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The ongoing surveillance of solar panel output power is a robust technique for identifying 

solar panel malfunctions. In this study, any divergences from the anticipated power output 

are meticulously analyzed to discern the origin of the fault. A method based on a trained 

convolutional neural network (CNN) is suggested for defect detection, designed to segment 

images of photovoltaic modules, thereby enhancing the resilience of the solar power system. 

The proposed deep sequential model bifurcates the input images of photovoltaic cells into 

two categories, i.e., defective and normal, facilitating binary classification. The defective 

photovoltaic cells are further classified into subgroups, such as dim, fractured, or dusty 

cells, allowing for multiclass classification. This further evaluation elucidates the network's 

capacity. Remarkably, the proposed model demonstrated a fault diagnosis accuracy of 

99.947% in solar panels, surpassing other models. 
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1. INTRODUCTION

Fault detection in solar panels, typically conducted through 

the analysis of output power data, is an established technique 

for diagnosing malfunctions within these renewable energy 

systems. This method necessitates the continuous monitoring 

of the solar panel's output power, wherein any deviations from 

the anticipated power output are scrutinised for determining 

the origin of the fault [1]. The process initiates with the 

establishment of a baseline for the expected output power of 

the solar panel, a parameter derived through a combination of 

manufacturer specifications, simulations, and measurements. 

Subsequent to the determination of the expected output power, 

the actual output power is continuously monitored. Deviations 

from the expected output power may signify a fault within the 

solar panel system. 

For instance, consistently lower output power than expected 

may point towards issues such as shading or a malfunctioning 

cell within the panel. Conversely, consistently higher output 

power than expected might imply the existence of a faulty 

voltage regulator or a wiring issue. The identification of the 

specific cause of the fault could necessitate additional 

diagnostics, such as thermal imaging to locate hot spots on the 

solar panel, which could indicate a malfunctioning cell, or 

electrical tests to detect issues with the wiring or voltage 

regulators. By and large, fault detection in solar panels using 

output power data is a valuable technique for diagnosing issues, 

facilitating the swift detection and diagnosis of faults, thereby 

minimising downtime and enhancing the efficiency of the 

solar panel system [2]. 

The rapid proliferation of grid-integrated renewable energy 

sources has led to the evolution of hybrid grids. However, the 

inconsistent characteristics of renewable energy power 

generation have resulted in challenges associated with power 

quality (PQ), system reliability, and stability, adversely 

impacting the operation of protective relays in real-time. 

Furthermore, high penetration of renewable energy sources 

into the utility grid could be achieved by employing multi-

tapped transmission lines, particularly for the integration of 

wind and solar powers [3]. Such a development has posed 

substantial challenges for power system engineers in the 

design of suitable protection schemes. Different faults and 

incidents occurring on the power system network can 

engender problems relating to power quality, power system 

protection, and power network stability. The significance and 

severity of power system faults vary corresponding to the 

frequency of occurrence and magnitude of power flow in the 

network, as illustrated in Figure 1. 

The penetration of renewable energy (RE) into utility 

networks has been increasing steadily, bringing into focus 

issues concerning energy security, equipment protection, grid 

security, power reliability, and power quality. The integration 

of RE near load centres has further exacerbated problems of 

false and delayed tripping within the protection system, 

primarily due to the uncertain and variable nature of RE 

generation. RE sources are known to cause considerable 

voltage transients and high current variations during outages 

and synchronization with the grid. 

Short-circuiting of the modules composing a panel can lead 

to internal disruptions, resulting in decreased current and 

voltage readings, thereby reducing the total power output. This 

reduction can also be triggered by naturally existing external 

elements that diminish the amount of sunlight (irradiance) 

impinging on the surface of the solar panels, leading to dips in 

current and voltage readings and subsequently affecting the 

overall power output. A critical issue arises when changes in 

readings induced by internal defects are frequently conflated 

with those caused by external disturbances. It is crucial to 
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address only the internal issues; the external disturbances, 

which could be as benign as a passing cloud, can often be 

overlooked. 

The primary objective of this work is to isolate the internal 

(Line-to-Line or LL) faults that may be present within a panel 

and dismiss the decrease in power output triggered by external 

(shading) disturbances. This focus on internal faults allows for 

a more precise understanding and troubleshooting of issues 

that directly impact the efficiency and functionality of the solar 

panels. 

