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This study presents an analytical framework, employing artificial neural networks 

(ANNs), to characterize the fresh properties of self-compacting mortar (SCM) reinforced 

with 6mm long carbon fibers at varying content ratios (0.05, 0.1, 0.2, and 0.4% by 

weight). Utilizing a multi-layered network approach with reactive error variance, the 

analysis delivers a nuanced understanding of the influence carbon fibers exert on SCM's 

fresh characteristics. It was observed that the inclusion of carbon fibers extended the 

passage time through a mini funnel and contracted the flow diameter, indicating 

alterations in workability. The ANN model demonstrated a high degree of predictive 

accuracy for fresh SCM properties, achieving a validity of 97.5% and a coefficient of 

determination (R2) of 89.4%. 

Keywords: 

artificial neural networks, self-compact 

mortar, ANN, carbon fiber, fresh properties, 

SCM, mini funnel, diameter of flow 

1. INTRODUCTION

Cement-based fillers are recognized for their ability to self-

compact, rapidly achieving in situ flow without segregation, 

and demonstrating substantial filling capacity. The mobility of 

cement grout is crucial for ensuring cohesion and preventing 

segregation during flow, thereby producing homogenous grout 

[1]. The vibrational compaction of liquid cement grout is not 

required, which can lead to reductions in labor and equipment 

use, enhancing compaction efficiency and increasing the 

durability of structural elements' cover regions [2]. A 

fundamental aspect of grouting techniques is the injection and 

subsequent solidification of adequate fluid into the voids that 

require grouting, which is particularly advantageous for 

concrete filling in complex mold geometries. 

Despite these benefits, self-compacting mortar (SCM) 

incurs higher primary material costs compared to conventional 

concrete. The challenge lies in the need for chemical 

admixtures and high cement volumes to achieve mixtures with 

adequate mobility and durability [3]. SCM formulations 

require large powder ratios with lower water-to-binder ratios 

and extensive use of superplasticizers [4]. Although increased 

paste content can enhance workability, it may negatively 

impact mechanical properties and contribute to time-

dependent deformations. Notably, both drying shrinkage and 

autogenous shrinkage escalate with the increase in paste 

volume [5, 6], making the shrinkage of cement-based mixtures 

dependent on the cement content. 

Fibers, such as carbon fibers, have been incorporated into 

cement to improve the tensile strength and durability of 

concrete. These fibers serve to bridge cracks and inhibit their 

propagation. The efficacy of fibers is contingent upon their 

aspect ratio and volume fraction [7]. Carbon fibers, possessing 

chemical stability, high specific strength, and elastic modulus, 

are deemed suitable for concrete applications [5]. 

Incorporation of carbon fibers into cement mixtures has been 

documented to elevate tensile and flexural strength, diminish 

dry shrinkage, and bolster the bond strength of the concrete 

mixture [8, 9]. The enhancement of mixture properties with 

the addition of carbon fibers is contingent on the fiber content, 

provided that no excess air voids are introduced, which could 

detrimentally affect compressive strength. Conversely, the 

inclusion of fibers can detract from the workability of the 

mixture. Thus, the effective utilization of carbon fibers in 

mortar necessitates their homogeneous distribution within the 

matrix [9-11]. 

Artificial neural networks (ANNs), mirroring biological 

neuronal networks, enable the simplification of complex, 

nonlinear phenomena [12]. Neural networks are considered 

efficacious for a multitude of applications, particularly in 

addressing intricate issues within civil and structural 

engineering that involve numerous inputs [13, 14]. 

The architecture of artificial neural networks (ANNs) 

typically adheres to a uniform framework. A quintessential 

configuration of neurons within a layered assembly is depicted 

in Figure 1, where the initial layer—the input layer—captures 

the essential parameters or input variables. These inputs may 

be gleaned directly from electronic sensors or derived from 

input files. The output layer, dictated by the quantity of 

predictive elements or categories, transmits information to 

external interfaces or systems, such as a mechanical control 

apparatus or a parallel computational device. The intermediary 

layers, known as hidden layers, comprise numerous units 

arrayed in varied configurations of interconnectivity. The 
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model presented in Figure 1 delineates N inputs leading to a 

singular output, with the summation junction (∑) and the 

transfer functions f located within the core of each neuron. The 

artificial neurons utilize predefined settings and variables [15]. 

