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Recommendation systems serve as a pivotal solution to address the increasing issue of 

information overload. While traditional recommendation algorithms have been 

grounded primarily on user-item interactions, the significance of a user's contextual 

information influencing decision-making has often been overlooked. Such neglect 

becomes more evident in the realm of systems integrating contextual mechanisms, 

which encounter pronounced data sparsity challenges. Existing studies in contextual 

recommendation systems tend to treat all contextual features uniformly as influencers 

of user decisions. Yet, a prevalent dilemma is the frequent absence of contextual data, 

leading to potential misallocations of contextual features. To mitigate these challenges, 

a novel deep learning-based recommendation system, termed the CAW-NeuMF Model, 

has been designed. Accompanying this model, a Context-aware Weighted high-order 

Tensor Factorization algorithm (CAWTF) has been introduced. This algorithm 

facilitates the calculation of correlations between user ratings in varied contexts, relying 

on the said context. Additionally, it ascertains the weight of context features grounded 

on the user ratings correlation. Such a process aids in isolating the most influential 

contextual features, thereby amplifying the efficiency of personalized 

recommendations. Empirical evaluations using the LDOS CoMoDa dataset revealed 

that the proposed model substantially enhances prediction score accuracy. Comparative 

analyses against alternative recommendation models further affirmed the superior 

efficacy of the introduced approach. 
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1. INTRODUCTION

With the burgeoning of the Internet and advancements in 

information technology, an exponential surge in data across 

network platforms has been observed [1]. Such proliferation 

not only furnishes users with a wealth of intriguing 

information but paradoxically engenders a quandary of 

information overload. Consequently, sifting through this 

deluge to pinpoint pertinent information has become an 

arduous task [2]. This conundrum is mirrored in the film 

industry, where recommendation systems have been posited as 

an efficacious remedy. At the heart of these systems lie 

recommendation algorithms, meticulously developed to tailor 

to users' specificities [3]. Optimal algorithms are pivotal as 

they not only streamline users' quest for intriguing films, 

thereby catalysing their consumption vigour, but also cascade 

into monumental economic windfalls for movie purveyors. 

Historically, binary relations between users and projects 

have predominantly been leveraged for modelling in 

traditional recommendation systems [4]. Despite the 

commendable efficacy of some of these conventional 

algorithms, a glaring oversight is the neglect of context, a 

pivotal facet influencing user decisions. Such contexts are 

indispensable for enhancing recommendation accuracy, as 

they frequently shape user predilections [4]. For instance, a 

solitary movie viewer might be well-served by existing 

systems, but the same might falter when the viewer is 

accompanied by children, with an inclination towards 

animation genres. Similarly, prevailing emotional states, such 

as despondency, might skew choices towards comedic films, 

while romantic companions might prompt a tilt towards 

romance-themed films. Evidently, the immediate milieu in 

which a user is ensconced invariably impacts their final verdict 

[5]. 

It becomes unequivocally apparent that the infusion of 

contextual features into recommendation algorithms is 

paramount to bolster both the precision and relevancy of 

recommendations. In this vein, the CAWTF algorithm is 

introduced, designed meticulously to discern correlations 

between context and ratings, subsequently determining the 

weights attributed to various contextual features. Through 

such a procedure, the conundrums of data sparsity endemic to 

context-aware systems are assuaged. Given the prowess of 

deep learning in discerning intricate feature relationships, a 

Mathematical Modelling of Engineering Problems 
Vol. 10, No. 6, December, 2023, pp. 2031-2038 

Journal homepage: http://iieta.org/journals/mmep 

2031

https://orcid.org/0009-0002-0283-7974
https://orcid.org/0000-0003-4215-7260
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.100613&domain=pdf


 

fusion of CAWTF with neural networks culminated in the 

birth of the CAW-NeuMF model. 

This manuscript is structured to first delineate the 

theoretical foundation underpinning context-aware 

recommendation systems. The ensuing section elucidates the 

high-order tensor decomposition algorithm predicated on 

context weight and presents the context-aware 

recommendation system delineated herein. The penultimate 

section is dedicated to empirical validation of the introduced 

algorithm and model, attesting to their efficacy and 

practicality. 