 

 
 

Figure 1. Fault types in Solar panels 

 

1.1 Implications of faults in solar panels 

 

Faults within solar panels typically result in a reduction of 

maximum power generation. Instead of identifying the Global 

Maximum Power Point (GMPP), only the Local Maximum 

Power Point (LMPP) is detected, thereby diminishing the 

efficiency of the entire solar PV system [4]. Herein, Ipv and 

Vpv represent the PV array current measurement and voltage 

measurement, respectively, while Ia, Ib, and Ic denote current 

measurements of Phase_A, Phase_B, and Phase_C, 

respectively. Similarly, Va, Vb, and Vc correspond to voltage 

measurements of phases A, B, and C, respectively. These 

complexities highlight the necessity for swift fault detection 

and classification by PV installers or consumers to facilitate 

effective rectification. 

In light of such challenges, a range of contemporary 

methods, including neural networks, fuzzy logic, and machine 

learning algorithms, has been successfully employed in the 

literature and has gained increasing popularity in the research 

field. Furthermore, various strategies, such as Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO), 

Genetic algorithms, and advanced neuro-fuzzy methods, have 

been proposed and examined for monitoring the maximum 

power point under partially shaded conditions. These 

advanced methodologies aim to enhance the reliability and 

efficiency of solar PV systems by providing more accurate and 

timely fault detection and classification. 

 

 

2. RELATED WORK 

 

Bhadla Solar Park, one of the world's largest solar power 

parks, is situated in the sandy region of Bhadla, Rajasthan. 

Comprising 10 million solar panels across 14,000 acres, it 

boasts a total capacity of 2245MW. The growth of the PV 

industry has been found to increase exponentially every three 

years according to recent surveys, with solar power being 

utilized in various applications, such as electric vehicles and 

smart grids [5]. 

Solar energy is primarily harnessed through photovoltaic 

(PV) panels, generating DC power. The PV panels available 

in the market are diverse, including amorphous silicon (a-Si), 

mono-crystalline Silicon, Polycrystalline Silicon, Cadmium 

Telluride (CdTe), and Copper Indium Gallium Selenide 

(CIGS), allowing consumers and installers to select based on 

their respective requirements. However, despite the benefits of 

PV utilization, it faces challenges such as partial shading, low 

conversion efficiency, aging faults, and high installation costs 

[6]. 

Partial shading, a phenomenon where some parts of the PV 

panels do not receive full irradiation or when irradiation is 

unequal across a PV array, can significantly reduce power 

generation [7]. This can be due to a variety of reasons, 

including tree shadows, proximity to tall buildings, bird nests, 

sand deposition, and passing clouds. This results in multiple 

peaks in power output, which has led researchers to propose 

numerous maximum power point tracking algorithms. 

Techniques like Particle Swarm Optimization-based MPPT 

algorithms and Grey Wolf Optimization (GWO) algorithm-

based MPPT have been implemented for their simplicity and 

reduced hardware requirements. 

The performance of PV array under various shading 

patterns has been evaluated, considering patterns such as 

uneven row, uneven column, diagonal, random short and 

narrow, short and wide, long and narrow, and long and wide, 

among others [8]. The PV array performance is typically 

assessed under three conditions: normal operating, partial 

shading, and faulty. Aging and mismatch, two interrelated 

factors, can lead to panel failures. A single panel failure can 

impact the entire array's performance. Aging occurs due to 

prolonged exposure to wind and weather. 

Several solutions have been proposed to address these 

issues. Kellil et al. [9] suggested a reconfiguration 

arrangement based on properties such as overheating and 

damage of the aged module. Mismatch conditions, often 

resulting from non-uniform aging, occur when the cells are 

uneven [10]. The efficacy of detection can be improved 

through hybrid models. In view of this, the authors of the 

present study have designed a new hybrid model aimed at 

detecting the aforementioned faults. 

 
 

3. METHODOLOGY 

 
3.1 Deep sequential model 

 

A deep sequential model, also known as a deep sequential 

neural network, is a type of artificial neural network that is 

designed to process data in a sequential or temporal manner. 

These models are commonly used for tasks involving 

sequences of data, such as time series analysis, natural 

language processing, speech recognition, and more. Deep 

sequential models are capable of learning complex patterns 

and dependencies within sequential data, which makes them 

suitable for a wide range of applications. 

Key components and characteristics of deep sequential 

models include: 
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Sequential Processing: Deep sequential models process 

input data one step at a time, maintaining a sense of order or 

sequence. This is in contrast to feedforward neural networks, 

which take static inputs and produce static outputs. 

