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This study delves into the third-order Korteweg-de Vries equation, a model that 

encapsulates one-dimensional wave propagation on the water's surface, thereby 

governing a fully integrable nonlinear system with predetermined initial conditions. The 

analytical efficacy and efficiency of the Korteweg-de Vries equation have been 

substantiated. The dynamical behavior of the Korteweg-de Vries equation is examined 

utilizing the Laplace transform method, which stands out as a direct approach to obtain 

exact rather than approximate solutions. The existence and uniqueness of precise 

solutions for the third-order Korteweg-de Vries equation with weak nonlinearity on the 

semi-axis have been examined. The findings of this work have been extrapolated to 

another familiar form of the Korteweg-de Vries equation, which describes weakly 

dispersive waves with minuscule amplitudes in one dimension on the water's surface, 

and also to the modified strongly dispersive KdV equation. 
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1. INTRODUCTION

Due to the partial and ordinary differential equations’ 

performance in a wide range of pure and applied mathematics 

fields, there has been a tremendous amount of research on 

these topics in the past few years. Differential equations can 

describe physical models of several occurrences in a variety of 

domains, and their standards are unbounded. We are well 

aware that it is extremely difficult to determine the exact 

solution to such an equation, and that the exact solution’s form 

is frequently too complex to be properly used for numerical 

calculations. The Laplace transform method, Fourier 

transform method, and the Green’s function method are useful 

and significant methods to investigate the exact solution of 

initial value problems for partial and ordinary differential 

equations [1-4]. 

The objective of this work was to develop Laplace 

transform solutions for the Korteweg-de Vries equation (KdV) 

on the half-line subject to initial conditions. Note that almost 

all results of this article are new for the KdV equation itself. 

This equation has numerous applications and is used to 

represent unlimited wonderment of astrophysical and physical 

phenomena such as acoustic wave in enharmonic crystals, 

slightly interacting waves that occurring in shallow water, long 

internal waves in ocean, ion-acoustic waves that occur in 

plasma and solitary waves and solitons, that are waves which 

propagate with the same shape and constant velocity, 

remaining stable even after mutual collision. 

The KdV equation can be expressed in different types, for 

example: 

𝜕𝑢

𝜕𝑡
+ 𝛼

𝜕3𝑢

𝜕3𝑥
+
𝜕𝑢2

𝜕𝑥
= 0 (1) 

introduced by Boussinesq [5] for the first time in 1877, and 

then rediscovered by Korteweg and De Vries [6] in 1895. The 

KdV equation was originally developed to explain shallow-

water waves, but it has since evolved into an extremely 

valuable approximation model in nonlinear investigations 

when weak nonlinearity and weak dispersive equation (its 

wave solutions spread out in space as they evolve in time) need 

to be balanced. In which Eq. (2) is now as the fifth-order KdV 

equation or Kawahara equation. 

𝜕𝑢

𝜕𝑡
+ 𝛽

𝜕5𝑢

𝜕5𝑥
+
𝜕𝑢2

𝜕𝑥
= 0 (2) 

For the Korteweg-de Vries equation, Bubnov studied the 

initial-boundary value problem (IBVP) in 1979 [7]. Several 

IBVPs of the Korteweg-de Vries equation have been the 

subject of in-depth research since Bubnov's work [8-16]. 

Early in the new millennium, Bona et al. [8] and Colliander 

and Kenig [10] respectively established two new, slightly 

similar techniques to analyse the solvability of the non-

homogeneous IBVP of the KdV equation posed on half line. 

Kenig et al. [17], Kenig et al. [18], and Bourgain [12], 

investigated the existence and uniqueness solution for Cauchy 

problem of the KdV equation on the whole line. 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+
𝜕3𝑢

𝜕3𝑥
= 0, 

𝑢(𝑥, 0) = ∅(𝑥), 𝑡, 𝑥 ∈ 𝑅, 
(3) 
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Further, Bona et al. [8, 9] studied the solvability of the KdV 

Eq. (3) on a finite interval 0<x<1, t>0. 