 

 

2. RELATED WORK 
 

Within the domain of recommendation research, heightened 

interest has been observed in the nexus between contextual 

information and user predilections. The pioneering work by 

Adomavicius and Tuzhilin [6] led to the conceptualisation of 

Context Aware Systems (CARS). A rigorous method was 

proposed by him to distil salient factors influencing ratings, 

striving to offer bespoke services tailored to individual users. 

It is contended that, in context-aware systems, the nature of 

contextual information captured invariably dictates the 

precision of ensuing preference extrapolation [7]. Hence, the 

methodologies employed in the curation and discernment of 

such information bear profound implications for the 

overarching efficacy of the recommendation system [8, 9]. 

Historically, temporal attributes have been ubiquitously 

harnessed as features, primarily attributed to their ease of 

capture [10]. The advent and ubiquity of mobile intelligent 

terminals have ushered in an era where a plethora of contextual 

data can be effortlessly amassed. It has been noted that, 

through mobile device sensors, a myriad of high-dimensional 

contextual metrics are readily accessible [11]. For instance, 

mobile Global Positioning System (GPS) can pinpoint user 

locales, such as workplaces or residences, while 

accelerometers can divulge user activity states, be it 

ambulatory or sedentary. Although the facilitation of such 

diverse contextual data acquisition is undeniably 

advantageous, the inadvertent integration of irrelevant 

contexts can deleteriously attenuate the efficiency of 

contextual recommendation systems. This not only 

exacerbates the rigours associated with data collection but also 

augments computational overheads related to processing 

superfluous contexts. Furthermore, a poignant observation is 

that context impact varies across different application 

paradigms, accentuating the paramountcy of judicious context 

selection. 

Significant strides have been made by scholars in refining 

context-aware recommendation systems [12]. There is a 

consensus that the amalgamation of deep learning with 

context-aware paradigms necessitates further exploration to 

elevate recommendation precision [13]. In some 

investigations, topic models were advanced to sift through 

copious user context logs, endeavouring to unearth prevalent 

context-aware inclinations [14]. Tensor factorization (TF), a 

methodology to pare down the dimensions of multi-faceted 

matrices, has also been examined. Despite its demonstrable 

superiority over matrix decomposition in navigating multi-

dimensional matrices, an uptick in iteration counts was 

discerned, potentially compromising efficiency in contextual 

information feature handling [15]. Conversely, employing 

clustering algorithms to structure a contextual feature model 

and collate user and project-related contextual feature data was 

found to effectively mitigate data sparsity issues. Deep 

learning models, encompassing Convolutional Neural 

Network (CNN) and Recurrent Neural Network (RNN) 

architectures, were also juxtaposed against conventional 

recommendation algorithms [16]. Such endeavours 

substantiated that deep learning paradigms can adeptly handle 

abundant contextual feature data and decipher intricate 

interrelations therein [17]. Notwithstanding these 

advancements, a lacuna persists. While context-aware systems 

do factor in contextual attributes, in many real-world 

scenarios, the correlation between users and most contextual 

instances remains non-existent, thereby underscoring the 

exigency for meticulous contextual feature allocation. It is also 

posited that context-aware systems grapple with more acute 

data sparsity challenges than their two-dimensional 

recommendation system counterparts. 

 

 

3. RESEARCH METHOD 
 

In the exploration of context-aware recommendation 

systems, it has been observed that the focus on contextual 

features was not exhaustive [18]. All contextual features were 

considered, yet the treatment of these features lacked 

thoroughness. Additionally, the introduction of context 

presented significant sparsity challenges [19]. Notably, the 

introduction of contextual information, based on users and 

projects, expands the system from a two-dimensional matrix to 

a multidimensional one, as illustrated in Figure 1. This section 

initially deliberates upon the context-based weight allocation 

algorithm, subsequently introducing the CAW-NeuMF model, 

which amalgamates user, project, and contextual feature 

information to establish a deep learning recommendation 

system. 