Deep Architecture: Deep sequential models have multiple 

layers of processing units (neurons or cells) stacked on top of 

each other. These layers can be recurrent, convolutional, or a 

combination of both, depending on the specific architecture. 

Recurrent Layers: Recurrent neural networks (RNNs) are a 

common choice for modeling sequential data. RNNs have 

connections that loop back on themselves, allowing them to 

maintain an internal state and capture dependencies over time. 

Long Short-Term Memory (LSTM) and Gated Recurrent 

Unit (GRU): These are specialized recurrent layers that are 

designed to address the vanishing gradient problem in 

traditional RNNs. LSTMs and GRUs can capture long-term 

dependencies in data. 

Convolutional Layers: In some cases, deep sequential 

models may also include convolutional layers, which are well-

suited for tasks involving sequences with spatial components, 

such as image sequences or sensor data. 

Variable-Length Inputs: Deep sequential models can handle 

input sequences of variable length. This flexibility is important 

for many real-world applications where the length of the 

sequence may vary. 

Training: Training deep sequential models typically 

involves backpropagation through time (BPTT) for RNNs, 

which is a variant of the standard backpropagation algorithm. 

Training deep sequential models can be computationally 

intensive and may require careful initialization and 

regularization techniques. 

Deep sequential models have been successfully applied to a 

wide range of tasks, including natural language understanding 

and generation, speech recognition, machine translation, 

sentiment analysis, video analysis, and more. 

Common deep sequential model architectures include: 

Recurrent Neural Networks (RNNs): Basic RNNs are the 

simplest form of deep sequential models. However, they have 

limitations in capturing long-range dependencies. 

Gated Recurrent Unit (GRU) Networks: GRUs are another 

variant of RNNs, which are computationally more efficient 

than LSTMs while still being able to capture long-term 

dependencies as shown in Figure 2. 

 

 
 

Figure 2. Gated Recurrent Unit (GRU) 

 

Transformer-Based Models: Transformers have gained 

popularity for natural language processing tasks and sequence-

to-sequence tasks. They use self-attention mechanisms to 

capture dependencies in input sequences. 

Deep sequential models have significantly advanced the 

state of the art in many areas of artificial intelligence and 

machine learning. They are a fundamental tool for modeling 

and making predictions on sequential data. Deep sequential 

models are implemented when the input and output are both 

data sequences as shown in Figure 3. The points of data can be 

arranged into sequences so that significant data about 

observation performed at subsequently points in the collection 

may be deduced from measurements performed at a single 

instance in the sequence. The sequence learning issue can 

occur when a parameter is a sequence and an output is a single 

data point, as in the instances of video action identification, 

sentiment classification, and stock price predictions. 

For sequence data, managing ongoing supervised learning 

processes is necessary [11]. The combined length of the 

sequences used for input and output may vary and may appear 

the same or different in instances where both the input and the 

result are sequences, such as recognition of speech, natural 

language understanding, and sequence DNA analysis. Neural 

networks based on deep learning have mostly been applicable 

to speech recognition, natural language processing, and picture 

analysis since they demonstrate the capacity to capture 

extremely complex input and output mapping [12]. This 

approach ultimately led to the development of multiple deep-

learning time series forecasting structures that exceed 

conventional methods in terms of precision and efficacy. 

 

  
 

Figure 3. Deep sequential model 

 

3.1.1 Long short-term memory networks 

Recurrent neural networks serve in the analysis of input 

neural network categories in sequence. Because of these 

hidden states, previously predicted amounts can be used as 

inputs as shown in Figure 4. 

 

  
 

Figure 4. Recurrent neural networks model 

 

An RNN comprising input, output, and a hidden layer make 

up a multilayer perceptron [13]. The n layers that make up a 

multi-layered perceptron are established by the particular 

order in which they are generated. The Keras software 
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platform was employed to create the deep learning algorithm. 

As data shows up, is stored by the algorithm, and becomes 

available points, a structure must be maintained. An input gate, 

a memory gate, and an output gate were the three gates that 

LSTMs utilize. Each of the three of these gates, that compose 

the vast majority of the LSTM model shown in Figure 5, are 

in the position of regulating the monitoring of everything. Eq. 

1 indicates that the recollecting component of the gate utilizes 

a combination of the previously concealed state and the data 

item being processed by the sequencing gate to identify which 

components of the LSTM should now be removed [14].  