We pay attention to the fact that there are two different 

strategies for studying IBVPs of dispersive equations that have 

been established, one by Faminskii (consider a nonlocal mixed 

problem in a half-strip [11, 19]) and the other by Fokas, 

Himonas, and Mantzavinos (well-posedness of the KdV 

equation of IBVPs is established via a fixed point argument in 

an appropriate solution space [13, 20]). 

The paper follows the following sequence. In Section 2, we 

prove the existence and uniqueness solution of the initial value 

problem of the nonlinear third-order KdV equation using 

Laplace transforms and hence through the characteristic 

equation, we provide the homogeneous solution. Moreover, 

the particular solution is determined in terms of the Green’s 

function. In Section 3, we provide the most familiar model that 

controls weakly dispersive waves with tiny amplitudes in one 

dimension space and classify the solutions of the nonlinear 

system into homogeneous and particular solution. Then in 

Section 4, we investigate the Galilean transformed version of 

the homogeneous nonlinear modified KdV equation. Finally, 

in conclusion section we list out the obtained solutions as 

results of using applying Laplace transform method. 

Now, we would rather present the nonlinear third-order 

KdV equation by Laplace transform solutions as a new 

approach to prove the well-posedness of the initial value 

problem of the KdV equation. 

 

 

2. THE REPRESENTATION ON SOLUTIONS OF THE 

KDV EQUATION BY LAPLACE TRANSFORM 

 

In this paper, through ℝ we denote the real field. A function 

𝑓: (0,∞) → ℝ is said to be of exponential order if there exist 

constantats 𝐴, 𝐵 ∈ ℝ  such that |𝑓(𝑡)| ≤ 𝐴𝑒𝐵𝑡 , for all 𝑡 > 0. 
𝑓(𝑡) has its Laplace transform ℒ[𝑓(𝑡)] = 𝐹(𝑠), where 

 

𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
. 

 

In which there exists 𝛿 ∈ ℝ  such that this integral 

converges if ℜ(𝑠) > 𝛿 and diverges if ℜ(𝑠) < 𝛿, where ℜ(𝑠) 
is the real part of 𝑠. Moreover, |𝐹(𝑠)| → ∞. 

Some properties of Laplace transform can be illustrated as 

follows 

 

ℒ (
𝑑𝑓

𝑑𝑡
) = ∫ 𝑒−𝑠𝑡

𝑑𝑓

𝑑𝑡
𝑑𝑡

∞

0

 

= (𝑒−𝑠𝑡𝑓(𝑡))|0
∞ +∫ 𝑒−𝑠𝑡𝑓(𝑡)

∞

0

𝑑𝑡. 

 

(By integrating by parts) 

From convergence conditions of Laplace transform, we 

assume that 

 

lim
𝑡→∞

𝑒−𝑠𝑡𝑓(𝑡) = 0. 

 

Applying this result, we obtain the following property 

 

ℒ (
𝑑𝑓

𝑑𝑡
) = 𝑠ℒ(𝑓) − 𝑓(0). 

 

The derivative property of a time function with respect to a 

second variable 𝑥 has the laplace transform: 

 

ℒ (
𝜕𝑓(𝑡,𝑥)

𝜕𝑥
) = (

𝜕

𝜕𝑥
) 𝐹(𝑠, 𝑥). 

 

The integral property of a time function with respect to a 

second variable 𝑥 has the laplace transform: 

ℒ (∫ 𝑓(𝑡, 𝑥)𝑑𝑥

𝑥1

𝑥0

) = ∫ 𝐹(𝑠, 𝑥)𝑑𝑥.