Traditionally, the dimensionality was reduced mainly 

through tensor decomposition or matrix decomposition. In this 

discourse, a novel method for dimensionality reduction is 

presented: a high-order tensor decomposition algorithm 

centred on contextual features to determine weight allocation. 

The algorithm's emphasis, first and foremost, is the calculation 

of context feature weights and the subsequent weight allocation 

algorithm. 

 

 
 

Figure 1. Multidimensional context space 

 

The process is bifurcated into two distinct phases. Initially, 

the weight of each context is determined, followed by the 

alignment of the context features most closely associated with 

user relevance. It has been hypothesised that within identical 
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contextual settings, varying users' impacts on project ratings 

differ significantly. For instance, when an individual watches a 

film accompanied by a significant other, preferences may lean 

towards romantic or family genres. In such scenarios, 

correlations between users and the context of social 

relationships become paramount, while ties to other contextual 

features diminish. 

By calculating the standard deviation of each user's context 

rating, the most pertinent context in relation to the instance user 

is discerned. If the standard deviation of the user in one context 

exceeds that in another, it is inferred that the former context 

exhibits higher correlation with the user, subsequently 

neglecting the least correlating contextual feature. Historical 

scoring data can be exemplified as follows in Table 1. 
 

Table 1. Data instance 1 

 
User Item Rating Time Weather 

U1 I1 2 Morning Sunny 

U1 I2 4 Afternoon Rainy 

U1 I3 3 Night Cloudy 

U1 I4 3 Afternoon Sunny 
 

In the pursuit of discerning which context holds a robust 

correlation with the rating, the standard deviation of each user 

was calculated. The elucidation of the specific algorithmic 

steps is presented as follows: 

Step 1: It is posited that the dataset t comprises t∈{1,2…, 

m} contextual features, symbolised as Ct Dependent on 

varying criteria, the dataset is partitioned into distinct 

D∈{D1, D2…, Dx} segments. 

Step 2: From each instance of context t, data is arbitrarily 

selected from the partitions delineated in the first step. This 

data is subsequently divided into |Ct| replicas. Within every 

instance of the context, the pertinent mean value 𝑟𝑧𝑘
 is 

computed. 

Step 3: Following the acquisition of the mean values for 

each instance as delineated in the second step, the overall 

average score for all instances of the context Ct is computed 

in accordance with Eq. (1). 
 

𝑟𝐶𝑡
̅̅̅̅ =

1

|𝐶𝑡|
∑ 𝑟𝑧𝑘

 (1) 

 

Step 4: In alignment with Eq. (2), the standard deviation 

pertaining to the context Ct score for every specific item, 

denoted as i, is computed. 
 

𝑀𝑈𝑖𝑡
=

[
∑ (𝑟𝑧𝑘

− 𝑟𝐶𝑡
̅̅̅̅ )𝑐𝑘∈𝑐𝑡

(|𝐶𝑡| − 1)
⁄ ]

2

𝑟𝐶𝑡
̅̅̅̅

 
(2) 

 

To exemplify the calculation of standard deviations within 

the user-context interaction, consider the ratings of user U1 for 

the context feature time. Initially, the data was divided into 

distinct sections based on varying items. The average ratings 

were ascertained for context time=Afternoon, r1=(4+3)⁄2=3.5, 

time=Morning, r2=2, and time=Night, r3=3. Following this, 

the composite average rating for each instance of Time, 

𝑟𝑡𝑖𝑚𝑒̅̅ ̅̅ ̅̅ = (3.5 + 2 + 3)/3 = 2.83 was computed. Utilising Eq. 

(3), the standard deviation pertaining to user U1's ratings in the 

context Time was identified as (2.83-3)2+(2-2.83)2+(3-

2.83)2/(3-1)]2⁄2.83=0.120. In a parallel manner, the standard 

deviation associated with user U1 in the context Weather was 

calculated, yielding a value of 0.107. This result indicated a 

pronounced correlation between the ratings of user U1 and the 

context Time. Drawing from these insights, the top K 

contextual features demonstrating the highest relevance to the 

score were identified. Subsequently, weights corresponding to 

each context were determined using Eq. (3). It was observed 

that an elevated weight signified heightened importance of the 

respective context. 
 

