
Prediction Model for Studying the Growth Kinetics of Fe2B Boride Layers during Boronizing 

Bendaoud Mebarek1*, Mourad Keddam2 

1 Department of computer science, Ibn Khaldoun University, Tiaret, Algeria 
2 Laboratoire de Technologie des Matériaux, Département de Sciences des Matériaux, Faculté de Génie Mécanique et Génie des 

Procédés, USTHB, B.P No. 32, 16111, El-Alia, Bab- Ezzouar, Alger, Algérie 

Corresponding Author Email: mebarekbendaoud@yahoo.fr 

https://doi.org/10.18280/isi.240212 ABSTRACT 

Received: 14 January 2019 

Accepted: 2 April 2019 
The simulation and modelling of the boriding process are considered as a necessary tool to 

select the suitable parameters for obtaining an adequate boride layer thickness. In spite of the 

importance of the boriding process in the industrial field, there are no fully successful 

mathematical models for simulating the boriding process. In this study, we developed a model 

based on the application of the artificial neural network (ANN) for the thermochemical 

boronizing process of the AISI 316L stainless steel. We are attempting to apply the ANN 

approach to determine the layer’s thickness and predict the influence of different parameters 

on the growth kinetic of the boride layers.  

In order to validate the ANN approach, we used experimental data obtained on AISI 316L 

steel, borided in a liquid medium (70 % borax + 30 % SiC). 

The comparison of results obtained by artificial neural network (ANN) model with those given 

by the mathematical model based on Fick's law and experimental data allow us to validate the 

ANN model. In addition, the average error generated from the neural network was between 1 

and 1.25 µm. 

Keywords: 

thermochemical treatment, boriding, 

Fe2B, simulation, artificial neural 

network 

1. INTRODUCTION

Boriding is a thermochemical treatment of steels that 

permits to have a very resistant layer against corrosion and 

wear [1]. This phenomenon, based on the diffusion of boron 

atoms in the iron matrix, generally depends on the nature of 

the boron source used [1-2]. The boriding medium can be solid 

(powder or paste), liquid or gas. It is carried out at higher 

temperatures, generally from 750 to 1050 °C. According to the 

iron-boron equilibrium diagram [2], the diffusion of boron 

atoms in the crystal lattice of iron leads to the formation of two 

kinds of iron boride (FeB and Fe2B) [3]. The thickness and the 

quality of the borided layer in a liquid medium treatment 

depend on the chemical composition of the medium in contact 

with the surface, on the temperature and on the treatment 

duration [4].  

It is difficult to measure experimentally the thickness of the 

borided layer [5] due to the saw-tooth morphology of boride 

layer [6]. In the literature data, the borided layer thickness has 

been calculated by taking the average distance of every 

column from the surface [2]. The degree and the teeth length 

can be reduced by increasing the alloy content [2-7].  

Despite the importance of the boriding process in the 

industrial field, there is no well-detailed model about the 

growth kinetics of borided layer. Several studies have been 

undertaken for the boriding process in solid medium [8-9]. For 

the powders technique, the model of Brakman et al. [10] 

explains the specific difference of volume between FeB and 

Fe2B phases. The growth kinetics of borided layers was 

studied by empirical models based on Fick's laws [11-12], this 

model allowed the characterization of the FeB and Fe2B 

phases, and the determination of the diffusivity of boron in 

iron borides. 

In the case of boriding process, we can mention the work of 

Mebarek et al. [13] where they calculated the borided layer 

thickness and predicted the boron concentration in each phase 

in a liquid medium. 

A growing range of applications of the boriding process, in 

which the borided layer should be characterized by better and 

better properties, requires the use of intelligent control systems. 

Other methods such as neural networks, fuzzy logic and 

genetic algorithm became common for this type of process.  

Campos et al. [14] used an artificial neural network model 

to estimate the thickness of the borided layer as a function of 

the boron paste thickness. In another work [15], they used the 

fuzzy logic method to estimate the thickness of the borided 

layer. Genel et al. [16] used the method of artificial neuron 

network with the back propagation learning algorithm to 

predict the hardness of borided layer during the boriding 

process.  

The greatest advantage of artificial neural network over 

other modelling approaches is the capability to model complex, 

non-linear processes without assuming the form of 

relationship between input and output variables. Indeed, neural 

networks have been successfully applied to the classification 

and approximation of functions.  