 

 
 

Figure 5. Long short-term memory model 

 

Equation is the input component of the computational Eq. 2 

with the gate. 

 

 ( )1( ) ,f t t fF t W h X b −= +  (1) 

 

 ( )1( ) ,f t t iI t W h X b −= +  (2) 

 

1
( )

1 axt
f x

e
=

+
 (3) 

 

2
tanh( ) 1

1 2x
x

e
= −

+ −
 (4) 

 

The newly developed concealed state includes to be 

generated through the output gates. The most recently updated 

input data, the least current concealed state, and the most 

current real state of cells were all taken into consideration 

when choosing the option that was made. The remember gate, 

input gate, and output gate weight values were Wf, Wi, and 

Wo, correspondingly. The response to Eq. 4 indicates that the 

formula operator sigmoid used data from both the most current 

input and the previously provided hidden layer input [15]. The 

(tanh) function has been utilized to communicate data 

regarding the parameters connected to the input to the gate, the 

current source, and its previously concealed state. Whereas the 

range of a sigmoid () function's value is 0 to 1, those of the 

tanh function is -1 to 1. 

 

3.1.2 Multilayer perceptron 

An artificial neural network with multiple layers of 

connected neurons or nodes is referred to as a feedforward 

neural network, or multilayer perceptron (MLP) as shown in 

Figure 6. Information passes from the input layer to the final 

layer of output through the hidden layers.  

Machine learning tasks including pattern recognition, 

regression, and classification belong to several applications for 

MLPs. 

Key characteristics of a Multilayer Perceptron as shown in 

Figure 6: 

Input Layer: The nodes in this layer represent in all the 

variables that have been entered. The number of nodes in this 

layer is decided by the dimensionality of the input data, each 

node indicating a feature. 

Hidden Layers: There could be one or more hidden layers 

in between the input and output layers. Nodes in these 

categories conduct out computations and transform the input 

data into a format appropriate for the output. Hyper parameters 

that can be modified are the amount of nodes in each layer and 

the number of hidden stages. 

Output Layer: The algorithm's final predictions or outputs 

are produced by the output layer. The type of analysis being 

performed (e.g., regression, multi-class classification, binary 

classification) affects how many nodes belong to this layer. 

 

 
 

Figure 6. Multi-layer perceptron 

 

 
 

Figure 7. The progression of the process 

 

Another type of artificial neural network that is frequently 

used for image and video recognition applications is a 

convolutional neural network (CNN). They were designed to 

process input data having a structure resembling a grid, like an 

image. 

An MLP can process the contextual data, such as 

maintenance logs or historical operating conditions, while an 

LSTM can capture temporal dependencies in sensor data. The 

combined model can predict equipment failures more 

accurately. 

Hybrid models that combine Multilayer Perceptrons (MLPs) 

and Long Short-Term Memory (LSTM) networks can be 

powerful tools in machine learning, especially when dealing 

with complex data that includes both structured and sequential 
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components. The progession of the process is as shown in 

Figure 7. 

 

 

4. DATA PREPROCESSING 

 

Data on Grid-connected PV System malfunctions (GPVS 

faults) are gathered through laboratory tests of PV microgrid 

system malfunctions. There are 16 data files '.csv' files-each 

representing a single experiment scenario and containing 

information on defects in photovoltaic arrays, inverters, grid 

anomalies, feedback sensors, and MPPT controllers of varying 

severity [16]. For the purpose of reactive maintenance and PV 

system protection, GPVS-Faults data can be used to create, 

validate, and evaluate various fault detection, diagnosis, and 

classification methods. The faults were manually introduced 

in the middle of the experiments. Low-magnitude fault 

identification is negatively impacted by MPPT/IPPT modes; 

high-frequency data are noisy; temperature and insolation are 

disrupted and fluctuate both during and between testing. The 

issue is to find the flaws before a complete failure since with 

significant faults, the operation is interrupted and the system 

may shut down. Time: Time of real measurement in seconds. 

The average sampling is = 9.9989ms. 

If: Positive-sequence estimated current frequency. 

Vdc: DC voltage measurement. 

Vabc: Positive-sequence estimated voltage magnitude. 

Iabc: Positive-sequence estimated current magnitude. 

Vf: Positive-sequence estimated current frequency. 

Data preprocessing is a crucial step in preparing a dataset 

for analysis or machine learning. Without proper 

preprocessing, the data might contain inconsistencies, noise, 

or missing values that can negatively affect the quality of the 

results. 