 

 
 

Figure 1. Architecture of the neural network 

 

Each input is assigned a specific weight, which exerts the 

requisite influence for the summative analysis of the inputs. 

The internal bias (b) of the network, a fixed element, signifies 

the degree of shift influencing the activation threshold of the 

neuron's output. The input vectors and the corresponding 

weight vectors are represented as (x1, x2, ..., xN) and (w1, w2, ..., 

wN), respectively. The summation function is computed by the 

dot product of vectors x and w, followed by the addition of the 

bias, as expressed in Eq. (1). 

 
𝑎 = ∑ (𝑤𝑖

𝑁
𝑖=1 𝑥𝑖) + 𝑏  (1) 

 
The output will be a single value. This normalized result 

from the summing function can be converted to the functional 

output using a transfer function. Once neurons are adequately 

active, their output equals 1, but if not activated enough, their 

output equals zero. In neural networks, numerous activation 

functions are employed to determine the neuron output to a 

specific input [15, 16]. 

This research aims to develop self-compacting mortar 

(SCM) by employing carbon fibers (CF) to optimize the 

characteristics of fresh concrete mortar and statistically 

analyze results using artificial neural networks (ANN), then 

determine an algebraic model that investigators may utilize. 

 

 
2. EXPERIMENTAL PROGRAM 

 
The self-compacted mortar was designed using the 

European Code (EFNARC) [17]. Twenty-five mixtures were 

prepared with five different water-to-cement ratios, and every 

water-to-cement ratio has five different fibers-to-cement ratios; 

the first mixtures contained no carbon fibers (reference mix), 

and the remaining four ratios of fiber to cement by weight were 

(0.05%, 0.1%, 0.2% and 0.4%), as shown in Table 1. The SP 

content was 1% of cement mass, and the mortar was mixed 

using the (Walraven & Grunewald) method [18]. The cement 

and sand were mixed for 10 seconds at first, then the water and 

superplasticizer were added, and the mixing continued for 110 

seconds; after that, the carbon fiber was added, and mixing 

continued for an additional 90 seconds. 

 

Table 1. The specifics of the self-compacting mortar mixes 

 
Mix. Name w/c* f/c** s/c*** sp/c**** 

M.1 0.55 0 1.700  1 

M.2 0.55 0.05 1.699 1 

M.3 0.55 0.1 1.698 1 

M.4 0.55 0.2 1.697 1 

M.5 0.55 0.4 1.694 1 

M.6 0.57 0 1.700  1 

M.7 0.57 0.05 1.699 1 

M.8 0.57 0.1 1.698 1 

M.9 0.57 0.2 1.697 1 

M.10 0.57 0.4 1.694 1 

M.11 0.6 0 1.700  1 

M.12 0.6 0.05 1.699 1 

M.13 0.6 0.1 1.698 1 

M.14 0.6 0.2 1.697 1 

M.15 0.6 0.4 1.694 1 

M.16 0.62 0 1.700  1 

M.17 0.62 0.05 1.699 1 

M.18 0.62 0.1 1.698 1 

M.19 0.62 0.2 1.697 1 

M.20 0.62 0.4 1.694 1 

M.21 0.65 0 1.700  1 

M.22 0.65 0.05 1.699 1 

M.23 0.65 0.1 1.698 1 

M.24 0.65 0.2 1.697 1 

M.25 0.65 0.4 1.694 1 

w/c* water to cement ratios 

f/c** fiber to cement ratios 

s/c*** sand to cement ratios 

sp/c**** Super plasticizer to cement ratios 

 

 

3. COMPONENT CHARACTERISTICS 

 

3.1 Cement 

 

Ordinary Portland Cement (OPC) was used in all the 

mixtures of this research. The physical properties and 

chemical composition of cement correspond to Iraqi 

specification No. 5/1984. 

