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The accurate prediction of tropical cyclone severity is of paramount importance in 

mitigating the potential damages arising from such catastrophic events. Constant 

monitoring and precise forecasting of tropical cyclones using remote satellite imagery 

from the Meteorological and Oceanographic Satellite Data Archival Centre 

(MOSDAC) are crucial. However, the challenge encountered with the current deep 

learning approach to image classification is its reliance on extensive labelled data and 

its limitations in few-shot learning. This study proposes a novel few-shot learning (FSL) 

approach for the prediction of tropical cyclone severity. In conjunction with FSL, the 

earth mover's distance (EMD) metric is employed to compute the distance between 

dense regions, thereby determining the relevance of an image. The methodology 

harnesses a remote satellite dataset provided by MOSDAC. The proposed approach is 

underpinned by the human capacity to identify novel classes from a limited number of 

samples, leveraging previously acquired knowledge. The FSL methodology adopts a 

meta-learning mechanism, enabling enhanced understanding of the data and facilitating 

the generalization of a new class of data. The results indicate that the FSL+EMD-based 

models outperform other state-of-the-art models, achieving a prediction accuracy of 

85.8% in forecasting tropical cyclone severity from remote satellite imagery. 

Keywords: 

tropical cyclone, remote satellite images, few-

shot learning, deep learning, image 

classification 

1. INTRODUCTION

Annually, an average of four to five cyclones are observed, 

with the deadliest often originating from the Indian Ocean 

basins [1]. These regions are particularly vulnerable due to 

high coastal population densities, unique coastal 

configurations, and shallow bottom topography [2]. Though 

cyclones formed in these areas are typically weaker compared 

to those in other regions, the associated death toll is 

disproportionately higher. For instance, in 1970, a tropical 

cyclone in Bangladesh was responsible for an estimated three 

million deaths [3]. Examples of remote satellite images of 

tropical cyclones are provided in Figure 1. 

Given the potential for substantial loss of life, advanced 

prediction of cyclone intensity and tracking of cyclone 

movements are of paramount importance. Timely forecasting 

can facilitate actioning of preventive measures, including 

possible evacuation, thus aiding in preserving human life. 

Traditionally, tropical cyclones have been forecasted based on 

satellite observations generated from ground-based radar 

networks, particularly as they approach land [4]. 

In recent years, accuracy in forecasting has seen significant 

improvement, thanks to advancements in numerical prediction 

models and satellite surveillance [5]. Over the last few decades, 

further classifications of tropical cyclones have been 

introduced, such as depressions, cyclone storms, and deep 

depression observations. 

Beyond mere damage prevention, the importance of 

accurate predictions from remote satellite images of tropical 

cyclone intensity extends to several areas. Timely and precise 

warnings, underpinned by accurate predictions, can enable 

affected populations to take necessary precautions or evacuate 

in advance of the cyclone's arrival. Such predictions assist 

governments and relief organizations in effective resource 

allocation. The knowledge of an expected cyclone's strength 

can guide the preparation and mobilization of appropriate 

manpower, equipment, and supplies for aid and support in 

affected areas. 

Moreover, accurate predictions can help to protect critical 

infrastructure, including roads, bridges, and buildings. Timely 

warnings allow authorities to undertake measures to reinforce 

infrastructure and minimize damage. The economic 

implications of cyclones can be severe, particularly in regions 

heavily reliant on agriculture and tourism. Accurate 

predictions allow businesses and governments to plan for 

potential disruptions and minimize economic losses. 

The Indian National Satellite (INSAT-3D dataset), made 

accessible through the Meteorological and Oceanographic 
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Satellite Data Archival Centre (MOSDAC), provides a wealth 

of historical data that is invaluable for tropical cyclone 

prediction. This dataset comprises extensive meteorological 

information, such as temperature, humidity, cloud 

characteristics, and atmospheric motion vectors, obtained 

from the geostationary satellite. This information is critical for 

monitoring and forecasting tropical cyclones in the Indian 

Ocean region. 

The INSAT-3D provides real-time, high-resolution, multi-

dimensional data, enabling meteorologists to closely track 

cyclone formation, evolution, and movement. This 

information, in conjunction with advanced modelling 

techniques, allows forecasters to issue timely and accurate 

predictions, thereby enhancing disaster preparedness and 

response efforts, protecting lives and limiting the socio-

economic impact of tropical cyclones in vulnerable coastal 

areas. 

However, challenges persist in cyclone prediction from 

remote satellite images. High false positive rates, variations in 

image resolution and size, and the inherent difficulty in 

predicting alterations in cloud patterns over time in tropical 

cyclones, all contribute to these challenges. Determining a 

tropical cyclone's intensity and rate of growth or decay 

necessitates repeated measurements. Despite these advanced 

techniques, satellite observation-based cyclone intensity level 

prediction remains a demanding task [6]. 

