
 

 

 

 

 
 

 

1. INTRODUCTION 

 

One broadly applicable and mostly reputed way to 

improve heat and mass transfer processes in fluids is to 

create the Lagrangian chaos in flows called chaotic 

advection or sub-laminar flow [1] [2] [3] [4]. This technique 

does not require the insertion of static mixers contrary to the 

conventional way [5].  Aref [2] outlined the chaotic 

kinematic of fluid particle trajectories in the two-

dimensional periodic flows using Poincaré section as one of 

the important tools for the analysis of dynamic systems [6]. 

After this work, many researches have been carried out to 

highlight the local proprieties of the velocity field in such 

flow and its effects on the enhancement of fluids mixing and 

heat transfer improvement. For example, in [7], a study of 

two-dimensional problem of fluid diffusion into another 

fluid was performed. The results reported that an intense 

deformation and rotation rates lead to a good mixing of the 

two fluids. Toussaint et al [8] studied the unsteady three-

dimensional flow in a rectangular cavity where the authors 

reported the evolution of the energy spectrum with the wave 

number. They found that the chaotic advection creates many 

scales in the flow and transferring energy from a given scale 

to the scale smaller. Besides, the dissipated energy in this 

type of flows is very low compared to that created in 

turbulent flows, even if the fluid is very viscous [9]. It is 

found that the chaotic advection enhances considerably the 

agitation and the stirring in the steady laminar 

incompressible flow case, within a twisted pipe with circular 

cross-section [10]. It was demonstrated that this 

enhancement is realized without any external intervention or 

additive energy expenditure, contrary to the turbulent flows 

case.  

Habchi et al [11] studied the mixing between a dispersed 

phase (water) and a continuous phase (oil) in helically coiled 

and chaotic twisted pipes. Deformation rate and elongation 

were estimated to verify the breakup of the droplets. Also, 

they checked through Eulerian and Lagrangian analytical 

approaches, that chaotic advection drives fluid particles to 

visit regions of high shear and elongation rates. Castelain et 

al [12] performed an experimental study of laminar flow in 

twisted pipe with a local Eulerian approach. The obtained 

results revealed that the fluid flow creates a complex 

stretching and folding phenomena, which produces 

horseshoe-type maps (e.g. two very close particles diverge 

exponentially). 

Habchi et al [13] studied numerically two types of 

channels. The first one is constituted by several arrays of 

rectangular vortex generators which are mounted in-line. In 

the second one, the arrays are periodically rotated by an 

angle of 90, with respect to the pipe axis. In this work, the 

authors have calculated the Poincaré maps, helicity (H) and 
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ABSTRACT  
 
It is well known that the convective terms in the equation of fluid motion play an outstanding role on the local 

proprieties of flows and they affect the local behaviour of physical processes such as deformation, rotation, 

stretching and folding. Large values of these processes in the flow have pronounced and lasting effects on the 

improvement of heat transfer and fluid mixing in ducts. The modification of the geometric scale presents an 

easy and adequate solution to increase these parameters. For this purpose, three dimensional zigzag channels 

with hydraulic diameters equal to 5 mm, 10 mm and 20 mm were examined in this study. Evolutions of the 

deformation rate, rotation rate and the stretching/compression coefficients of the vortices were examined for 

different values of the Reynolds number in three dimensional laminar open flow, using a CFD code. The 

results illustrate that the geometry with the smallest hydraulic diameter is the more favourable to increase the 

considered parameters. 
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the vortex intensity(𝛺), in both geometries. They found that 

the fluid flow in the second geometry is chaotic and leads to 

a good mixing in its cross section. 

Lasbet et al [14-15] presented the evolution of the 

trajectory of two particles, which were initially close to each 

other and injected at the inlet of a C-shaped geometry. The 

geometry cross section was rectangular with an aspect ratio 

of 2 and a hydraulic diameter of 1.33mm.  In this work, the 

particles trajectories were diverging rapidly; this can be a 

clear sign of chaotic advection as reported by [16]. The 

chaotic behaviour of fluid trajectories in the C-shaped 

geometry produces the greatest heat transfer intensification 

(the convective heat transfer coefficient was six times higher 

compared to that found in the straight channel). 

In order to optimize the geometry previously studied by 

[4-14-15], the present numerical work is carried out to 

analyse the behaviour of the velocity field and its proprieties. 

