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The present study is centered around the deployment of interval linear equations 

systems in circuit analysis. In the domain of circuit theory, each circuit, constituted by 

components such as resistance, inductance, and capacitance, can be mathematically 

represented as a system of linear equations. In the context of electrical circuits, interval 

representations of current or voltage are considered more informative than single 

precise values. This is attributed to factors including fluctuating environmental 

conditions, current variations, tolerances in electrical elements, and power harmonic 

leakage. The integration of interval linear equations systems becomes crucial in 

accommodating these variables. We propose an algorithm using a new type of 

arithmetic operations and pairing technique on intervals for the interval solution of 

interval linear equations systems. We provide a numerical example to highlight the 

usefulness of the suggested approach. We also discuss an electrical circuit problem 

under an uncertain environment by using the proposed algorithm and interval arithmetic 

operations. 
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1. INTRODUCTION

Nearly any real-world problem can be modelled as a system 

of linear or non-linear equations. In many cases, precise 

parameter values are elusive, known only through estimation 

or within certain bounds. Interval analysis provides valuable 

tools and methodologies for solving linear and nonlinear 

systems of equations in situations where data imprecision or 

uncertainties exist. Notably, the significance of interval 

arithmetic in matrix computations was first suggested by 

Hansen and Smith [1]. This has since inspired an array of 

research by scholars such as Alefeld et al. [2, 3], Moore et al. 

[4], Ganesan and Veeramani [5, 6] and Goze [7], who have 

explored interval arithmetic and interval matrices extensively. 

In the context of circuit analysis, systems of linear equations 

are often employed to solve for unknown currents. Yet, real-

world conditions challenge the assumption that a voltage 

source consistently generates an exact voltage, as minor 

fluctuations in voltage output are unavoidable. Similar 

variability applies to other electrical elements within circuits, 

thus necessitating the treatment of circuit components like 

voltage sources and resistances as uncertain entities. Closed 

and bounded intervals provide a practical method for 

representing these uncertain parameters. When faced with 

these uncertainties, current flow within a circuit can be 

accurately encapsulated using a system of interval linear 

equations. 

Numerous authors, including Alefeld et al. [8], Beaumont 

[9], Siahlooei [10], Hansen [11, 12], Sainz et al. [13], 

Neumaier [14], Ning and Kearfott [15], Rani [16], Corsaro and 

Marino [17], and Lodwick and Dubois [18], have explored 

solutions to systems of fuzzy and interval linear equations. 

The examination of interval linear algebra by Surya et al. 

[19-21] within a precise algebraic framework has been 

influential. Using the concept of equivalence classes, they 

successfully defined the notions of a field and a vector space 

over a field. Cazarez-Castro et al. [22] presented a fuzzy 

differential equations approach to model the uncertainty of 

initial conditions for the proportional derivative closed-loop 

control of a direct current motor. Studies by Rahgooy et al. 

[23], Rahman and Rahman [24], and Srinivas and Rao [25] 

have examined the application of the system of fuzzy linear 

equations in circuit analysis. Furthermore, Yazdi et al. [26] 

have explored fuzzy circuit analysis through fuzzy differential 

equations with fuzzy variables. Jesuraj et al. [27], Devi and 

Ganesan [28], and Sahoo [29] have solved electrical circuits 

using various methods, including fuzzy Sumudu transform and 

fuzzy differential equations, respectively. Diffellah et al. [30] 

have discussed the applications of interval analysis in electric 

circuit theory.  

In this paper, a novel method is proposed for determining 

the unknown current flowing in given planar circuits under 

uncertain conditions. The uncertain parameters are 

represented as closed and bounded intervals. We introduce a 

new set of arithmetic operations and pairing techniques on 

intervals to determine the current flow in electrical circuits. 

Additionally, an interval-based linear system is introduced and 

its application is demonstrated through a numerical example. 
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2. BASICS ON INTERVALS 

 

Here are the basic concepts and notions regarding intervals, 

as recalled from reference [19]: We define the set 
L L LI { [a , a ]: a a and a , a }.U U Ua= =   This set 

comprises all the closed and bounded intervals. When aL 

equals aU, we refer to �̃�  as a degenerate interval. These 

intervals can be represented as ordered pairs ⟨m, w⟩ which are 

defined as follows: Given an interval �̃�, 𝑚(�̃�) as 
𝑎𝑈+𝑎𝐿

2
 and 

𝑤(�̃�) as.
𝑎𝑈−𝑎𝐿

2
 

 

Consequently, �̃� can be uniquely expressed as 

( ), ( ) .m a w a

 

Consequently, �̃� can be uniquely expressed as 

( ), ( ) .m a w a  
Conversely, if you have ( ), ( ) .m a w a , 

 
you can 

determine aL and aU as follows: ( ) ( ) aLm a w a− = and 

( ) ( ) aUm a w a+ =  for the interval �̃� . Therefore, given 

( ), ( )m a w a , 
 
you can uniquely recover the interval L[a , a ]U . 