𝑥1

𝑥0

 

 

Another property of Laplace transform for a function 

𝑓(𝑥, 𝑡) and 𝑓𝑥 is a function of 𝑥 only, then 

 

ℒ(𝑓, 𝑓𝑥) 

= ∫ 𝑓𝑒−𝑠𝑡 . 𝑓𝑥 𝑑𝑡

∞

0

 

= [𝑓𝑒−𝑠𝑡∫𝑓𝑥𝑑𝑡]
0

∞

−∫(𝑓𝑡 − 𝑓𝑥)𝑒
−𝑠𝑡 (∫𝑓𝑥𝑑𝑡)  𝑑𝑡

∞

0

 

= −𝑓(𝑥, 0) [∫𝑓𝑥 𝑑𝑡]
𝑡=0

− ℒ (𝑓𝑡 . ∫ 𝑓𝑥𝑑𝑡) + ℒ (𝑓𝑥. ∫ 𝑓𝑥𝑑𝑡) 

 

Let’s examine how the Laplace transform represents 

solutions to the nonlinear third-order KdV equation with non-

zero initial condition 

 

𝜕𝑢

𝜕𝑡
+ 𝑎𝑢

𝜕𝑢

𝜕𝑥
+ 𝑏

𝜕3𝑢

𝜕3𝑥
= 𝑓(𝑥, 𝑡), (4) 

 

𝑢(𝑥, 0) = ∅(𝑥), 𝑡 ∈ [0,∞), 𝑥 ∈ 𝑅. (5) 

 

where, the real-valued function 𝑢(𝑥, 𝑡) is the average velocity. 

Waves decay because of the third order term (depressive term), 

whereas waves steepen because of the nonlinear term. 

In the following theorem, we will find the exact solution for 

the initial-value problem of the nonlinear third-order KdV 

equation. 

Theorem 2.1 The solution 𝑢(𝑥, 𝑡)  of the initial value 

problem Eqs. (4)-(5) is 

 

𝑈(𝑥, 𝑠) = 𝐴(𝑠)𝑒𝛼𝑥 + 𝐵(𝑠)𝑒𝛽𝑥 + 𝐶(𝑠)𝑒𝛾𝑥 + 𝑈𝑝(𝑥), (6) 

 

where, 𝑈𝑝  is the particular solution of problem Eqs. (4)-(5) 

and 

 

𝑈𝑝(𝑥) =

{
 
 

 
 ∫ (𝐺(𝑥, 𝝃)(𝑓(𝝃)𝑑𝝃

∞

𝑥

, 𝝃 < 𝑥

∫ 𝐺(𝑥, 𝝃)(𝑓(𝝃)𝑑𝝃
𝑥

−∞

, 𝝃 > 𝑥,

 (7) 

 

𝐺(𝑥, 𝝃)

= (
(𝛼 − 𝛾)𝑒(𝛼+𝛾)𝜉+𝛽𝑥

+(𝛽 − 𝛼)𝑒(𝛼+𝛽)𝜉+𝛾𝑥 + (𝛾 − 𝛽)𝑒(𝛾+𝛽)𝜉+𝛼𝑥
) / 

(
𝛼(𝛾 − 𝛽)𝑒(𝛽+𝛾)𝜁+𝛼𝑥

+𝛽(𝛼 − 𝛾)𝑒(𝛼+𝛾)𝜁+𝛽𝑥 + 𝛾(𝛽 − 𝛼)𝑒(𝛼+𝛽)𝜁+𝛾𝑥
), 

(8) 

 

α, β and 𝛾 are roots of the auxiliary equation 

 

𝑏λ3 + a𝑢λ + s = 0. 
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Proof. Taking Laplace transform with respect to t on both 

sides of Eq. (4), we have 

 

𝑠𝑈(𝑥, 𝑠) − 𝑢(𝑥, 0) + 𝑎𝑢(𝑥, 𝑡)
𝜕𝑈(𝑥, 𝑠)

𝜕𝑥
+ 𝑏

𝜕3𝑈(𝑥, 𝑠)

𝜕𝑥3

= 𝐹(𝑥, 𝑠). 
 

Rearranging the equation, we get 

 

𝑏
𝜕3𝑈(𝑥, 𝑠)

𝜕𝑥3
+ 𝑎𝑢(𝑥, 𝑡)

𝜕𝑈(𝑥, 𝑠)

𝜕𝑥
+ 𝑠𝑈(𝑥, 𝑠)

= ∅(𝑥) + 𝐹(𝑥, 𝑠), 
(9) 

 

where, 𝑈(𝑥, 𝑠) = ℒ[𝑢(𝑥, 𝑡)]. 
From Eq. (9), yields the characteristic equation of the form 

 

𝑏λ3 + a𝑢λ + s = 0, (10) 

 

which has the roots α, β and 𝛾. 