𝑊𝐶𝑡 =
𝑀𝑈𝑖𝑡

∑ 𝑀𝑈𝑖𝑡

𝑡=𝑘
𝑡=1

 𝑡 ∈ [1, 𝑘] (3) 

 

3.1 High-order tensor decomposition algorithm based on 

context weight 

 

Previously, the method for context weight calculation was 

delineated, aligning the most pertinent context features based 

on this weight. However, post-introduction of context in 

recommendation systems, it has been noted that many users 

exhibit no connection with most contextual instances, leading 

to pronounced data sparsity. Conventional matrix 

decomposition approaches become unsuitable. High-order 

tensor decomposition has been efficaciously utilised for high-

dimensional data processing and analysis and finds application 

in the domain of personalized recommendation systems [20]. 

Wang et al. [20] utilised higher-order singular value 

decomposition to address data sparsity in context-aware 

systems, while Karatzoglou and others incorporated tensor 

decomposition into context-aware systems, treating all context 

features collectively. This approach did not account for varied 

impacts of distinct contexts on recommendation systems. 

Hence, with an escalating number of context features, tensor 

decomposition not only becomes computationally intricate but 

also encounters data sparsity challenges. 

Grounded on the context selection method delineated 

earlier, the most rating-relevant top K contextual features are 

ascertained. Weights for each context, as per Eq. (3), are then 

procured. In the ensuing discourse, the second segment of the 

algorithm will be addressed. By integrating context weights, 

the third-order tensor corresponding to each context is 

decomposed, yielding user, item, and context feature matrices. 

For elucidative purposes, it is assumed that user historical 

rating data encapsulating contextual information is presented 

in Table 2. 

 

Table 2. Data instance 2 

 
User Item Rating C1 C2 … Cp 

U1 I2 5 1 2 … 1 

U2 I3 2 3 3 … 3 

… … … … … … … 

Ui Ij 3 2 1 … 2 

 

To construct the third-order tensor of context Ci from the 

dataset, each element au,i,c in the tensor is considered to 

represent the user u rating of an item i under a given context 

Ci=c. For instance, a1,2,1 is indicative of a rating of 5 given by 

user 1 for the item 2 under the context c=1. For an N-order 

tensor A ∈ RI1∗I2∗…∗In∗IN , it is expanded into a matrix 

prediction, A(n) ∈ RIn×(In+1In+2…INI1I2…×In−1) . In the matrix's 

specified line in, the value residing in column (in+1-

1)In+2In+3…INI1I2…In-1+(in+2-1)In+3In+4…INI1I2In-1+…+(iN-

1)I1I2…In-1+(i1-1)I2I3…In-1+(i2-1)I3I4…In-1+…+in-1 was 

identified as 𝑎𝑖1,𝑖2,…,𝑖𝑁
. Guided by the previously delineated 

expansion protocols, three distinct two-dimensional feature 
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matrices were derived. Subsequently, tensor decomposition 

was executed on each of these matrices. As a result, the feature 

matrix U∈RI*m symbolising the user, the feature matrix I∈RJ*n 

characterising the project, and the feature matrix C ∈ RK*p 

denoting the context were all acquired. Additionally, the core 

vector, referred to as core=Rm×n×p, was ascertained. 

 

3.2 Model network structure 

 

Upon analysis of existing technologies and limitations 

within the recommendation field, deep learning has been 

applied, resulting in the introduction of the CAW-NeuMF 

model. As illustrated in Figure 2, this model employs the user 

feature matrix U, item feature matrix I, and context feature 

matrix C as neural network inputs. Initially, basic data 

encompassing users, items, and ratings are utilised to 

determine the first K context-weight relationships associated 

with users via context allocation algorithms. Following 

dimensionality reduction via high-order tensor decomposition, 

the comprehensive user, item, and context feature matrices are 

input into the NeuMF neural network for learning and training. 