Note 1. If midpoint of �̃�is zero then �̃� is called as a zero 

interval. Otherwise, it is non-zero interval. If midpoint of 𝑎 ̃is 

positive then �̃� is called as a positive interval. 

 

2.1 Interval arithmetic operations 

 

For any two intervals �̃� = ⟨𝑚(�̃�), 𝑤(�̃�)⟩  and �̃� =

⟨𝑚(�̃�), 𝑤(�̃�)⟩  and ∗∈ {+, −,×,÷},  the arithmetic operations 

are defined as follows [19]: 

 

 

( ), ( ) ( ), ( )

( ) ( ), max ( ), ( )

a b m a w a m b w b

m a m b w a w b

 = 

= 
 

 

Note 2. Division is possible when midpoint of the 

denominator interval is non-zero. 

 

2.2 Interval matrix theory [19] 

 

An interval matrix is a matrix where each element is defined 

as a closed and bounded interval of real numbers, as opposed 

to a single exact value. Intervals, in this context, are sets of 

numbers encompassing all values falling within a specified 

range. The purpose of employing intervals within matrix 

representations is to account for uncertainty or imprecision in 

the individual elements of the matrix. This allows for a more 

flexible and robust way of modelling data or systems in 

situations where precise values are not known or cannot be 

determined. 

An interval matrix 

 

( )
11 1

1

...

... ... ...

...

n

ij

m mn

a a

A a

a a

 
 

= = 
 
 

 

 

where, each �̃�𝑖𝑗 = [𝑎𝑖𝑗
𝐿 , 𝑎𝑖𝑗

𝑈]. Midpoint matrix of �̃�, 𝑚(�̃�) is 

defined as the matrix of midpoints of every corresponding 

entries of �̃�. Similarly, width matrix 𝑤(�̃�) is defined as the 

matrix of widths of every corresponding entry of �̃�. 

Let 𝒙 = (�̃�1, �̃�2, . . . , �̃�𝑛)𝑡  be an interval vector in 𝐼 ℝ𝑛  and 

𝑚(𝒙) = (𝑚( �̃�1), 𝑚( �̃�2), . . . , 𝑚( �̃�𝑛))𝑡 , 𝑤(𝒙) =
(𝑤(�̃�1), 𝑤(�̃�2), . . . , 𝑤(�̃�𝑛))𝑡  are midpoint vector and width 

vectors of 𝒙 respectively. 

 

2.3 Interval matrix operations 

 

“For �̃�, �̃� ∈ 𝐼 ℝ(𝑚×𝑛) , 𝒙 ∈ 𝐼 ℝ𝑛 , where ∗∈ {+, −,×,÷} and 

�̃� ∈ 𝐼 ℝ, we define [19]: 

 

( ) 0 (b ) 0

( ) ( ),max ( ), ( ) .min min
ij ijw a w

A B m A m B w A w B
 

  
 =   

  

 

 

Note 3. Matrix division is possible when midpoint of the 

denominator matrix is invertible. 

 

 

3. SYSTEM OF INTERVAL LINEAR EQUATIONS 

 

Consider a system of “m” interval linear equations in “n” 

unknown intervals: 

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

......

......

.

.

.

......

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

+ + + 


+ + +  






+ + +  

 

 

where, �̃�𝑖𝑗 and �̃�𝑖 are in 𝐼 ℝ. 

The above system is called (m×n) interval linear system. If 

�̃�𝑖 ≈ 0̃  for each i, then the above system is called the 

homogeneous system of interval linear equations. Otherwise, 

it is called a non-homogeneous system of interval linear 

equations. 

The matrix form of the above system is �̃�𝒙 ≈ �̃�. That is: 
 

111 12 13 1 1

21 22 23 2 2 2

1 2 3

. . .

. . .

. . . . . . . . .

. . . . . . . . .

. . .

n

n

m m m mn n m

ba a a a x

a a a a x b

a a a a x b

   
   
   
    
   
   
         

 

 

where, ( )1 2, ,...,
t

nx x x=x  and ( )1 2, ,...,
t

mB b b b= . 