More specifically, the current work focuses on the effect of 

the geometry scale on the evolutions of the flow local 

kinematic, presented in terms of rotation rate, deformation 

rate and stretching/folding.  

2. DESCRIPTION OF THE GEOMETRY AND 

NUMERICAL METHOD 

In order to examine the scale geometry effect on the flow 

structure, three geometries having the same pattern with 

different dimensions are considered in this study: C05, C10 

and C20 corresponding to a hydraulic diameter of 5mm, 

10mm and 20 mm respectively. Each geometry is 

characterised by a square cross-section with an aspect ratio 

equal to 1 (Figure 1). The selected geometry is formed by 

two geometrical perturbations and each one is composed of a 

succession of three straight bends. The exit of the first 

perturbation is at the plane-4 while the exit of the second 

perturbation is at the plane-8. Because of the successive 

sudden reorientation of the flow direction in each 

disturbance, the baker's transformation in the fluid flow can 

be predicted. Such transformations highlight the stretching 

and folding phenomena where the trajectories of fluid 

particles become chaotic as proven by [17]. 

 

 
 

Figure 1. The considered geometry, C-shape form 

 

The mass conservation and Navier–Stokes equations were 

numerically solved using the commercial CFD code Fluent© 

and are given by the following equations respectively: 

 

∇⃗⃗ . �⃗� = 0 (1) 

 

 �⃗� . ∇̿ �⃗� = −
1

𝜌
∇⃗⃗ 𝑃 + 𝜈Δ�⃗�  (2) 

 

In the present study, the fluid is considered as Newtonian 

and incompressible and the fluid flow regime is laminar and 

steady. 

The applied boundary conditions are as follow:  

- At the inlet section: fully developed velocity profile 

[18].  

- At solid walls: no–slip conditions.  

- At the outlet section: outflow condition is 

considered. 

In our previous study [4], we characterized this geometry 

experimentally and numerically, in terms of heat transfer. 

Numerical and experimental Results are in good agreement 

and they show best thermal performances compared to other 

geometries considered in [4]. 

A previous sensitivity mesh study performed by [14] 

shown that for each cubic cell with dimensions (a,a,a) 

corresponding to the three directions (x,y,z), the spatial 

resolution (40.40.40) is the appropriate grid to detect the 

velocity and temperature gradients in the fluid flow. 

The SIMPLE scheme is used to achieve the pressure-

velocity coupling, while in the spatial discretization, a 

Second-Order upwind scheme is adopted for momentum and 

pressure. 

During the numerical simulations, it is considered that the 

convergence is achieved when the residues are less than 10-6 

for the conservation equations. 

3. RESULTS AND DISCUSSIONS  

3.1 Stretching and compression of the vorticity 

Applying the curl operation on the Navier-Stokes equation 

leads to the vortex transfer equation, which can be written in 

the following form: 

 

𝜕Ω⃗⃗ /𝜕𝑡 + �⃗� . ∇̿Ω⃗⃗ = Ω⃗⃗ . ∇̿�⃗� + 𝜈𝛥Ω⃗⃗      (3) 

 

The term Ω⃗⃗ . ∇̿V⃗⃗  induces formation of vortex structures in 

the flow with different sizes by generating the stretching and 

compression (folding) vortex in the flow, see figure 2. The 

stretching and compression phenomena act simultaneously 

on the vortex dimensions. At a given time, the stretching 

operation, increases the vortex length and decreases its cross 

section, while the compression decreases the vortex length 

and increases its cross section. The diminution of the cross-

section engenders the vortex intensity augmentation. These 

phenomena are generated as a consequence of the 

conservations of the mass and angular momentum. As a 

result, a large cascade of scale in the flow is produced, where 

the large scale size corresponds to the production scale, 

which is limited by the flow domain size. The smaller scale 

is related to the dissipation scale and it is limited by the 

viscous effects. The growing influence of the convective 

terms in equation (3) leads to the transition regime from 

laminar to turbulence. 
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Figure 2. Illustration of the stretching and compression 

operations 

 