 

3.2 Fine aggregate 

 

The sand utilized in this research paper achieved the Iraqi 

Standard No. (45) – 1984 [19] grading requirements lie within 

the third area.  

 

3.3 Superplasticizer 

 

In this research paper, the superplasticizer was a high-

quality chloride-free with technical characteristics that 

conform to ASTM C494 [20]. 

 

3.4 Carbon fiber 

 

Table 2. Carbon fibers' physical characteristics 

 
Description Details 

Length (mm) 6 

Geometry Fibrillated 

Density (Kg/m3) 910 

Diameter (mm) 0.02 

Tensile Strength (MPa) 400 

Modulus of Elasticity (MPa) 3450 
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The carbon fibers employed in the study are extremely 

efficient fibers characterized by high tensile strength and high 

elasticity, which were brought as mats and cut into 6 mm in 

length and were used as single strips. The characteristics of 

these fibers are shown in Table 2. 

 

 

4. FRESH SELF-COMPACT MORTAR TESTS 

 

4.1 Mini flow test 

 

This test is conducted to evaluate the horizontal flow of the 

self-compacting mortar and is used. The test is to cast the self-

compacted mortar in a broken cone with (100*70*60) mm 

(bottom*top*height), respectively. The cone should be 

constructed of a smooth surface texture and placed on a solid 

structure of the same cone material. After mortar casting is 

finished, the cone is lifted vertically, and the diffusion 

diameter is measured; the average of two orthogonal readings 

is considered. This test does not measure the ability of the 

mortar to pass between obstacles without clogging. It gives a 

trend of segregated resistance of the mortar. Mini flow check 

test details are shown in Figure 2. 

 

 
 

Figure 2. Dimensions of mini-slump and mini V-funnel 

 

4.2 Mini V-funnel test 

 

This test is conducted to measure the fallibility of the self-

compact mortar, mortar viscosity, and flow ability of the 

mortar. The test includes casting one litter of the self-

compacting mortar through a V-shaped funnel and measuring 

the time the mortar passes through the funnel. The details of 

the mini V-funnel are shown in Figure 2. 

 

 

5. MODEL DEVELOPMENT BY ANNS 

 

The ANN was used to analyze and estimate the effect of the 

variables on the results of the fresh self-compact mortar by 

determining the variables entered in the ANN, so simulations 

using a computer model to predict the fresh properties for 

SCM. 

Neural networks have several types of self-regulated 

Pyreptron, Cohon networks, and feed-forward neural networks 

[21, 22]. This research used back-propagation feed-forward, 

which contains a group of neurons arranged in layers. These 

neurons are usually connected; every neuron in one layer is 

linked to every neuron in the next layer (the neurons of the 

same layer are not connected). The typical form of these 

networks is at least three neural layers (input layer, hidden 

layer, and output layer); the input layer is unprocessed. It is 

simply the place where the network feeds the data radiation. 

Then, the input layer feeds (information transfer) the hidden 

layer. After that, the hidden layer feeds the output layer. 

The ANN used in this research consists of sub-models such 

as the input model, output model, data division model, model 

selection of neural network architecture, model weight, and 

validation model. The SPSS program was used, which was one 

of the applications used for artificial intelligence techniques 

and the construction of various artificial neural networks. This 

program illustrated the sub-models from the input to the output 

model. 

 

 

6. RESULTS AND DISCUSSION 

 

6.1 Experimental study 

 

6.1.1 Flow ability 

Figure 3 has shown for the same water/cement ratio (w/c), 

a flow is decreased by an increasing fiber/cement ratio (f/c) 

and reducing the aggregate/cement ratio (s/c), where size of a 

flow is 247 mm since there is no fiber and (228, 225, 220, and 

205 mm) when fibers ratio is more excellent respectively by 

0.05, 0.1, 0.2, and 0.4%, Once the water/cement ratio exceeds 

0.55, it exceeds the limitations of the European code 

(EFNARC). 