 

 

4. ALGORITHM FOR FINDING THE SOLUTIONS OF 

SYSTEM OF INTERVAL LINEAR EQUATIONS  

 

Given the interval linear system .A Bx  

Step 1: Compute the solution of the midpoint system 

( ) ( ) ( ).m A m m B=x  

Step 2: Let the solution be 

( )1 2( ) (x ), (x ),.... (x ) .
t

nm m m m=x  

Step 3: The pairing number for the interval solution is 
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obtained by the Max-Min principle as follows:  

Let  ( ) 0 ( ) 0
max min ( ), min ( )

ij ijw a w b
w A w B

 
= . Here 𝛼 ≻ 0 unless 

when �̃� and �̃� degenerate into crisp matrices. 

Step 4: The solution to the interval linear system A Bx  

is: 

 

1 1

2 2

[ ( ) , ( ) ]

[ ( ) , ( ) ]

( ), . .

.

[ ( ) , ( ) ]n n

m x m x

m x m x

m

m x m x

 

 



 

− − 
 

− − 
 = =
 
 
 − − 

x x  

 

Note: Pairing number is a positive real number which is 

judiciously evaluated using the given data and which aids the 

conversion of a real number into unique interval number. For 

example, if 3 is a real number to be associated with an interval, 

we calculate the pairing number using the specified method. 

Suppose the pairing number is 2 then 3 is associated with an 

interval ⟨3,2⟩=[3-2, 3+2]=[1,5]. 

Example 4.1 Consider an interval linear system �̃�𝒙 ≈ �̃� 

discussed by Ning et al. [15], where 

[3.7,4.3] [-1.5,-0.5] [0,0]

[-1.5,-0.5] [3.7,4.3] [-1.5,-0.5] I

[0,0] [-1.5,-0.5] [3.7,4.3]

n nA 

 
 

=  
 
 

 

and 

[-14,0]

[-9,0]

[-3,0]

B

 
 

=  
 
 

. 

Solution: The midpoint system of the above interval system 

is 𝑚(�̃�)𝑚(𝒙) = 𝑚(�̃�),  where 

4 1 0

( ) 1 4 1

0 1 4

m A

− 
 

= − − 
 − 

 

and 

0.30 0.50 0

( ) 0.50 0.30 0.50

0 0.50 0.30

w A

 
 

=  
 
 

 respectively. Also 

7

(B) 4.50

1.50

m

− 
 

= − 
 − 

 and 

7

(B) 4.50

1.50

w

 
 

=  
 
 

 respectively. 

Solving this midpoint system: 

1

2

3

4 1 0 ( ) 7

1 4 1 ( ) 4.50

0 1 4 ( ) 1.50

m x

m x

m x

− −    
    
− − = −    
    − −    

 by Gauss 

elimination method, we get the solution of the midpoint 

system as 

-2.2232

( ) -1.8929

-0.8482

m

 
 

=  
 
 

x . The pairing number for the 

interval solution is obtained by the Max-Min principle as 

follows: 

 

 

 

( ) 0 ( ) 0

( ) 0

( ) 0

Let max min ( ), min ( )

0.30 0.50 0

min 0.50 0.30 0.50

0 0.50 0.30
max

7

min 4.50

1.50

max 0.30,1.50 1.50

ij ij

ij

ij

w a w b

w a

w b

w A w B
 





=

  
  
  

    
=  

  
  
   

   

= =

 

 

The interval solution of the interval linear system is: 

 

-2.2232

( ), -1.8929 ,1.50

-0.8482

[-3.7232, -0.7232]

[-3.3929, -0.3929] .

[-2.3482, 0.6518]

m 

 
 

= =  
 
 

 
 

=  
 
 

x x

 

 

Comparison study: Ning et al. [15] derived the solution set 

 
 
 

 6.38,0

 6.40,0

 3.40,0

 
 
 
 
 

−

−

−

 by using the interval Gaussian elimination 

method together with existing interval arithmetic. Also, by 

using Hansen's method [12], they obtained the solution set 

(wider box) 

 
 
 

 6.38,1.12

 6.40,1.54

 3.40,1.40

 
 
 
 
 

−

−

−

 and using their own method, 

obtained the solution set (much wider box) 

 
 
 

 6.38,1.67

 6.40,1.54

 3.40,2.40

 
 
 
 
 

−

−

−

. The intriguing part is that by applying 

the proposed algorithm, we obtain a solution set 

[-3.7232, -0.7232]

[-3.3929, -0.3929]

[-2.3482, 0.6518]

 
 
 
 
 

 which is better to the prior solution 

sets. Also, this solution set won't affect the crisp solution set 

which will significantly reduce vagueness. 

