 5,6120E-4 4,7180E-7 3,7252E+4 

07 3 2 1 1 2 2 1 1 3 3 1 1 1,2405E-4 8,4481E-8 7,0779E+4 

08 5 4 1 1 3 3 1 1 3 3 1 3 3,4901E-4 8,3900E-8 8,8849E+4 

09 3 2 1 1 2 1 1 1 3 2 1 1 1,1528E-4 1,0430E-7 7,0872E+4 

10 4 3 1 1 1 1 1 1 2 2 1 2 2,2992E-4 9,3810E-8 5,8477E+4 

11 1 1 1 1 1 1 1 1 2 2 1 2 4,5114E-4 4,7180E-7 3,7945E+4 

12 3 3 1 1 2 2 1 1 2 2 1 1 7,8869E-4 8,3900E-8 6,0247E+4 

13 4 3 1 1 1 1 1 1 2 2 1 1 1,1986E-4 9,3810E-8 6,0478E+4 

14 4 3 1 1 2 2 1 2 3 3 1 1 1,2860E-4 8,3900E-8 7,7670E+4 

15 2 2 1 1 1 1 1 1 2 2 1 2 6,7276E-4 9,4003E-8 7,3612E+4 

16 3 3 1 1 2 2 1 1 2 2 1 2 8,9850E-4 8,3900E-8 5,8246E+4 

17 2 1 1 1 2 1 1 1 1 1 1 1 1,1515E-4 4,7209E-6 6,3963E+4 

18 2 2 1 1 1 1 1 2 2 2 1 4 8,9507E-4 9,4003E-8 4,1982E+4 

19 5 3 1 1 2 1 1 1 4 4 1 1 1,2386E-4 8,3901E-8 9,6172E+4 

 

 
(a) PFDavg vs STRavg (MRFO) 

 
(b) PFDavg vs LCC(MRFO) 

 
(c) STRavg vs LCC(MRFO) 

 
(d) PFDavg and STRavg vs LCC(MRFO) 

 

Figure 4. Obtained Pareto solutions using MRFO 

 

The same observation, all these solutions are ideal systems 

and the choice remains in the hands of the decision maker. 

Also, through visual observation only on Figures 3 and 4, we 

notice that MRFO is preferred compared to GA in terms of 

number of solutions extracted by each algorithm. Indeed, this 

perspective is relatively important when solving SIS design 

problem and it gives to the decision maker more options 

regarding the SIS design. Hence, it can be seen that the GA 
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has provided 54 solutions, while the MOMRFO algorithm has 

provided 100 solutions. That is to say, the MOMRFO can offer 

more alternatives and a large wide of choices that can satisfy 

as well as possible the preferences of the decision-maker. 

To summarize, this paper’s focus is on extending the level 

of detail in the formulation of the SIS design problem, 

especially regarding the life cycle cost with what it holds of 

complexity. On the other hand, it has been shown that 

substituting the traditional practice of relying on GA by recent 

alternatives (mainly MRFO in this case) can provide many 

practical benefits. This includes primarily enriching the 

decision maker’s range of choice. 

 

 

5. CONCLUSIONS 

 

The critical and complex nature of SIS necessitates the 

appropriate handling of its design. This is important to ensure 

that introducing this solution will be beneficial in all respects. 

This mainly includes the ability of the SIS to perform its 

assigned safety function and to cause no or acceptable levels 

of disruption. In addition to these two aspects that are 

presented in Subsection 2.1, it is also crucial to ensure that SIS 

is aligned with the overall resources allocation strategy and 

objectives as discussed in Subsection 2.2. 

In this paper, a new cost-effective analysis framework is 

proposed to handle the SIS designing problem. The focus at 

the first level is on the detailed study of the involved costs with 

their classification and practical estimation. On the side, the 

objective is the employment of an efficient algorithm that can 

facilitates the handling of such a complex problem. For this 

end, the recently developed MRFO algorithm is considered to 

solve the multi-objective SIS design problem in comparison 

with the common use of GA. The obtained results confirmed 

the superiority of the former algorithm in terms of the number 

of the extracted solutions, therefore the number of options 

granted to the decision maker. Consequently, the practical 

benefits of this proposed framework lie in improving the 

accuracy of overall model through the detailed consideration 

of the involved costs in addition to the ability of the employed 

algorithm to explore wider regions to provide richer choice 

ranges. Such findings highlight the importance of revising the 

current practices in dealing with these kinds of problems to 

enhance their practical utility. 

The proposed framework this paper is dedicated to handle 

the problem of designing SIS that reduce the risk level to a 

certain predefined tolerable level. The objective for future 

works is to extend it to the case when the use of SIS is 

controlled also by its practicability. Such an extension 

involves many challenges regarding the formulation of the 

whole problem in addition to the complexity and diversity of 

the associated parameters. Another objective is to conduct a 

detailed study to develop a clear view on the criteria and 

conditions needed for the proper handling of the real-world 

SIS design problem with its different facets. 
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NOMENCLATURE 
 

An
k  

Number of arrangements of size k from a set 

with n elements 

Cp Purchase cost 

CT Proof tests cost 

DC Diagnostic coverage for dangerous   failures 

DCs Diagnostic coverage for safe failures 

FE Final elements 

LS Logic solver 

MDTS1ooi 
Mean down time for 1ooi architecture due to 

independent safe failures 

MDTsd Mean down time consecutive to a shutdown 

MRT Mean repair time for DU failures 

MRTs Mean repair time for SU failures 

MTTR Mean time to restoration for DD failures 

MTTRSD Mean time to restoration for SD failures 

PFDavg Average probability of failure on demand 

PFDavg
SIS  SIS average PFD 

PFDavg
max Maximum allowed value for PFDavg

SIS  

PFDKooN PFD for KooN architecture 

PFHSIS 
SIS probability of dangerous failure per hour 

(average) 

PFHKooN PFH for KooN architecture 

S Sensor 

STRSIS SIS spurious trip rate (average) 

STRKooN STR for KooN architecture 

T1  Proof tests interval 

β CCF proportion (β factor) 

R Discount rate 

N Years life for the system 

βDU β for dangerous undetected (DU) failures 

βDD   β for dangerous detected (DD) failures 

βSD   β for safe detected (SD) failures 

βSU   β for safe undetected (SU) failures 

λD Dangerous failure rate 

λDind   Independent dangerous failure rate  

λDCCF Dependent dangerous failure rate (CCF)  

λDD   DD failure rate 

λDDind Independent DD failure rate 

λDDCCF Dependent DD failure rate 

λDU   DU failure rate 

λDUind Independent DU failure rate 

λDUCCF Dependent DU failure rate 
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