 

 
 

Figure 1. Sample tropical cyclone remote satellite images 

In this work, the main objective is to analyse the remote 

satellite images from MOSDAC and predict the cyclone type 

based on the intensity level. According to the MOSDAC 

reports, the area under the cyclone can be classified as 

‘depression’ when the pressure is low compared with the and 

severe cyclonic storms between 1924 and 1988 [7]. Later in 

1988, the intensity level changed and introduced two 

categories: severe cyclonic storms and super cyclonic storms 

with core hurricane winds. The iBeaufort scale [8] associated 

with wind speed in knots is presented in Table 1. It presents 

categorizing a cyclonic system based on the wind speed ranges 

as instructed by the Indian Meteorological Department. 

 

Table 1. Categorization of the cyclonic system 

 
System Wind Speed (Knots) 

Low-Pressure Zone <17 

Depression 17-27 

Deep Depression 28-33 

Cyclonic Storm 34-47 

Severe Cyclonic Storm (SCS) 48-63 

Very SCS 64-85 

Extremely SCS 86-119 

Super Cyclonic Storm >119 

 

In the study, we focused on recent cyclones from 2012-2021. 

Some of the recent tropical cyclones reported by MOSDAC 

are Roanu, Vardah, Ockhi, Mekunu, Titli, Fani, Hikaa, 

Amphan, Tauktae, and Yaas. Figure 2(a) shows the Roanu-

related information from the combined typhoon warning 

center (JTWC). Roanu occurred in 2016, causing severe floods 

near Sri Lanka and Bangladesh [9]. It formed in a low-pressure 

area on 14th May2016, slowly drifted north. Then it increased 

into a cyclonic storm on 19th May. The term Roanu was 

devised by India Meteorological Department (IMD). 

Figure 2(b) shows another tropical cyclone named Vardah 

which means ‘rose’ in Arabic, given by Pakistan from the 

nomenclature list of the Arabian Sea and Bay of Bengal 

cyclone [10]. 

It declined into a severe cyclone storm on 12th Dec 2016 

from the eastern coast of India near Chennai with a wind speed 

of 65 mph. Figure 2(c) displays the best path of cyclone 

OCKHI with its intensity categories presented by IMD, and 

Figure 2(d) shows the most fitted track of cyclone Mekunu 

with its intensity categories [11]. 

 

 
(a) 
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(b) 
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(d) 

 

Figure 2. Identified path and intensity of different cyclones 

with their intensity categories by Indian Meteorological 

Department: (a) Roanu (JTWC); (b) Vardah; (c) OCKHI; (d) 

Mekenu 

 

Few-shot learning for image classification is a machine 

learning paradigm where the model is trained to recognize and 

classify objects or patterns in images when provided with only 

a very limited number of examples per class. Unlike traditional 

image classification, which often requires a large dataset for 

each class, few-shot learning seeks to generalize from a small, 

scarce set of examples. This challenging task requires models 

to learn to identify common features, characteristics, or 

relationships shared among classes, enabling them to make 

accurate predictions for new, unseen categories with only a 

handful of training samples. Few-shot learning holds 

significant potential for applications where obtaining 

extensive labeled data is impractical or expensive, such as in 

medical imaging, robotics, and fine-grained object recognition 

Earth mover's distance (EMD), also known as Wasserstein 

distance, is a mathematical metric used in image classification 

to quantify the dissimilarity between two probability 

distributions represented as images. In the context of image 

classification, EMD measures how much "work" is needed to 

transform one image distribution into another. It computes the 

optimal way to redistribute mass from one image to match the 

other while minimizing the cost of transportation. EMD is 

particularly valuable for comparing complex image 

representations, such as histograms or dense feature maps, 

allowing for a more nuanced assessment of image similarity 

and dissimilarity. In image classification, EMD can be 

employed to measure structural differences between image 

representations, enabling more robust and fine-grained 

classification tasks. 

The proposed solution provides a combining the few shots 

learning and earth mover distance techniques. In order to 

determine the significance of a satellite image, we calculated 

a structural distance between dense image representations 

using the earth mover's distance (EMD) as a metric. When 

representing the image as distance for classification, the EMD 

creates the best matching flows between structural parts with 

the lowest possible matching cost. In order to determine the 

significant weights of the individual components that make up 

the EMD formulation, a cross-reference mechanism was 

developed. This mechanism can successfully reduce the 

effects of the crowded background and significant intra-class 

intensity variations Few-Shot Learning is a kind of meta-

learning in which a learner is given practice on a variety of 

related tasks within the meta-training phase in order to 

successfully generalize to new (but related) activities with a 

limited number of cases during the meta-testing phase. During 

this type of meta-learning, the number of instances is restricted. 

N-way-K-shot classification is used in few-shot learning to 

distinguish between N classes using K examples. The 

significant contribution of the study is presented as follows:  

·The INSAT3D dataset was obtained for our study by 

accessing the MOSDAC server. 

·Subsequently, the outcomes of the analysis are depicted 

through the utilization of data visualization techniques. 

·The thereby generated dataset underwent data 

augmentation. Subsequently, we embarked on the 

development of multiple cyclone prediction algorithms.  

·A novel unified model few-shot learning and earth movers 

distance algorithm is developed and applied to predict the 

cyclone, and accuracy the outcomes are compared with current 

deep learning models. 