 

 

5. AN APPLICATION ON ELECTRIC CIRCUIT  

 

The mesh current method is a network analysis technique in 

which arbitrarily assigned mesh current directions are used to 

solve for unknown currents and voltages using Kirchhoff's 
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voltage law and Ohm's law. It can typically solve a circuit with 

fewer unknown variables and simultaneous equations. Due to 

some uncertain situations, the electrical elements are 

represented by closed and bounded intervals. 

Kirchhoff's Voltage Law (KVL) is a fundamental principle 

in electrical circuit theory. It asserts that the total sum of 

voltage changes, which includes voltage drops (from higher 

potential to lower potential) and voltage rises (from lower 

potential to higher potential), around any closed path or loop 

within an electrical circuit must always equal zero. In other 

words, the algebraic sum of these voltage changes is conserved 

and obeys the principle of energy conservation. This law is an 

essential tool in analyzing and solving electrical circuits, 

helping to understand how voltage behaves within a closed 

loop in accordance with the conservation of energy. 

Consider an electric circuit: 

 

 
 

Figure 1. Electric circuit 

 

where, the values of electric resistance are: 

1 3 5 7 [1497.5,1502.5] 1500,2.5 ,R R R R= = = =  =   

2 4 6 8 [798.5,801.5] 800,1.5R R R R= = = =  =   and 

the voltages are 
1 [11,13]V 12,1 VV = = and

1 [22.5, 25.5]V 24,1.5 VV = = . 

In the realm of mesh analysis, the application of Kirchhoff's 

Voltage Law involves the utilization of mesh currents. These 

mesh currents are systematically allocated to individual 

meshes and preferably oriented in a clockwise direction. The 

KVL is then sequentially applied to each mesh, leveraging the 

principle that the voltage drops across a resistor, when 

traversed by a current I is given by IR. 

In this particular method, the approach involves equating 

the voltage drops across the resistors in accordance with the 

direction of the mesh currents to the voltage increases 

experienced across the voltage sources within the electrical 

circuit. 

Regarding mesh 1, in the diagram, the voltage drops across 

the resistors labelled as �̃�1 , �̃�2  and �̃�3  are expressed as 

𝐼1�̃�1, 𝐼1�̃�2  and (𝐼1 − 𝐼2)�̃�3  respectively. Notably, the 

distinction arises because the current through �̃�3 in relation to 

𝐼1 is (𝐼1 − 𝐼2). Furthermore, the voltage rise from the voltage 

source is represented as �̃�1. 
 The mesh equation for mesh 1 is: 

 

1 1 1 2 1 2 3 1

1 1 1 2 1 3 2 3 1

1 1 2 3 2 3 1

( )

( )

I R I R I I R V

I R I R I R I R V

I R R R I R V

+ + − 

 + + − 

 + + − 

 

 

1 1

1 2

2

1500,2.5 800,1.5

1500,2.5 1500,2.5 12,1

1500 800 1500, max 2.5,1.5,2.5

1500,2.5 12,1

I I

I I

I

 +

+ − 

 + +

− 

 

1 23800,2.5 1500,2.5 12,1I I −   

(1) 

 

It's worth noting that in the context of mesh analysis in 

electrical circuits, certain coefficients in the mesh equations 

have specific meanings.  

Let �̃�1 + �̃�2 + �̃�3, the co-efficient of 𝐼1  is the sum of the 

resistances of the resistors in mesh 1. This total resistance is 

commonly referred to as the "self-resistance" of the mesh 1. 

Also −�̃�3 , the co-efficient of 𝐼2  is negative, it signifies the 

resistance of the resistor that is shared by two adjacent meshes, 

typically mesh 1 and mesh 2. This resistance is known as the 

"mutual resistance." 

The negative sign associated with mutual resistances in 

mesh equations is a result of the fact that the mesh currents in 

different meshes often flow in opposite directions through 

mutual resistors. As a consequence, these resistances are 

represented with negative signs in the equations. This 

simplifies the formulation of the mesh equations, making it 

more convenient than directly applying Kirchhoff's Voltage 

Law (KVL) to the circuit. 