There are several artificial neural network architectures 

used in the literature such as multilayer perceptron (MLP), 

radial basis function network (RBF) and recurrent neural 

network (RNN). 

In this study, we investigate numerically the 

thermochemical boriding process of the AISI 316L steel 

immersed in a salt bath (70% borax + 30% SiC) at 

temperatures between 850 °C and 1050 °C for 2, 4, 6 and 8 
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hours. 

To validate the model based on the artificial neural network 

model developed in this work, we used the mathematical taken 

the reference work [13], which is based on Fick's laws and 

takes into account some thermodynamic properties of the Fe-

B phase diagram. In our case, the phase diagram indicated the 

presence of two phases Fe2B and γ-Fe. 

 

 

2. ARTIFICIAL NEURAL NETWORK SIMULATION 

MODEL 

 

Neural networks are data processing systems; their structure 

is inspired from the nervous system structure [17-18]. They are 

modelling tools by learning, which permit the adjustment of 

very general nonlinear functions into sets of points describing 

static or dynamic phenomenon [19].  

In this study, we used a multilayer perceptron (MLP) 

wherein the artificial neuron (Figure 1) receives a number of 

input variables from neurons belonging to upstream level 

represented by: x1, x2, ..., xk. An Wki weight is associated with 

each of the inputs and is representative of the connection 

strength. 

The weights Wki used for the connections between different 

layers have much significance in the work of the artificial 

neural network, and the characterization of the network. 

We calculate the output of each neuron (yi) in the hidden 

and output layers as follows. We add a bias (θi) or threshold 

value to the activation of a neuron (we call this result ni) and 

use the sigmoid function below to get the output. 

 

 
 

Figure 1. Schematic of an artificial neuron in the MLP 

network 

 

The artificial neural network used for the boriding process 

study is composed of three layers, an input layer made up of 

two neurons (temperature and boriding time), a hidden layer 

with five neurons and an output layer representing the 

thickness of borided layer.  

The result obtained by the output layer is represented by the 

following equation:  

 

𝑦 = 𝑔(∑ 𝑤𝑗1
2 𝑔(∑ 𝑤𝑘𝑗

1 𝑥𝑘 + 𝜃𝑗1
1 )2

𝑘=1 )5
𝑗=1 + 𝜃12

2 )           (1) 

 

where, 𝜃𝑖𝑗
𝑘 : represents the bias, 𝑤𝑖𝑗

𝑘 : the weight between neuron 

i and j, k the layer and g: the activation function. 

In this type of simulation, we have three important 

parameters. At Input, we use the treatment time and the 

boriding temperature. At output, we obtain the thickness of 

borided layer. The artificial neural network is shown 

schematically in Figure 2. 

 
Figure 2. Schematic representation of the artificial neural 

network for the boronizing simulation process 

 

The activation function used is the sigmoid function given 

by the following expression:  

 

g(n) = 1/(1 + exp (−n))                            (2) 

 

The learning algorithm is a mathematical method that 

modifies the connection weights to converge to a solution that 

allows the network to perform the desired task. The learning is 

a parametric identification, which optimizes the weight values 

of the network [20-21]. During this phase, the behaviour of the 

network is changed until getting the desired one.  

In this study, we use the classical supervised back 

propagation learning method, which is a learning algorithm 

suitable for multi-layer neural networks. 

Back propagation is the best known learning method, and 

one of the most efficient for multilayer networks [20].  

Learning methods are generally often iterative; they adapt 

the connection weights after the presentation of each input 

vector. It is necessary to set the input data many times until the 

weights converge to stable values.  

A training base is the test base, which performs the training 

of the network and it is used to find a set of optimized weights. 

The network was trained with the experimental data obtained 

from the boriding of AISI 316L steel [22].  

The weights values (wik) and values are automatically 

initialized with a program that we wrote in the C++ language. 

The number of iterations performed during the training phase 

is 60000 iterations, during the training phase and the learning 

rate was set to 0.04.  

 

 

3. EXPERIMENTAL PROCEDURE 

 

In order to test the validity of mathematical model, we used 

the results of the boriding experiments on AISI 316L steel 

taken from our own experimental data recently published in 

[22]. In that experiment, the samples of AISI 316L stainless 

steel were selected for boriding treatment. 