 

 
 

Figure 2. A personalized recommendation model based on 

deep learning 

 

The NeuMF model, as proposed by He et al. [21], is a 

variant of Neural Collaborative Filtering (NCF). The General 

Matrix Decomposition (GMF) extracts low-order (user-item) 

relations, whilst the Multi-Layer Perceptron (MLP) learns 

(user-context) relations. The original NeuMF decomposition 

model, lacking the extraction of efficient auxiliary information 

for feature modelling, has been enhanced in this study. 

Contextual auxiliary information is integrated, leading to the 

formation of CAW-NeuMF, encompassing the refined CAW-

NeuGMF and the improved MLP CAW-NeuMLP. 

In the CAW-GMF model, the extracted feature vector Pu of 

user u and feature vector Qi of item i are element-wise 

multiplied. Subsequently, the prediction score is derived 

through a fully connected layer and an activation function as 

per the given equation.  

 

𝜑𝑜(𝑃𝑢, 𝑄𝑖) = 𝑃𝑢 ⊙ 𝑄𝑖 = [𝑢1𝑖1, 𝑢2𝑖2, … , 𝑢𝑚𝑖𝑚] (4) 

 

�̂�𝑢𝑖 = 𝜎((𝑃𝑢 ⊙ 𝑄𝑖)𝑇ℎ) (5) 

 

where, n is the dimension of the characteristic matrix, σ is the 

activation function, and h is the weight matrix of the full 

connection layer. 

Within the CAW-MLP model, it becomes essential to 

concatenate the extracted user feature vector Pu, item i feature 

vector, and context feature vector Rc with weight data. The Eq. 

(6) is as follows: 

 

𝑧1 = 𝜑1(𝑃𝑢 , 𝑄𝑖 , 𝑅𝑐) 

= [𝑢1, … , 𝑢𝑚, 𝑖1, … , 𝑖𝑛 , 𝑐1, … , 𝑐𝑡] 
(6) 

 

Post concatenation, the vector of length m+n+t undergoes 

MLP processing, and prediction scores are then derived using 

a fully connected layer alongside an activation function. The 

calculation process is shown in the following Eqs. (7)-(9). 

 

𝜑2(𝑧1) = 𝜎2(𝑧1
𝑇𝑤2 + 𝑏2) (7) 

… 

𝜑𝑋(𝑧𝑋−1) = 𝜎𝑋(𝑧𝑋−1
𝑇 𝜔𝑋 + 𝑏𝑥)  (8) 

 

�̂�𝑢𝑖𝑐 = 𝜎𝑋(𝜑𝑋(𝑧𝑋−1)𝑇ℎ)  (9) 

 

where, σi is the activation function. For each layer, the RELU 

function was selected as the activation function. ωi and bi are 

denoted as the weight and bias of the fully connected layer, 

respectively. 

The NeuMF model, designed to amalgamate the strengths 

of GMF and MLP models, was implemented. Vectors φGMF 

and φMLP, derived through GMF and MLP, respectively, were 

concatenated and subsequently channeled into the terminal 

NeuMF layer. The underlying principle of this operation was 

to map the vectors to a one-dimensional space, culminating in 

the ensuing predictive equations: 

 

𝑍𝑖𝑗 = [𝜑𝑖𝑗
𝐺𝑀𝐹 , 𝜑𝑖𝑗

𝑀𝐿𝑃] (10) 

 

𝛾𝑢,𝑖,𝑐 = 𝜎(ℎ𝑇(𝑍𝑢𝑖)) (11) 

 

To circumvent the pitfall of overfitting, a loss function 

enriched with an L2 regularization term was employed in 

training the model parameters. Within this framework, ω and 

b represent the discrepancies in weights across various layers 

of the neural network, while λ serves as the coefficient of the 

regularization term. The specific configuration of the loss 

function is delineated in: 

 

𝐿𝑜𝑠𝑠 =
∑ (𝛾𝑢,𝑖,𝑐−�̃�𝑢,𝑖,𝑐)𝑛

𝑛
+ 𝜆(𝜔2 + 𝑏2)  (12) 

 

For optimization of ui and vj, the Adam optimizer was 

harnessed. Its mode of updating is explicated in the subsequent 

formula. 