The appearance of the stretching and folding in the flow 

often gives rise to chaotic behaviour. Stretching results in 

nearby points diverging, folding results in distant points 

being mixed together. These operations in the flow destroy 

the thermal and dynamic boundary layers and prevent its re-

formation. The boundary layer being a barrier against the 

parietal thermal transfer, its destruction enhances the heat 

transfer [19]. On the other hand, these operations increase 

the contact area between fluids to be mixed even in the 

existence of the interfacial barrier as surface tension [20]. To 

characterize this behaviour in the flow, the stretching and 

compression coefficients of the vortex  𝛼 was estimated. It is 

defined by the following expression: 

 

𝛼 =
�⃗� . �̿�. �⃗� 

𝛺2
 

        (4) 

 

With �̿�  is the deformation tensor and �⃗�  is the vorticity 

vector. At any location where 𝛼 > 0, the vortex stretching 

prevails on vortex compression [21]. 𝛼+  presents the 

arithmetic average of the positive values of the stretching 

coefficient and 𝛼−  presents the arithmetic average of the 

negative values of the folding coefficient. 

Figures 3 and 4, present respectively the evolutions of 

vortex stretching coefficient (𝛼+)  and compression 

coefficient (𝛼−) with respect to Reynolds number (Re) in the 

three geometries types. These coefficients increase 

constantly with the increase of the Reynolds number. For the 

C10 and C20 geometries, the stretching and compression 

coefficients are barely different mainly at low Reynolds 

number. Once the Reynolds number exceeds the value of 50, 

these factors in the C05 channel overcome on that in the 

other geometries. The decrease of the scale makes these two 

phenomena very important in the flow where the stretching 

aids to create grand structures (large scale) and folding aids 

to create small dissipation structures (small scale). This 

allows transferring the energy from the large scale to the 

small scale. 
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Figure 3. Evolution of the vortex stretching in the fluid 

flow with Reynolds number for the three geometries 
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Figure 4. Evolution of the vortex compression in the fluid 

flow with Reynolds number for the three geometries 

 

3.2 Deformation and rotation rates in the flow 

Both mechanisms (deformation and rotation) are 

complementary in the mixing operations. The rotation 

process gives rise to three-dimensional movements of the 

fluid particles and it can transport the fluid particles to 

regions of high shear rates. The rotation process realizes a 

good macroscopic mixing by agitation while the deformation 

process achieves a good quality of mixing by molecular 

diffusion. For this aim, the geometry scale can be a potential 

solution for increasing the deformation and rotation rates at 

once. In the present study, an examination of the geometry 

dimensions effect on the deformation and rotation rates is 

performed. Evolutions of the mean deformation and rotation 

rates (𝐷m 𝑎𝑛𝑑 𝛺m) in the three geometries (C05, C10 and 

C20) in function of the Reynolds number ranging from 25 to 

200 are presented in figure 5 and 6. The two parameters, 

rotation and deformation, are defined by [22] by the 

following equations: 

  

𝐷 = [2 (
𝜕𝑢

𝜕𝑥
)
2

+ 2(
𝜕𝑣

𝜕𝑦
)
2

+ 2(
𝜕𝑤

𝜕𝑧
)
2

+ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)
2

+

(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)
2

]

1

2
                                                 (5) 

 

𝐷m =
1

℧
∫𝐷𝑑℧                                                                     (6) 
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𝛺 =
1

2
[(

𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
)
2

+ (
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)
2

]

1

2
               (7) 

 

𝛺m =
1

℧
∫𝛺𝑑℧                                                                     (8) 

 

where ℧  represents the total volume of the fluid in the 

channel. 

For the three channels, both quantities evolve with 

Reynolds number in different manners according to the 

geometry in which they are regarded. When the Reynolds 

number increases, these parameters are more vigorous, and 

the flow becomes more agitated and sheared. Besides, the 

flow in the channel C05 exhibits very high rates of 

deformation and rotation compared to the other two ones: 

C10 and C20. In other words, at a given Reynolds number 

value, the deformation and rotation rates in the C05 

geometry are more important compared to the other 

geometries. This explains that this behaviour is kinematic 

and is accentuated by the Reynolds number. The C10 and 

C20 channels have qualitatively the same behaviour in terms 

of deformation and rotation rates. The difference becomes 

noticeable when the Reynolds number exceeds the value of 

75. 
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Figure 5. Evolutions of the deformation rate with Reynolds 

number for the three geometries 
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Figure 6. Evolutions of the rotation rate with Reynolds 

number for the three geometries 

 