 

 
 

Figure 3. The relationship involving workability and fiber 

proportion 

 

When w/c is 0.57, the flow diameter is 257 mm when there 

is no fiber. This quantity begins to decrease by gradually 

increasing the fiber ratio by (0.05, 0.1, 0.2, and 0.4%) of the 

weight of the cement to give a flow of 251,251, 245, and 240 

mm, respectively, within standard boundaries of (240 to 260) 

mm. 

The flow ratio is higher than the upper limit of 260 mm 

since the flow's diameter is between 262 mm and 300 mm. The 

reason for the decrease in flow, once the fiber ratio increased, 

is to increase the proportion of the surface area of fiber with 

increasing quantity in the mixture as well as to increase the 

possibility of intertwining the fibers between each other as 

well as between them and aggregates increase the internal 

resistance to the flow of fresh mortar. The variable (sp/c) is not 

used because it is constant in all mixes.  

 

6.1.2 Flow time 

Figure 4 shows the flow time at the same water-to-cement 

ratio (w/c) since it is clear from the Figure that adding fiber 

increased V-funnel compared to non-fiber mixtures. This 

365



 

change is related to increasing fiber surface area and hence the 

flow ability of these mixes, and also high carbon fiber's 

tendency to restrict the flow between aggregates and fiber, 

increasing friction between them. 

 

 
 

Figure 4. The connection involving flow time and fiber ratio 

 

It is noted that increasing the fiber content for cement (f/c) 

from 0.05% to 0.4% leads to a significant increase in the fiber 

content of the mixture. In the viscosity of the self-adhesive 

mortar. This viscosity is also associated with the time of the 

suppression test, increasing the time required to pass from the 

funnel. When the (w/c) ratio of 0.55 is observed, the passage 

time of the suppression increases by increasing (f/c) and 

decreasing the proportion of (s/c) where the test time is 14.5 

seconds when the mixture does not contain fiber, 14, 15.5, 17 

and 18 seconds when the fiber ratio increased by 0.05, 0.1, 0.2 

and 0.4% of cement weight, respectively. 

When (w/c) is 0.57, the suppression time is 13 seconds 

when the mixture does not contain fibers. The time is 14, 14.7, 

15.2, and 16 when the percent of (f/c) is increased by 0.05, 0.1, 

0.2, and 0.4%, where the increased value exceeds the code 

(EFNARC) maximum limit of 11 seconds. These values 

continue to decrease with the increase of (w/c), where the 

value of the decrease exceeds the code (EFNARC) maximum 

limit of 11 seconds when (w/c) is 0.60 and remains within the 

limits of the specification in the percent of water /cement 0.62 

and 0.65. So, the variable (sp/c) is not used because it is 

constant in all mixes. 

 

6.2 Statistical study using ANNs 

 

6.2.1 Flow ability 

The input data in the input model includes independent 

variables (w/c), (f/c), and the ratio of sand to cement (s/c). In 

contrast, the output data was the diameter of fluidity (flow) of 

the self-compact mortar (SCM). Divided data into three groups: 

the training group to adjust the weights that contact with 

ANNs, the testing group to ensure the network's performance, 

so the training is stopped when the error increases at the testing 

group, and the validation group is used to evaluate the model's 

performance. 

Table 3 shows the ratio of the data distribution for the three 

groups using the trial and error method to get the best 

performance of the ANNs by reaching the maximum 

correlation coefficient (r) to show the accuracy of the 

relationship between the output of the network (the predicted 

diameter of flow), with actual flow diameter. From Table 3 we 

note that the best classification of data is (88%) for the training 

group, (8%) for the testing group, and (4%) for the validation 

group based on the lowest ratio for testing error (2%) and the 

most significant correlation coefficient (96.6%). 