Since the Eq. (9) has a first and third derivatives only with 

respect to 𝑥, then its general solution takes the form 

 

𝑈(𝑥, 𝑠) = 𝐴(𝑠)𝑒𝛼𝑥 + 𝐵(𝑠)𝑒𝛽𝑥 + 𝐶(𝑠)𝑒𝛾𝑥 + 𝑈𝑝(𝑥), (11) 

 

where, 

 

𝑈𝑝(𝑥) = ∫ 𝐺(𝑥, 𝜉)𝑓(𝜉)𝑑𝜉
∞

𝑥

+∫ 𝐺(𝑥, 𝜉)𝑓(𝜉)𝑑𝜉
𝑥

−∞

 

 

is a particular solution of the problem Eqs. (4)-(5) with the 

Green’s function 

 

𝐺(𝑥, 𝜉) =
∆

∆′
. 

 

where, 

 

∆= |
𝑒𝛼𝜉 𝑒𝛽𝜉 𝑒𝛾𝜉

𝛼𝑒𝛼𝜉 𝛽𝑒𝛽𝜉 𝛾𝑒𝛾𝜉

𝑒𝛼𝑥 𝑒𝛽𝑥 𝑒𝛾𝑥
| 

= 𝑒𝛼𝜉(𝛽𝑒𝛽𝜉+𝛾𝑥 − 𝛾𝑒𝛾𝜉+𝛽𝑥)−𝑒𝛽𝜉(𝛼𝑒𝛼𝜉+𝛾𝑥 − 𝛾𝑒𝛾𝜉+𝛼𝑥)

+ 𝑒𝛾𝜉(𝛼𝑒𝛼𝜉+𝛽𝑥 − 𝛽𝑒𝛽𝜉+𝛼𝑥) 

= 𝛽𝑒(𝛼+𝛽)𝜉+𝛾𝑥 − 𝛾𝑒(𝛼+𝛾)𝜉+𝛽𝑥 − 𝛼𝑒(𝛼+𝛽)𝜉+𝛾𝑥 + 𝛾𝑒(𝛽+𝛾)𝜉+𝛼𝑥

+ 𝛼𝑒(𝛼+𝛾)𝜉+𝛽𝑥 − 𝛽𝑒(𝛽+𝛾)𝜉+𝛼𝑥 

= (𝛼 − 𝛾)𝑒(𝛼+𝛾)𝜉+𝛽𝑥 + (𝛽 − 𝛼)𝑒(𝛼+𝛽)𝜉+𝛾𝑥

+ (𝛾 − 𝛽)𝑒(𝛾+𝛽)𝜉+𝛼𝑥 

 

and 

 

∆′= |

𝑒𝛼𝜉 𝑒𝛽𝜉 𝑒𝛾𝜉

𝛼𝑒𝛼𝜉 𝛽𝑒𝛽𝜉 𝛾𝑒𝛾𝜉

𝛼𝑒𝛼𝑥 𝛽𝑒𝛽𝑥 𝛾𝑒𝛾𝑥
| 

= 𝑒𝛼𝜉(𝛽𝛾𝑒𝛽𝜉+𝛾𝑥 − 𝛾𝑒𝛾𝜉+𝛽𝑥) − 𝑒𝛽𝜉(𝛼𝛾𝑒𝛼𝜉+𝛾𝑥 − 𝛼𝛾𝑒𝛾𝜉+𝛼𝑥)

+ 𝑒𝛾𝜉(𝛼𝛽𝑒𝛼𝜉+𝛽𝑥 − 𝛼𝛽𝑒𝛽𝜉+𝛼𝑥) 