 The mesh equation for mesh 2 is: 

 

2 4 2 5 2 3 6 2 1 3

2 4 2 5 2 6 3 6 2 3 1 3

1 3 2 3 4 5 6 3 6

1 2

3

( ) ( ) 0

0

( ) 0

1500,2.5 4600,2.5

800,1.5 0,0

I R I R I I R I I R

I R I R I R I R I R I R

I R I R R R R I R

I I

I

+ + − + − 

+ + − + − 

− + + + + − 

 − +

+ − 

 (2) 

 

Also, the mesh equation for mesh 3 is: 

 

2 3 8 3 7 3 2 6

3 8 3 7 3 6 2 6 2

2 6 3 6 7 8 2

2 3

( ) 0

( )

800,1.5 3100,2.5 24,1.5

V I R I R I I R

I R I R I R I R V

I R I R R R V

I I

− + + + − 

+ + − 

− + + + 

 − + 

 (3) 

 

Hence the given electric circuit is represented as the system 

of interval linear equations: 
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1 2

1 2

3

2 3

3800,2.5 1500,2.5 12,1

1500,2.5 4600,2.5

800,1.5 0,0

800,1.5 3100,2.5 24,1.5

I I

I I

I

I I

+ − 

− + +

− 

− + 

 (4) 

 

Matrix form of the above system is �̃�𝐼 ≈ �̃�: 

 

1

2

3

3800,2.5 1500,2.5 0,0

1500,2.5 4600,2.5 800,1.5

0,0 800,1.5 3100,2.5

12,1

0,0

24,1.5

I

I

I

  − 
  

 − −   
  −  

 
 

  
 
 

 

 

The midpoint system of the above interval system is

( ) ( ) ( )m A m I m B= , where 

3800 -1500 0

( ) -1500 4600 -800

0 -800 3100

m A

 
 

=  
 
 

and 

2.5 2.5 0

( ) 2.5 2.5 1.5

0 1.5 2.5

w A

 
 

=  
 
 

respectively. Also 

12

(B) 0

24

m

 
 

=  
 
 

and  

1

(B) 0

1.5

w

 
 

=  
 
 

 respectively. 

Solving the midpoint system 𝑚(�̃�)𝑚(𝐼) = 𝑚(�̃�) by using 

Gauss elimination method, we get the solution for midpoint 

system as 

0.0042929

( ) 0.0028753 .

0.0084840

m I

 
 

=  
 
 

 

That is 1( ) 0.0042929 A 4.2929mA,m I = =  

2( ) 0.0028753 A 2.8753mAm I = = and 

3( ) 0.0084840 A = 8.4840 mAm I = . 

The pairing number for the interval solution is obtained by 

the Max-Min principle as follows: 

 

 

 

( ) 0 ( ) 0

( ) 0 ( ) 0

Let max min ( ), min ( )

2.5 2.5 0 1

max min 2.5 2.5 1.5 , min 0

0 1.5 2.5 1.5

max 1.5,1 1.5

ij ij

ij ij

w a w b

w a w b

w A w B
 

 

=

    
    

=     
    

    

= =

 

 

The interval solution of the interval linear system is: 

 

4.2929

( ), 2.8753 ,1.5

8.4840

[2.7929, 5.7929]

[1.3753, 4.3753] .

[6.9840 9.9840]

I m I 

 
 

= =  
 
 

 
 

=  
 
 

 

 

Therefore, the mesh currents of the above electric circuit are: 

 

 

 

 

1

2

3

2.7929, 5.7929 mA

1.3753, 4.3753 mA  

and 6.9840 9.9840 mA.

I

I

I

=

=

=

 

 

Remark: The system of interval linear equations in the 

above example was formulated with the underlying 

assumption that the individual entries are susceptible to errors 

or uncertainties. This assumption forms the basis for the 

solution approach employed in handling such uncertainties. 

Specifically, if we replace the interval representations in the 

solution with their respective midpoints, the resulting solution 

will naturally converge to the solution of a standard (crisp) 

system of linear equations when there are no errors or 

uncertainties present. In other words, if the errors are zero, and 

there is no imprecision associated with the entries, the interval-

based solution will yield the same result as the conventional 

system of linear equations. This demonstrates that the interval-

based approach is a flexible method for dealing with 

uncertainty and imprecision, capable of converging to 

traditional solutions when circumstances warrant it. 

 

 

6. CONCLUSIONS 

 

The current fluctuations that are unavoidable in real life 

prevent us from knowing the precise values of the measured 

quantities. At most, we characterize the parameters as intervals 

of uncertainty. In this paper we have provided the interval 

terminology-based notions for electrical circuit theory. The 

description of networks leads to systems of equations with 

interval parameters. We have presented a new method for 

computing the interval voltages and interval currents. We have 

shown that the proposed algorithm using a new type of 

arithmetic operations and pairing techniques on intervals 

provides better solution than by using previous approaches. 

Numerical illustrations are given to support the theory. The 

proposed algorithm is efficient for large systems also. 
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