Missing values in the dataset were removed using 

techniques such as mean, median, or machine learning 

algorithms. Data is split into train data, test data, and validation 

data [17]. 

In this work standardScaler and labelEncoder methods are 

used for data preprocessing. StandardScaler is a popular 

method for standardizing (or z-score scaling) numerical 

features in your dataset. Standardization transforms the data 

such that it has a mean of 0 and a standard deviation of 1. This 

can be important for some machine learning algorithms that 

are sensitive to the scale of features. 

LabelEncoder encodes the values in the target column of the 

solar_data_Lim_power DataFrame. The categorical labels will 

be transformed into numerical values. 

 

 

5. EXPERIMENTATION RESULTS 

 

5.1 Performance metrics 

 

It is essential to choose the appropriate performance criteria 

for the purpose of assessing machine learning and deep 

learning algorithms successfully. They mainly used the 

performance statistics of recall (R), accuracy (A), precision (P), 

and F1-score (F1) to satisfy the objective of this research. 

 
 True positive ( )

 True positive ( )  False positive ( )

Tp
precision

Tp Fp
=

+
 

(5) 

 

 True positive ( )

 True positive ( )  False Negative ( )

Tp
Recall

Tp Fn
=

+
 (6) 

 

Tp TN
Accuracy

Tp TN FP FN

+
=

+ + +
 (7) 

 Recall *  precision 
1 2*

 Recall  precision 
F score =

+
 (8) 

 

Table 1 presents the accuracy, precision, recall, and F1 

score results for the Random Forest classifier, K-nearest 

neighbor, SVM classifier, ensemble learning, and proposed 

model results. The technique to evaluate a machine learning 

model's performance based on multiple subsets of the training 

data is known as cross-validation. The standard deviation of 

the performance metrics across these subsets can give you an 

idea of how stable the model's performance is. A lower 

standard deviation generally indicates more consistent and 

stable performance. 

 

Table 1. Assessment of model output parameters 

 
Model Accuracy Standard Deviation 

Random Forest Classifier 0.9854 0.00215 

K-nearest Neighbor 0.94967 0.003434 

SVM Classifier 0.941301 0.00465 

Proposed Model 0.99947 0.99942 

 

 
 

Figure 8. Plotting the reduced dimensionality data with the 

corresponding fault label 

 

 
 

Figure 9. Confusion matrix of prediction 
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The standard deviation of a machine learning model's 

performance metric is a measure of the model's consistency. A 

low standard deviation indicates stable and predictable 

performance, while a high standard deviation suggests less 

stable and inconsistent performance. When comparing 

different models or evaluating the same model under various 

conditions, it's often preferable to choose the model with lower 

standard deviation, as it is more likely to generalize well to 

new, unseen data. However, it's crucial to consider other 

factors and conduct a comprehensive evaluation of model 

performance, as standard deviation alone may not capture all 

aspects of a model's behavior. 

Our proposed model got very good standard deviation value 

0.99942, which shows the stability of the model. 

The faults were manually introduced in the middle of the 

experiments. The readings at high frequencies are erratic. 

Between the scenarios and throughout them, there are 

disruptions. Temperature and insolation change throughout 

the trials and between them. The issue is to find and diagnose 

the defects before they result in such a complete failure 

because in critical fault scenarios, the operation is halted and 

the system may shut down. Furthermore, MPPT/ IPPT modes 

impair the ability to identify low-magnitude faults. The results 

of the prediction are shown in Figures 7 and 8. 

Figure 9 shows the Confusion matrix of the model, is a 

valuable for understanding a model's strengths and 

weaknesses, particularly in situations where one type of error 

(false positives or false negatives) is more costly or critical 

than the other. Analyzing the confusion matrix helps you fine-

tune the proposed machine-learning models and make 

informed decisions about model improvements or adjustments. 

 

 

6. CONCLUSION 

 

Photovoltaic systems are susceptible to a variety of errors 

and failures, prompt fault identification is crucial for their 

safety and effectiveness. Our proposed model deep sequential 

model-based fault detection is trained to utilize data, as well as 

the resulting prediction results are extremely accurate. The 

proposed model gets a good accuracy of 99.95%, which is 

better than other machine learning models. we can implement 

transfer learning to improve accuracy in the future. 
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NOMENCLATURE 

 

ht hidden layer vectors. 

xt input vector. 

bz, br, bh bias vector. 

Wz, Wr, Wh parameter matrices 

σ, tanh activation functions. 
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