= 𝛽𝛾𝑒(𝛼+𝛽)𝜉+𝛾𝑥 − 𝛽𝛾𝑒(𝛼+𝛾)𝜉+𝛽𝑥 − 𝛼𝛾𝑒(𝛼+𝛽)𝜉+𝛾𝑥

+ 𝛼𝛾𝑒(𝛼+𝛽)𝜉+𝛼𝑥 + 𝛼𝛽𝑒(𝛼+𝛾)𝜉+𝛽𝑥

− 𝛼𝛽𝑒(𝛽+𝛾)𝜉+𝛼𝑥 

= (𝛼𝛾 − 𝛼𝛽)𝑒(𝛽+𝛾)𝜁+𝛼𝑥 + (𝛽𝛼 − 𝛽𝛾)𝑒(𝛼+𝛾)𝜁+𝛽𝑥

+ (𝛽𝛾 − 𝛼𝛾)𝑒(𝛼+𝛽)𝜁+𝛾𝑥 

= 𝛼(𝛾 − 𝛽)𝑒(𝛽+𝛾)𝜁+𝛼𝑥 + 𝛽(𝛼 − 𝛾)𝑒(𝛼+𝛾)𝜁+𝛽𝑥

+ 𝛾(𝛽 − 𝛼)𝑒(𝛼+𝛽)𝜁+𝛾𝑥 

and α, β and 𝛾 are roots of the Eq. (10). Theorem proved. 

 

 

3. EXAMPLE 1 

 

Since the KdV equation arises in many physical problems, 

including plasma waves, magnetohydrodynamic waves, and 

waves with extended wave lengths, it has been taken into 

consideration. 

Consider the Cauchy problem for the important nonlinear 

KdV equation: 

 

𝜕𝑢

𝜕𝑡
+ 6𝑢

𝜕𝑢

𝜕𝑥
+
𝜕3𝑢

𝜕3𝑥
= 0, (12) 

 

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑡 ∈ [0,∞), 𝑥 ∈ 𝑅 (13) 

 

Problem Eqs. (12)-(13) is a model that controls weakly 

dispersive waves with tiny amplitudes in one dimension and is 

essential for understanding the soliton concepts. Problem Eqs. 

(12)-(13) has been investigated by some other methods via the 

real exponential approach [14], the (G'/G)-expansion method 

[17], the projective Riccati equation method [18], the tanh-

function method [15] and the functional variable method [21]. 

Now, let us solve the Cauchy problem Eqs. (12)-(13) using 

Laplace transform method with respect to variable t. 

Apply Laplace transform to Eq. (12) taking into account the 

initial condition Eq. (13), we get 

 

𝜕3𝑈(𝑥, 𝑠)

𝜕𝑥3
+ 6𝑢(𝑥, 𝑡)

𝜕𝑈(𝑥, 𝑠)

𝜕𝑥
+ 𝑠𝑈(𝑥, 𝑠) = 𝑢0(𝑥). (14) 

 

The characteristic equation of Eq. (14) can be written in the 

form 

 

λ3 + 6𝑢λ + s = 0. (15) 

 

Eq. (12) has three roots 𝛼, 𝛽, and 𝛾  according to its 

discriminant 

 

32𝑢3 + 𝑠2. 

 

(i) If 32𝑢3 + 𝑠2 > 0, then the unique real solution of Eq. 

(15) is obtained from: 

 

𝛼 = √−
𝑠

2
+ √

𝑠2

4
+ 8𝑢3

3

+ √−
𝑠

2
− √

𝑠2

4
+ 8𝑢3

3

. 

 

(ii) If 32𝑢3 + 𝑠2 < 0, the three real solutions of Eq. (15) are 

given by: 

 

𝛼 = 2√−2𝑢 cos

(

 
 
𝐴𝑟𝑐 cos (

𝑠
4𝑢
√−

1
2𝑢
) + 2𝜋

3

)

 
 

 

𝛽 = 2√−2𝑢 cos

(

 
 
𝐴𝑟𝑐 cos (

𝑠
4𝑢
√−

1
2𝑢
) + 4𝜋

3

)
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𝛾 = 2√−2𝑢 cos

(

 
 
𝐴𝑟𝑐 cos (

𝑠
4𝑢
√−

1
2𝑢
)

3

)

 
 
. 

 

(iii) If 32𝑢3 + 𝑠2 = 0, then Eq. (15) has three real roots 

with two the same. 