The chemical composition of AISI 316 L steel (in mass %) 

is the following: 0.03 % C, 1.3 % Mn, 12.2 % Ni, 0.35% 

Co,17.4 % Cr,2.28 % Mo,0.44 % Ti, 0.45 % Si and 0.07 % V. 

The boriding process were achieved in molten salts, 

constituted of sodium tetraborate Na2B4O7 (70 % in mass) and 

a reducing agent silicon carbide SiC (30 % in mass). 

The use of the silicon carbide (SiC) as a reducing agent led 

to a single-phase layer (Fe2B). The thermochemical treatment 

was done at the three different temperatures 850 °C, 950 °C 

and 1000 °C with three treatment times 2, 4, 6 and 8 hours. 
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After the boriding treatments, some samples were sectioned 

longitudinally to obtain two sections for optical microscopy 

observation.  

 

 

4. RESULTS AND DISCUSSION 

 

In the first section, we presented the relative results for the 

first model of artificial neural network, which we compared to 

the experimental results [22]. In the second section, we 

presented the simulation with mathematical model based on 

Fick’s second law [13] and the comparison of the results 

obtained by these two models.  

 

4.1 Artificial neural network approach 

 

The learning of artificial network was made via the same 

experimental results [22] used in the first model with 60000 

iterations. The convergence rate value of the network is 10-6. 

To apply the learning algorithm of the network we normalized 

the experimental data with the following parabolic equation:  

 

 λ = k√t                                      (3) 

 

With : Fe2B layer thickness, k: the kinetic constant and t: 

boriding time.  

The learning algorithm purpose is to provide a method to 

the network, so it can adjust its settings for examples’ 

treatment.  

Learning is the process of adapting the parameters of a 

system to give a desired response to any input or to any 

stimulation. In Table 1, we gathered the values of borided 

layer thicknesses obtained by the method of artificial neural 

networks and their comparison with the experimental results.  

 

Table 1. Comparison between the experimental values and 

those obtained during the training of the neural network at 

temperatures of (950 and 1000 °C) 

 
Times 

(h) 

Fe2B layer thickness 

Experimental values 

(µm) 

Values obtained by the 

neural network(µm) 

2h 4h 6h 2h 4h 6h 
950 °C 6 12 18 8.99 13.27 15.45 

1000 °C 9 17 24 12.94 19.07 21.73 

 

 
 

Figure 3. Average error on the Fe2B layer thickness 

 
We found a good agreement between the experimental data 

and the data obtained with the neural network at different 

temperatures.  

The mean prediction error of the thickness of borided layer 

related to different treatments from 850 °C to 1000 °C as a 

function of time is plotted on Figure 3. We observed that the 

error shifts between 1 and 1.5 µm for different processing 

times.  

 
4.2 Mathematical model 

 

The mathematical model used is derived from a previous 

work by Mebarek et al. [13]. This model is based on the 

solution of Fick's diffusion equation in a semi-infinite medium 

on one hand, and on the assumption that the boriding process 

is an equilibrium process on the other hand. The local 

thermodynamic equilibrium is quickly reached at each point in 

the material, from which we can estimate the growth rate at the 

interface (Fe2B/γ-Fe) and determine the boride layer thickness. 

The important parameters for the simulation are the 

temperature, process time, the diffusivity of boron in each 

phase and the concentration of boron at the material surface.  

For the Fe2B phase, we calculated the diffusion coefficient 

with the method given by Bektes et al. [23]. The relation 

between the boride layer thickness and the boriding 

temperature is given by: 

 

𝑑2 =  𝐷0. 𝑡. exp (
−𝑄

𝑅𝑇⁄ )                      (4) 

 

where, d is the experimental boride layer thickness (μm), D0 is 

the boron diffusion coefficient (μm2/s), t is the boriding time 

(s), Q is the -activation energy for boron diffusion (J/mol), R 

is the universal gas constant R=8.314 J/mol K, and T is the 

boriding temperature (K). 

Equation 4 can be written as follows: 

 

2. 𝐿𝑛 (𝑑) =
−𝑄

𝑅𝑇⁄ + 𝐿𝑛(𝐷0. 𝑡)              (5) 

 

We can determine the diffusion coefficient after fitting the 

logarithmic values of the average thickness of boride layer as 

a function of inverse temperatures.  