3.3 Secondary flows 

3.3.1 Vortex intensity 

When the fluid passes through the geometrical 

perturbation in the considered channel, a secondary flow is 

created by the presence of a centrifugal force. The secondary 

flow is more intense for the disturbance having a complex 

shape. In order to estimate the secondary flow, the vortex 

intensity was calculated at the exits of the two perturbation 

zones (plane-4 and plane-8) as defined by [23]: 

 

Ωaverage =
1

𝑆
∫|𝛺𝑧|𝑑𝑆                                                          (9) 

 

where S is the cross section area and 𝛺𝑧 is the vorticity at the 

flow cross section. Due to the secondary flow effect, the 

transversal movements of the particles increases and the 

axial dispersion decreases, which consequently enhanced the 

heat transfer [23-24]. Figure 7 and 8 display the evolutions 

of the vortex Intensity Ωaverage with Reynolds number at the 

exits of the two perturbation areas (plane-4 and plane-8) in 

the considered geometries. The vortex intensity increases 

monotonously with the Reynolds number in all the proposed 

geometries and it increases with the reduction of the 

geometry scale. An important notice is that the slope of the 

curve for the geometry C05 is greater than the slopes of the 

two other curves (C10 and C20). This can be explained by 

the existence of much great secondary flows in the C05 

geometry compared to those exhibited in the other 

geometries even at low Reynolds numbers. In the geometries 

C10 and C20, the evolutions are very close to each other.  

For a same geometry and at a given Reynolds number, the 

magnitude of the vortex intensity in the two cross sections 

(plane-4 and plane-8) is unchangeable which explain that the 

secondary flow field is uniformly distributed over the entire 

fluid domain. 
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Figure 7. Variation of the vortex Intensity with Reynolds 

number for the three geometries at the plane-4 position 
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Figure 8. Variation of the vortex Intensity with Reynolds 

number for the three geometries at the plane-8 position 
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3.3.2 Helicity 

 

The helicity, defined as the inner product of velocity and 

vorticity (Equation 8), characterizes the helical motions. Non 

zero-helicity declares that the fluid particles move along 

their axis of rotation and the flow might be expected to be 

less complex than flows with nonzero Helicity. 

 

𝐻 =
�⃗� . �⃗� 

𝑉𝛺
 

   (10) 

 

As defined, when the vorticity vector is parallel to the 

velocity vector the velocity field is nonintegrable and 

consequently the streamlines are chaotic [25]. Dimensionless 

helicity is used in the present work to describe the nature of 

the secondary flows (chaotic or regular), which occur at the 

exit of each perturbation area (plane-4 and plane-8).  The 

dimensionless Helicity value is bounded between -1 and +1. 

For both limit values -1 and +1, the fluid flow is considered 

fully chaotic. Figures 9 and 10 shows the dimensionless 

Helicity contours at the plane-4 and plane-8 in the 

considered geometries C05, C10 and C20, for two Reynolds 

numbers (100 and 200) respectively. The results shows that, 

for the same plane and at a given Reynolds number, the 

dimensionless Helicity contours are identical in all the 

geometries, which proves that the kinematic flow is 

unchangeable with the geometry scale variation. According 

to above, the flow regime in the core region is chaotic for all 

the presented cases (Figure 9), since the dimensionless 

Helicity in these zones takes the values of -1 or +1. The 

direction of the flow rotation in plane-4 is opposite to the 

flow rotation direction in plane-8. Changing the direction of 

the curl in the fluid flows provides new opportunities to mix 

well the fluids. 

 

 
 

Figure 9. Dimensionless helicity contours at plane-4 for 

two Reynolds numbers for the three geometries 

 

 

 
Figure 10. Dimensionless helicity contours at plane-8 for 

two Reynolds numbers for the three geometries 

 

3.4 Pressure losses 

Because the increase of the performances is accompanied 

by the creation of the pressure drops in all three geometry, it 

is necessary to estimate this parameter over all Reynolds 

number range. 

The pressure losses of all geometries are characterized by 

the evolution of the global friction coefficient as function of 

the Reynolds number defined as: 

 

𝐶𝑓 =
∆𝑃

1
2
𝜌𝑢𝑚

2

𝐷ℎ

𝐿
 

                                      

(11)  

where 𝜌  is the fluid density, Δ𝑃  is the pressure difference 

between inlet and outlet of the geometry, 𝐷ℎ is the hydraulic 

diameter, 𝑢𝑚  is the mean velocity and L is the curvilinear 

coordinate. This coefficient presents the ratio between the 

pressure drop and the kinetic energy. 