 

Hence 

 

𝑈(𝑥, 𝑠) = 𝐴(𝑠)𝑒𝛼𝑥 + 𝐵(𝑠)𝑒𝛽𝑥 + 𝐶(𝑠)𝑒𝛾𝑥 +

∫ 𝐺(𝑥, 𝜉)𝑓(𝜉)𝑑𝜉
+∞

−∞
, 

 

𝐺(𝑥, 𝜉) is calculated in Theorem 2.1. 

 

 

4. EXAMPLE 2 GALILEAN TRANSFORMED 

VERSION OF MODIFIED KDV EQUATION (MKDV) 

 

We investigate the Galilean transformed version of the 

homogeneous nonlinear mKdV equation with initial condition: 

 

𝜕𝑢

𝜕𝑡
+ 12𝜖𝑢0𝑢

𝜕𝑢

𝜕𝑥
+ 6𝜖𝑢2

𝜕𝑢

𝜕𝑥
+
𝜕3𝑢

𝜕3𝑥
= 0, 𝜖 = ±1, (16) 

 

𝑢(𝑥, 0) = 𝑢0, 𝑡 ∈ [0,∞), 𝑥 ∈ 𝑅 (17) 

 

where, 𝜖  indicates whether the equation is focusing or 

defocusing. This type of equation arises in many physics’ 

problems, such as propagation of ultrashort few-optical cycle 

solitons in nonlinear media [22, 23] and Alfven waves 

equation [24], Schottky barrier transmission lines [25], ion 

acoustic solitons (by adopting an electron equation of state that 

corresponds to the observed flat-topped electron distribution 

functions, it is explored how the asymptotic behavior of small 

ion-acoustic waves depends on the quantity of resonant 

electrons [26, 27]), thin ocean jets [28], internal waves [29], 

traffic jam [30], ion acoustic solitons [26], heat pulses in solids 

[31]. Additionally, both the positive order and the negative 

order of the mKdV hierarchy illustrate interesting integrable 

structures [32]. 

There are numerous standard methods of solution for the 

mKdV equation's exact solutions for example: communication 

method [33], Hirota’s bilinear method [34], and Wronskian 

method [35]. 

It is frequently possible to describe the solutions of a soliton 

equation with bilinear form using a Wronskian by placing 

certain restrictions on the entry vector of the Wronskian [36]. 

Following, we may refer to these conditions as the condition 

equation set (CES). The coefficient matrix typically plays a 

key part in the CES of a (1+1)-dimensional soliton problem, 

and this matrix or any similar shape leads to the same solutions 

for the related soliton equation. In view of the canonical form 

of the coefficient matrix, it is thus possible to provide a 

comprehensive categorization (or structure) for the solutions 

of the soliton equation [36]. It has been established that, by 

some limiting process, the solutions derived from a coefficient 

matrix in Jordan form relate to the solutions derived from a 

diagonal coefficient matrix [33]. As a result, the previous 

solutions can be considered limit solutions. According to the 

IST, N solitons are distinguished from one another by N 

distinct eigenvalues of the relevant spectral problem, or in 

other words, N different simple poles {𝑘𝑗} of the transparent 

coefficient 
1

𝑎(𝑘)
.  When 𝑘𝑗  are multiple-pole solutions, the 

associated multiple-pole solutions can be derived by 

restricting the simple-pole solutions using a limiting procedure 

like 𝑘2 → 𝑘1. The particular solutions in Wronskian form lend 

themselves more readily to this limiting procedure [33]. A 

similar process is useful for comprehending the dynamics of 

limit solutions. 