Consequently, the activation energy for boron diffusion in 

the Fe2B layer is determined by the slope obtained from the 

plot Ln(d) versus 1/T. By Assuming the Arrhenius relation for 

the diffusion process, one gets Equation (6): 

 

)()
106.174

exp(1094.6 12
3

5

2

−− 
−= sm

RT
D BFe

   (6) 

 

where the estimated value of activation energy for boron 

diffusion is equal to 174600 J/mol.  

While for the γ-Fe phase, we kept the same formula as in [6-

24]. At the interfaces, we used the results given by Hallemans 

et al. and Brakman et al. [25-10]. For boron concentrations at 

the (Fe2B/γ-Fe) interface, we used the following values:  

 

Fe2B/γ-Fe Interface: 𝐶𝐵
𝐹𝑒2𝐵/𝛾−𝐹𝑒

= 8.83 (𝑤𝑡. %) 

 

γ-Fe/Fe2B Interface 𝐶𝐵
−𝐹𝑒/𝐹𝑒2𝐵

= 35 × 10−4 (𝑤𝑡. %) 

 

For boron concentration at the surface 8.854 wt.%, we get 

the values of the growth rate constants simulated for different 

temperatures (Figure 4). 
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The change in the growth rate constant at the Fe2B/-F 

interface is shown in Figure 4; we note that the growth kinetics 

of the borided layer depends on the boron concentration and 

on the process temperature. If the temperature increases, the 

diffusion rate of boron atoms becomes very fast. The growth 

kinetics of Fe2B layers increases according to a parabolic 

boriding time law; hence, the boron diffusion controls the 

growth of Fe2B. 

 
 

Figure 4. Evolution of the absolute growth rate constant 

values in function of temperature 

 

From the growth rate constants determined previously, we 

calculated the thickness of borided layer. The thickness is 

estimated by assuming that the Fe2B layer forms instantly at 

t=0 and covers the surface immediately.  

The comparison of the thickness of calculated borided layer 

with the experimental results is shown in Figure 5. We note 

that there is a good concordance between the two results 

(simulation and experiment). 

 

 
 

Figure 5. Comparison between the simulated and the 

measured thickness for various temperatures 

 

The comparison of simulation results with the model based 

on Fick's second law [13] and with the artificial neural 

networks’ results (ANN) are shown in Figure 6. We note that 

the results obtained by the artificial neural networks (ANN) 

are consistent with data from the second Fick's law.  

The ANN approach can be used to determine optimal 

conditions for the process control.  

From the achieved results, the methodology of neural 

network has become an alternative to modelling the boriding 

process.  

In this study, the mathematical model is based on the second 

Fick's law, we used several parameters and the validity interval 

of this model is limited to temperatures between 850 °C and 

1050 °C.  

However, for the artificial neural network model, we used 

only temperature, time and the learning base. 

 

 
 

Figure 6. Evolution of the thickness of the boronized layer in 

function of time 

 

 

5. CONCLUSIONS  

 

Through this work, it is seen that it is possible to develop 

artificial neural network model to treat the boriding process. 

The simulation of the boriding kinetics by this approach gives 

good results. The comparison of experimental results with our 

theoretical calculations allows us to confirm the validity of the 

used approach.  

The results of neural network method applied for predicting 

the borided layer thickness are very satisfying, and they 

encourage further investigations. The accuracy of prediction 

depends on the accuracy of measured data, and they should 

reflect real relations between times, temperature and layer 

thickness. 

With these numerical approaches, one can determine the 

influence of the different involved parameters, such as the 

temperature, the boron concentration and the duration of 

boriding process. The results obtained in this work clearly 

showed the influence of these parameters.  

The main advantage of this technique is the ability of the 

neural network self-learning. Depending on the process 

parameters, this network is able to self-adjust by changing the 

neuron weights until results reach the desired error. Through 

comparing the results obtained by the artificial neural network 

to the experimental data, the average error generated from the 

neural network was between 1µm and 1.25 µm. 

In summary, on one hand, for the mathematical model 

(second Fick's law) we used several parameters which are: (the 

time, the temperature, the concentration and the concerned 

interface, the boron surface concentration and the diffusion 

coefficient of boron in each phase). The validity interval of th 

model based on second Fick’s law is limited to the temperature 

range 850- 1050 °C.  

On the other hand, for the second model (artificial neural 

network) we used only the temperature, the time and the 

learning base.  
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