 

Table 3. The effect of data division on the performance of the ANNs 

 

Data Division 
Training Error% Testing Error% Coefficient Correlation (r)% 

Training% Testing% Validation% 

76 21 1 7.6 11.8 96.7 

60 20 20 9.5 21.1 94.4 

76 12 12 6.1 8.5 96.8 

80 12 8 6.3 10.1 96.6 

88 8 4 7.9 2 96.6 

80 16 4 7 6.7 96.1 

84 12 4 13.5 2.8 93.9 

68 20 12 8.5 4.7 95.6 

72 16 12 7.8 33.1 94.9 

68 16 16 8 9.7 95.2 

 

To distribute the 25 samples into the three groups, the 

program offers efficient methods for distributing the data in 

many ways (random, striped, and integrated package 

(blocked)). The striped method was selected because it gives 

the highest coefficient of correlation and the lowest error ratio. 

The number of neural nodes in the input layer is three nodes; 

the output layer consists of a single neural node, which is the 

diameter of the flow. So, many methods are used to find the 

optimal number of nodes in the ANNs. The best way to find it 

is to use Eq. (1), which includes selecting one node in the 

hidden layer and gradually increasing the neural nodes until 

the network's best performance is reached. So, the maximum 

number of the neural nodes equals 7 according to Eq. (2). 

 

𝑀𝑎𝑥. 𝑁𝑜. 𝑜𝑓 𝑁𝑜𝑑𝑒 = 1 + 2 × 𝐼 (2) 

where, I is the count of parameters on the input layer. 

 

Table 4. The impact of the number of neurons in the hidden 

layer on ANN efficiency 

 
No. of 

Nodes 

%Training 

Error 

%Testing 

Error 

Coefficient 

Correlation (r)% 

1 7.9 2 96.6 

2 5 12.8 97 

3 5.9 12.1 96.6 

4 9.4 4.1 96.1 

5 7.2 20.9 96.3 

6 6.2 3.3 96.8 

7 6.5 3.4 97.2 

 

Table 4 shows the ratios of the correlation coefficient and 
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testing error for the middle layer (hidden layer), which was 

based on the learning rate of 0.4 and the momentum term equal 

to 0.9, so the transfer function for the middle layer was 

sigmoid. Table 4 notes that the best performance of the ANNs 

is when the number of neural nodes in the hidden layer is equal 

to one neural node because it has the maximum coefficient of 

correlation (96.6%) and the lowest error ratio (2%). 

Consequently, there were three neural units in the input layer, 

one in the hidden layer, and one in the output layer, which is 

the expected diameter of the flow. 

When noting the weights of contact (every connection 

between a neuron and another with a value is called weight), 

this value shows the importance of the correlation between 

these two elements; the neuron multiples each input value 

from neurons of the previous layer by the weights of the 

connection with these neurons, after that the neuron collects 

all the multiplication. 

After training the ANNs, the weights of neural nodes were 

obtained; it was interactions between both the input and hidden 

layers, in addition to neural node weights connecting the 

hidden layer and output layer., as shown in Figure 5, which 

shows the weights of the bond between the layers and the 

thresholds limit of the hidden layer and the output layer. 

 

 
 

Figure 5. The neural network architecture model 

 

The predicted value of the diameter of the flow for the SCM 

containing the carbon fiber by using Eq. (3): 

 

𝑦 =
1

1 + 𝑒−(𝜃2−𝑤4∗tanh(𝑋))
 (3) 

 

 
 

Figure 6. The neural network architecture model for flow 

time 

 

So, by using the weights (Wi) and the thresholds limit (θ1) 

and (θ2) shown in Figure 6, we get the Eq. (4):  

 

𝑦 =
1

1 + 𝑒−(2.201+4.167∗tanh(𝑋))
 (4) 

 

where, Y is diameter of flow (fluidity). 