To find the exact solution of problem Eqs. (16)-(17), we use 

Laplace transforms on Eq. (16), yields 

 

𝑠𝑈(𝑥, 𝑠) − 𝑢0 + 12𝜖𝑢0𝑢
𝜕𝑈(𝑥, 𝑠)

𝜕𝑥
 

+6𝜖𝑢2
𝜕𝑈(𝑥, 𝑠)

𝜕𝑥
+
𝜕3𝑈(𝑥, 𝑠)

𝜕𝑥3
= 0, 

 

Reorganizing the equation, we get 

 

𝜕3𝑈(𝑥, 𝑠)

𝜕𝑥3
+ 12𝜖𝑢0𝑢

𝜕𝑈(𝑥, 𝑠)

𝜕𝑥
+ 

6𝜖𝑢2
𝜕𝑈(𝑥, 𝑠)

𝜕𝑥
+ 𝑠𝑈(𝑥, 𝑠) = 𝑢0 

(18) 

 

The auxiliary equation of Eq. (18) takes the following form: 

 

λ3 + 12𝜖𝑢0𝑢λ + 6𝜖𝑢
2λ + s = 0, (19) 

 

this equation has three roots three roots 𝛼, 𝛽, and 𝛾. 
By virtue of the discriminate 

 

32𝜖3(2𝑢0𝑢 + 𝑢
2)3 + 𝑠2, 

 

there are three cases for the roots 

 

Case i. If 32𝜖3(2𝑢0𝑢 + 𝑢
2)3 + 𝑠2 > 0.  Then the unique 

real solution of Eq. (19) has a unique real solution of the form 
 

𝛼 = √−
𝑠

2
+ √

𝑠2

4
+ 8𝜖3(2𝑢0𝑢 + 𝑢

2)3
3

+ √−
𝑠

2
− √

𝑠2

4
+ 8𝜖3(2𝑢0𝑢 + 𝑢

2)3
3

. 

 

Case ii. If 32𝜖3(2𝑢0𝑢 + 𝑢
2)3 + 𝑠2 < 0. Then Eq. (19) has 

three real roots as follows: 
 

𝛼 = 2√−2 ∈ (2𝑢0𝑢 + 𝑢
2) 

cos

(

 
𝐴𝑟𝑐 cos (

𝑠
4 ∈ (2𝑢0𝑢 + 𝑢

2)
√−

1
2 ∈ (2𝑢0𝑢 + 𝑢

2)
) + 2𝜋

3

)

  

𝛽 = 2√−2 ∈ (2𝑢0𝑢 + 𝑢
2) 

cos

(

 
𝐴𝑟𝑐 cos (

𝑠
4 ∈ (2𝑢0𝑢 + 𝑢

2)
√−

1
2 ∈ (2𝑢0𝑢 + 𝑢

2)
) + 4𝜋

3

)

  

𝛾 = 2√−2 ∈ (2𝑢0𝑢 + 𝑢
2) 

cos

(

 
𝐴𝑟𝑐 cos (

𝑠
4 ∈ (2𝑢0𝑢 + 𝑢

2)
√−

1
2 ∈ (2𝑢0𝑢 + 𝑢

2)
)

3

)
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Case iii. If 32𝑢3 + 𝑠2 = 0, then Eq. (19) has three real roots 

with two the same. 

Hence, the general solution of problem Eqs. (16)-(17) is 

 

𝑈(𝑥, 𝑠) = 𝐴(𝑠)𝑒𝛼𝑥 + 𝐵(𝑠)𝑒𝛽𝑥 + 𝐶(𝑠)𝑒𝛾𝑥

+∫ 𝐺(𝑥, 𝜉)𝑓(𝜉)𝑑𝜉
+∞

−∞

 

 

where, 

𝛼, 𝛽 and 𝛾 are the roots of the auxillary Eq. (19), 𝐺(𝑥, 𝜉) is 

also calculated in Theorem 2.1. 

 

 

5. CONCLUSION 

 

The well-posedness of the initial value problem of the non-

linear third-order KdV equations was validated using the 

Laplace transform method. Through the facilitation of 

Mathematica, this method can readily be extended to higher-

order nonlinear evaluation equations. Evidence suggests that 

the Laplace transform method serves as a potent and efficient 

technique for deriving exact solutions for a broad category of 

problems. An illustrative example was presented to explore the 

representation of the solution for a familiar class of KdV 

equations via the Laplace transform. Furthermore, the study 

encompassed an examination of the Galilean transformed 

version of the homogeneous nonlinear modified KdV equation. 
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