 

𝑢𝑖 = 𝑢𝑖 − 𝜂
𝜕𝐿(𝑈, 𝑉)

𝜕𝑢𝑖

 (13) 

 

𝑣𝑗 = 𝑣𝑗 − 𝜂
𝜕𝐿(𝑈,𝑉)

𝜕𝑣𝑗
  (14) 

 

Within the referenced formula, the learning rate, denoted as 

η, is initially set at 0.001. Unlike conventional random 

gradient descent optimisation algorithms in machine learning, 

which maintain a constant learning rate throughout the 

training, Adam is distinguished by its capacity to prescribe 
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adaptive learning rates for individual parameters. This trait 

gives Adam an edge over the Stochastic Gradient Descent 

(SGD). In essence, the Adam optimisation algorithm 

assimilates the merits of both the adaptive gradient algorithm 

and the root mean square propagation algorithm. Table 3 is the 

training procedure predicated on the deep learning context 

weight algorithm: 

 

Table 3. Training of the CAW-NeuMF personalized 

recommendation model via deep learning 
 

Input: User-Item Rating Data, Contextual Data 

Output: Predicted User-Item Rating 

1. An embedding matrix for users was constructed, and the user 

feature matrix was subsequently extracted utilising CAWTF. 

2. Similarly, an embedding matrix for items was formulated, 

from which the item feature matrix was extracted with the aid 

of AWTF. 

3. A context embedding matrix was devised. The premier K 

context features were selected and their respective weights 

were computed. 

4. Low-level user-project relationships were discerned using 

Eq. (4). 

5. High-level relationships, encompassing users, projects, and 

context, were comprehended by referring to Eqs. (6)-(8). 

6. Features were concatenated and subsequently mapped onto a 

one-dimensional space, facilitating predictions as delineated in 

the corresponding formulas. 

7. The loss function was computed. Iterative updates of the user 

and project feature matrices were carried out until convergence 

was achieved, as explicated in Eqs. (12)-(14). 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

The LDOS-CoMoDa, a movie rating dataset renowned for 

its rich contextual information, was employed [22]. Unlike 

conventional datasets, this particular one collates ratings and 

12 types of contextual information directly after the movie 

viewing experience, ensuring that the data reflects real-time 

user responses rather than historical records or speculative 

reactions [23]. A comprehensive distribution of the dataset is 

depicted in Table 4. 
 

Table 4. LDOS-COMODA dataset distribution 
 

Dataset Rating User Item Variable Score Sparsity (%) 

LDOS-

CoMoDa 
2296 121 1232 30 1-5 98.45 

 

Experiments were conducted in a controlled environment: 

Linux operating system with 16GB memory, Intel (R) Core 

(TM) i7-8700k CPU 3.70 GHz. Python was the chosen 

programming language, and TensorFlow was utilised as the 

deep learning framework. 

To gauge the precision of the prediction score post-model 

training, two primary metrics, Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE), were employed. 

The underlying premise was to predict users' proclivity scores 

for movies not yet viewed based on the users' and movies' 

characteristic data. Collaborative filtering further buttressed 

these predictions, offering user-centric movie 

recommendations and thereby mitigating the adverse effects 

of the initial sparse scoring data on the recommendation 

system [24]. 

MAE denotes the average magnitude of errors between 

predicted and actual outcomes, whereas MSE (Mean Squared 

Error) signifies the average squared differences between 

predictions and true values. Emphasising the penalisation of 

larger deviations, MSE is particularly informative. The 

mathematical formulations for MAE and RMSE are elucidated 

as: 
 

𝑀𝐴𝐸 =
∑ |𝑦𝑢𝑖𝑐 − �̂�𝑢𝑖𝑐|𝑢,𝑖,𝑐

𝑁𝑢𝑚
 (15) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑢𝑖𝑐𝑢,𝑖,𝑐 − �̂�𝑢𝑖𝑐)2

𝑁𝑢𝑚
 (16) 

 

In the aforementioned formulas, �̂�𝑢𝑖𝑐  stands for the 

anticipated rating value, yuic signifies the factual rating of item 

i by user u within context c, and Num indicates the total ratings 

in the test set. 