Figure 11 presents the evolution of the global friction 

coefficient with Reynolds number in the considered 

geometries. 

20 40 60 80 100 120 140 160 180 200 220

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4

2,6

G
lo

b
a
l 
fr

ic
ti
o
n
 c

o
e
ff
ic

ie
n
t,
 C

f

Reynolds number, Re

 C05

 C10

 C20

 
Figure 11.  Evolutions of the mean friction coefficient 

with Reynolds number Re in the three geometries 

 

The global friction coefficient decreases as function of the 

Reynolds number in considered geometries. The all curves 

have identical evolutions. This reflects that there are no 

significant difference pressure losses between the three 

geometries. We can see clearly that the evolutions of this 

parameter with Reynolds number are similar to that obtained 

in the straight channel [18]. 
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Because this parameter depends on the Reynolds number, 

it is preferable to follow the evolution of the product 𝐶𝑓. 𝑅𝑒, 

which is the Poiseuille number 𝑃𝑜, see figure 12.  
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Figure 12.  Evolutions of the mean friction coefficient with 

Reynolds number Re in the three geometries 

The Poiseuille number increases linearly as a function of 

the Reynolds number in the three geometries and the curves 

are perfectly identical and superimposed. We can see that 

these parameters do not depend to the geometry scale but 

they depend to the aspect ratio of the geometry. This result 

presents an important propriety worthy of research. 

 

 

4. CONCLUSIONS 

 

In this paper, numerical study is carried out to examine the 

influence of the geometry scale on the kinematic behaviour 

of the fluid flow. Three geometries were considered: C05, 

C10 and C20 according to their hydraulic diameters equal to 

5mm, 10mm and 20mm respectively. The fluid flow 

behaviour was characterized in terms of the deformation rate, 

rotation rate, dimensionless helicity contours, the 

stretching/folding coefficients of the flow vortex and the 

pressure losses. The dimensionless Helicity contours 

exhibited a great similarity between the three geometries in 

terms of the secondary flow structure, which reflects the 

similarity between the geometry scale and the cartography of 

the flow structure.  In addition, these contours showed that, 

in the central regions, the vorticity and the velocity vectors 

are parallels; these outcomes indicate the fully chaotic 

regime of the fluid flow in these zones. Besides, the C05 

geometry revealed a great deformation and rotation rates 

compared to the others (C10 and C20). As known, the 

enhancement of these parameters (deformation and rotation 

rates) in the fluid flow maximizes the mixing level of the 

fluids. Furthermore, the performed study explored the effect 

of the geometry scale on the stretching/compression 

coefficients of the vortexes and it was found that C05 

geometry exhibited the higher values. 

The increase of the performances of such geometries is 

penalised, generally, by the increase of the pressure drops in 

the flow. In this study, the calculation of the pressure losses 

confirms that all geometries have an identical friction 

coefficient where this later depends only to the aspect ratio 

of the geometry. 

This contributes enormously to improve the fluid flow 

performance in terms of heat transfer and fluid mixing of 

such geometry without energy expenditure. As a conclusion, 

the diminution of the geometry scale presents a key to boost 

the local physical process of the flow in the considered 

geometry in terms of deformation and rotation rates, 

stretching and compression coefficients, even if the flow 

regime is laminar. 
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NOMENCLATURE 
 

Cf Global friction coefficient 

D                            Deformation rate, s-1 

Dm Mean deformation rate, s-1 

Dh Hydraulic diameter, m 

�̿� Deformation tensor 

H Dimensionless helicity 

Po Poiseuille number 

Re Reynolds number 

S Cross section m2 

V Velocity, m.s-1 

u, v, w Velocity components in the x, y and 

z directions, m.s-1 

Um Mean velocity, m.s-1 

  

Greek symbols 

 

 

𝛼 Stretching/compression coefficient 

ΔP pressure Difference, Pa  

𝜈 Kinematic viscosity, m2.s-1 

𝜌 Density of fluid, kg.m-3 

Ω Rotation rate, s-1 

Ω𝑚 Mean rotation rate, s-1 

Ω𝑧 Rotation rate in the cross section,s-1 

℧ Volume of fluide, m3 
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