The variable (X) can be found in the Eq. (5): 

 

𝑋 = 𝜃1 + (𝑊1 ∗ 𝑉1) + (𝑊1 ∗ 𝑉2) + (𝑊1 ∗ 𝑉3) (5) 

 

where, 

V1: Water-to-cement ratio (w/c). 

V2: Fiber contains to cement (f/c) 

V3: Ratio of sand to cement (s/c) 

The variable (sp/c) is not used because it is constant in all 

mixes. 

It should be noted here that all inputs (variables) (v1, v2, v3) 

have been converted from actual values to relative values 

ranging from (0, 1) as required by the SPSS program during 

the training period So that the value of output is relative, to 

obtain actual values of outputs (diameter of flow) must be 

modification by using the Eq. (6), to return them to their actual 

value. 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (6) 

 

Thus, the output values (diameter of flow) can be deduced 

using the Eq. (7) and Eq. (8): 

 

𝑦 =
47.5

1 + 𝑒−(2.201+4.167∗tanh(𝑋))
+ 252.5 (7) 

 

where, 

 

𝑋 = 69.976 − (2.18 ∗
𝑊

𝐶
) + (0.184 ∗

𝐹

𝑐
) 

− (30.333 ∗
𝑆

𝑐
) 

(8) 

 

In the practical application of Eq. (6) and Eq. (7) using one 

of the experimental data when (w/c) is equal to (0.55), (f/c) is 

equal to (0.2%), and the (s/c) is equal to (1.697%). As a result, 

the diameter of flow measured from Eq. (6) and Eq. (7) is equal 

(218.6 mm). 

The validation model for the extracted values were based on 

statistical criteria (mean absolute percentage error (MAPE), 

average accuracy percentage (AA%), the coefficient of 

determination (R2), and the coefficient of correlation (R) to 

prove the efficiency of the Equation derived from the ANNs 

model, where the value of (MAPE) was calculated by Eq. (9). 

 

𝑀𝐴𝑃𝐸 =
(

∑⎸𝐴 − 𝐸⎹
𝐴

) ∗ 100

𝑛
 

(9) 

 

where, 

A: Actual values of flow diameter.  

E: The values of flow diameter are calculated by Eq. (8). 

n: Number of samples. 

The average accuracy percentage (AA%) value is calculated 

by Eq. (10). 

 

𝐴𝐴% = 100% − 𝑀𝐴𝑃𝐸 (10) 

 

Table 5 shows the results of statistical standards for the 

validation model to number (1) sample, which represents the 

ratio (4%) from total samples; the results show that the 

Equation used to estimate the flow diameter in the ANNs 

model has a high accuracy of (97.53%), that accuracy is 

considered excellent for the efficiency of the model which 

developed in the research. 

 

6.2.2 Flow time 

The input data, as mentioned above, are (w/c), (f/c), and 
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(s/c), while the value extracted from the output layer is the 

flow time. Table 6 shows the ratios of the data division in the 

training group, testing group, and validation group. The results 

showed that the best data division when the training group 

(88%), the testing group (8%), and the validation group were 

equal (4%) because they have the highest ratio of coefficient 

correlation (95.7%) and the lowest error ratio (1.7%). So, the 

striped method was used because it gives the highest 

coefficient of correlation and the lowest error ratio. 

Based on Eq. (2) and the observation of Table 7, the neuron 

nodes were divided into the hidden layer (middle). Thus, the 

batter number of neuron nodes was a single neuron node 

because it gives the highest coefficient of correlation (95.7%) 

and the lowest error ratio (1.7%), that values get it when the 

learning rate is 0.4, and the momentum term equal to 0.9, so 

the type of transfer function for middle layer was sigmoid. 
 