The LDOS-CoMoDa dataset encapsulates features 

stemming from 12 distinct contexts [25]. Leveraging the 

algorithm delineated in Section 3, correlations between these 

contexts and ratings were determined via Eq. (2). The ensuing 

results are vividly portrayed in Figure 3. 

 

 
 

Figure 3. Contextual relevance diagram 

 

According to Figure 3, pivotal factors such as weather, 

mood, time, social milieu, decision context, physical setting, 

and interaction type prominently influence user ratings. Using 

the context weight computation (Eq. (3)), weightings 

corresponding to each context were ascertained, as represented 

in the subsequent Table 5. 
 

Table 5. Contextual feature weight distribution 
 

Context Numbering Weight 

Endemo ω1 0.35 

Domemo ω2 0.32 

Social ω3 0.89 

Mood ω4 0.80 

Time ω5 0.71 

Location ω6 0.10 

Physical ω7 0.41 

Season ω8 0.06 

Decision ω9 0.55 

Interaction ω10 0.42 

Daytype w11 0.08 

Weather ω12 0.72 

 

For the purpose of curtailing data sparsity, records of users 

with fewer than 5 ratings were excluded [26]. As a result, a 

refined dataset of 2,175 ratings pertaining to 1,302 movies 

from 56 distinct users was obtained. A rigorous ten-fold cross-

validation technique was implemented, segregating 90% of 
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data for training and the remaining 10% for testing. 

Throughout the course of 10 experimental runs, regularization 

coefficients were set at λ=0.01, the preliminary learning rate 

was fixed at 0.001, and the upper limit for iterations was 

capped at 500. The collective mean of MAE and RMSE across 

these 10 iterations was chosen as the definitive evaluation 

metrics. 

A perusal of Figure 4 suggests that post 100 training 

iterations, convergence patterns emerged. Notably, the 

validation set's influence predominantly remained inferior to 

the training set's MSE, underscoring the model's efficacy. 

 

 
 

Figure 4. Trend analysis of experimental data 

 

Insights from Figure 4 further reveal a swift model 

convergence within the initial five training iterations. With the 

MAE and MSE values of the training set represented by blue 

and green trajectories respectively, the model's commendable 

performance becomes apparent. Preventative measures against 

overfitting were instituted, enhancing the code's 

generalization. Concomitantly, the MAE in the validation set 

surpassed the MSE, exhibiting a decline analogous to the 

training set. 

In assessing the efficacy of the model, a comparative 

analysis was executed with several prominent 

recommendation models, namely: BiasedMF [27], an offset 

term matrix decomposition model heralded during the Netflix 

Prize; NeuMF [28], an innovative neural matrix 

decomposition model that synergistically integrates GMF and 

MLP; and CARS [29], a context-aware recommendation 

model. Furthermore, a novel tensor decomposition algorithm 

based on context weight, termed CAW NeuMF, was 

introduced in this study. 

A schematic representation, illustrated in Figure 5, 

underscores the analogous precision distribution across the 

trio of primary recommendation model algorithms. Evidently, 

the matrix decomposition model generally lags behind the 

tensor decomposition model in terms of predictive accuracy. 

This discrepancy can be attributed to the tensor decomposition 

model's superior performance when grappling with high-

dimensional data. Furthermore, the divergence between the 

actual values and the predicted outcomes for CARS exceeds 

that of CAW NeuMF. This suggests that the incorporation of 

WACTF, which duly considers context weight and judiciously 

allocates contextual features, holds a distinct advantage over 

indiscriminately introducing all contextual attributes into the 

model. 

An empirical evaluation of the aforementioned 

recommendation algorithms, juxtaposed with the proposed 

CAW-NeuMF method, was embarked upon. The purpose of 

this investigation was to substantiate the claim that, upon 

assimilating contextual features, the CAW-NeuMF approach 

eclipses other recommendation methodologies. The 

experimental findings have been encapsulated in Table 6 

below. 

 

 
 

Figure 5. Schematic representation of actual vs. predicted 

value comparisons 

 

Table 6. Comparative performance on RMSE and MAE 

metrics for LDOS-COMODA dataset 
 

Model 
Evaluation Metric 

MAE MSE Good/Bad 

BiasMF 0.76 0.88 Bad 

NeuMF 0.75 0.94 Bad 

CARS 0.75 0.89 Bad 

CAW-

NeuMF 
0.72 0.82 Good 

 

Insights derived from Table 6 manifest that when employing 

RMSE and MAE as metrics for recommendation systems, 

especially within the LDOS-COMODA dataset, the Deep-

AIRS algorithm showcases a pronounced improvement relative 

to its peers. Specifically, in terms of the MAE metric, the Deep-

AIRS algorithm exhibits enhancements of 4.00% in 

comparison with the BiasMF model, 5.236% with the NeuMF 

algorithm, and 4.000% vis-à-vis the CARS model. 

Analogously, the RMSE metric reveals that the Deep-AIRS 

algorithm trumps the BiasMF model by 12.766%, the NeuMF 

model by 6.818%, and the CARS by 7.865%. These empirical 

results cogently argue in favour of the superior accuracy of the 

CAW-NeuMF algorithm within the contextual 

recommendation domain, thereby demonstrating its capacity to 

better satiate user-specific requirements. 

Within the presented table, several recommended algorithm 

models are evaluated based on their MAE and MSE metrics. 

From the data, it is discerned that the models under 

examination all exhibit commendable performance, with MAE 

values observed to lie between 0.72 and 0.76 and MSE values 

registering between 0.82 and 0.94. 

Upon closer inspection, the NeuMF, BiasMF, and CARS 

models display congruent results in terms of both MAE and 

MSE scores, suggesting parallel efficacy in the prediction of 

target variables. Notably, the CAW-NeuMF model's 

performance is marginally superior, as evidenced by its 

reduced scores across both evaluative criteria. 
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5. CONCLUSIONS 
 

With the inexorable ascent of the internet economy, an 

exponential augmentation in network data has been observed, 

leading recommendation systems to proffer enhanced 

applicability and value for users. Significant ramifications 

have been imparted upon recommendation systems across 

myriad sectors, encompassing finance, education, and 

entertainment, owing to the burgeoning market catalysed by 

user data. While judicious employment of contextual 

information stands to bolster the precision of recommendation 

systems, the integration of such features can concurrently 

introduce an array of challenges. Among these challenges, 

increased data dimensionality and concomitant data sparsity 

have been identified. 

Addressing the aforementioned challenges, the focus of this 

study gravitated towards enhancing the precision of contextual 

recommendation systems. Noteworthy innovations unveiled 

within this study encompass, firstly, the proposal of a high-

dimensional tensor decomposition algorithm rooted in context 

weight. Designed to redress the challenges posed by data 

sparsity and the disparate allocation of context features within 

recommendation systems, this algorithm adeptly computes the 

correlation between context and user ratings, culminating in 

an astute allocation of contextual features. In a subsequent 

stride, deep learning neural networks were employed to seize 

both user and contextual nuances. The culmination of this 

approach, denominated as CAW-NeuMF and predicated on 

the NeuMF model, serves to accentuate the accuracy of the 

recommendation system, catering to nuanced user 

predilections. 

Empirical evaluation of the CAW-NeuMF, undertaken 

using the LDOS-COMODA dataset, evinced its superior 

performance relative to preceding recommendation models. 

Notably, it adeptly assimilated contextual feature information, 

bolstering recommendation accuracy. The revelations from 

this study proffer a foundational bedrock for subsequent 

inquiries within the realm of context-aware recommendation 

systems. 
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