Table 5. The result validation of ANNs model 

 

Statistical Standards 
Correlation 

Coefficient (R) 

Determination 

Coefficient (R2) 

Mean Absolute Percentage 

Error (MAPE) 

Average Accuracy 

Percentage (AA%) 

Statistical value for 

ANNs model 
96.6 89.4 2.47 97.53 

 

Table 6. The effect of data division on the performance of the ANNs for flow time 
 

Data Division 
Training Error% Testing Error% Coefficient Correlation (r)% 

Training% Testing% Validation% 

80 8 12 7.7 14.6 96.7 

80 16 4 7.3 3.2 97.1 

76 12 12 6.3 22.3 96 

68 16 16 8.1 4.9 96.7 

68 20 12 7.2 10.8 96.2 

76 20 4 9 22.1 94.4 

88 8 4 9.2 1.7 95.7 

84 8 8 8.1 5.8 96.2 

60 20 20 9.9 23.8 93.1 

76 12 12 9.4 15.7 95.4 

 

Table 7. The number of nodes in the hidden layer on the 

performance of the ANNs 
 

No. of 

Nodes 

%Training 

Error 

%Testing 

Error 

Coefficient 

Correlation (r)% 

1 9.2 1.7 95.7 

2 2.6 8.1 98.2 

3 7.9 1.9 96.1 

4 8.1 3.2 96.6 

5 4.9 2.2 97.4 

6 2.5 2.8 98.7 

7 4.4 7.0 98.1 

 

The weights of the bond between the neurons of layers and 

the threshold limits of the hidden layer and the output layer are 

shown in Figure 6. 

The final Eq. (11) and Eq. (12) to estimate the flow time of 

the SCM through the mini V-funnel were deduced through the 

correlation weights, and the threshold limits and modification 

of the relative values to actual values were calculated by using 

Eq. (6), that previously mentioned. 

 

𝑦 =
4.7

1 + 𝑒(2.399+3.813∗tanh(𝑋))
+ 13.4 (11) 

 

where, 

 

𝑋 = 83.242 − (2.173 ∗
𝑊

𝐶
) + (0.332 ∗

𝐹

𝑐
) 

− (0.102 ∗
𝑆

𝑐
) 

(12) 

 

The practical application of Eq. (11) and Eq. (12) was based 

on one of the practical experiments, when the values of (w/c), 

(f/c), and (s/c) equal to (0.57), (0.2%) and (1.697) respectively, 

the results of estimated flow time, that calculated from the Eq. 

(11) and Eq. (12) equal to 15.76 seconds. At the same time, 

the actual flow time was equal to 15.20 seconds.  

Table 8 shows the results of the statistical standards of the 

validation model for many (1) samples that represent the 

percentage (4%) from the total samples data selected from the 

division model; the results show that the Equation used to 

estimate the flow diameter in ANNs model has a high accuracy 

of (91.85%), that accuracy is considered excellent for the 

efficiency of the model developed in the research. 

 

Table 8. The result validation of ANNs model 

 
Statistical Standards (R) (R2) (MAPE) (AA%) 

Statistical value for 

ANNs model 
95.70 87.30 8.150 91.850 

 

 

7. CONCLUSIONS 

 

(1) Add the carbon fiber to the self-compact mortar with a 

rise (f/c) ratio, the flowing diameter reduces, and the travel 

times through the funnel increase. Increasing the ratio of water 

to cement (w/c) increased the flow diameter while it was 

within the acceptable bounds whenever the (w/c) was equal to 

0.57 and 0.6, as well as the (w/c) was equal to 0.65, and the 

mixture was bleeding. 

(2) Increasing the (w/c) resulted in a higher flow time within 

the specified range once the (w/c) were set to 0.57, 0.6, and 

0.65. 

(3) The neural network approach (ANN) was employed to 

estimate the flow diameter with such a significant level of 

overall accuracy rate (97.53%) and correlation coefficient 

(96.6%), in addition to the flow duration with a high degree of 

overall accuracy rate (91.85%) and correlation evaluation 

(95.7%). 
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(4) The artificial neural network model showed that it is 

relatively insensitive to the number of hidden layer neural 

nodes. 
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