The rest of the segments of the study are ordered as 

following. Section 2 briefs the recent research on cyclone 

prediction, section 3 describes the projected methodology, 

section 4 explains the results obtained, and lastly, section 5 

completes the paper.  
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2. LITERATURE REVIEW 

 

The literature reveals a diverse set of methodologies 

employed for tropical cyclone prediction and tracking. Piñeros 

et al. [12] proposed a method to empirically differentiate 

expanding cloud clusters from non-developing ones at the 

onset of cyclogenesis. A statistical testing mechanism was 

utilized to examine the axisymmetry of a cloud configuration 

within a defined radius. The center of a tropical cyclone was 

automatically detected by Jaiswal et al. [13] through a unique 

approach using a spiral pattern derived from infrared (IR) 

satellite images. 

Fiolleau et al. [14] developed a method known as the 

tracking of the organized convection, which utilized a three-

dimensional localization technique. This methodology 

employed a temporal sequence of infrared imagery from a 

geostationary satellite for the detection and tracking of 

mesoscale convective systems (MCS). Their findings 

suggested that MCSs could be identified during early and later 

stages of their life cycles, as well as during their dispersion 

phases. 

Highlighting the importance of the storm's eye for reliable 

cyclone forecasting, Jaiswal and Kishtawal [15] introduced a 

pragmatic strategy to locate regions in a type of tropical 

cyclone (TC) similar to others. A semi-automated computing 

methodology was deployed to analyze the pattern of cyclone 

storm intensity growth using pre-processed visible and 

enhanced infrared (EIR) satellite imagery [16], employing 

elliptical fourier descriptors (EFD) and principal component 

analysis (PCA) techniques. 

Kar et al. [17] suggested a methodology for determining a 

zone focusing on the distance from the image's center and 

other features. This involved calculating the center of mass 

and the average distance between significant points using 

Euclidean and Manhattan distance measures. Contrasting 

traditional machine learning (ML) techniques with linear 

discriminant analysis (LDA), Kim et al. [18] asserted the 

superiority of conventional ML techniques for cyclone 

identification. 

Introducing a novel deep-learning model, Lian et al. [19] 

offered predictions for tropical cyclone paths by considering 

geographic locations and multiple meteorological parameters. 

Composed of convolutional neural network (CNN) and gated 

recurrent unit (GRU) layers, the model was trained on a dataset 

of actual tropical cyclones occurring between 1945 and 2017. 

Alessandrini et al. [20] proposed an analogue ensemble 

method for TC intensity forecasting. This method generated a 

set of analogue forecasts by scanning an HWRF library for 

previous forecasts with similar significant characteristics to 

the latest HWRF estimates. Song et al. [21] introduced a new 

deep learning (DL) method for predicting the path of tropical 

cyclones. This method utilized a bidirectional gated recurrent 

unit network (BiGRU) in conjunction with a specially 

designed attention function for path forecasting. 

Utilizing a comprehensive dataset of intensity and trajectory 

information for tropical cyclones detected in the Western 

North Pacific since 1949, Pan et al. [22] developed a recurrent 

neural network (RNN) approach to forecast tropical cyclone 

intensity. Wu et al. [23] employed a modified generative 

adversarial network for predictive model design to make 

accurate forecasts of tropical cyclone spatial information. 

They leveraged two distinct deep neural networks in the 

estimation module, enabling them to glean placement and 

intensities from forecast-generated data. 

The literature review indicates that current methods grapple 

with the challenge of determining the similarity score, crucial 

for predicting cyclones in remote satellite images. Few-shot 

learning, however, presents several advantages over 

traditional deep learning for image classification, notably its 

proficiency with limited labelled data. This makes it more 

adaptable to real-world scenarios where the collection of 

extensive datasets may be impractical or costly. Few-shot 

learning exploits the valuable knowledge encoded in a few 

examples per class and generalizes effectively to unseen 

categories. Moreover, it promotes better model generalization 

by encouraging the discovery of common features and 

relationships across classes, leading to enhanced robustness 

and adaptability. This approach is particularly beneficial in 

fields such as medical imaging, where acquiring large datasets 

is challenging and offers a promising avenue to address data 

scarcity issues in various image classification applications. 

 

 

3. PROPOSED METHODOLOGY 

 

Figure 3 presents the workflow of the whole methodology 

of this study. The proposed predictive model design begins 

with the data collection from the MOSDAC site and pre-

processing of the images according to the model requirements. 

As the data size is not huge enough, data augmentation is 

implemented. Then, model development starts after checking 

with the exploratory data analysis. 

 

 
 

Figure 3. Work flow of the proposed methodology 
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3.1 Data collection 
 

The utilized dataset comprises INSAT-3D Infrared and Raw 

Cyclone Imagery spanning from 2012 to 2021. The dataset 

comprises all infrared and raw cyclone images captured by 

INSAT3D within the Indian Ocean, Bay of Bengal, and 

Arabian Sea regions between 2012 and 2021. Additionally, the 

dataset provides the intensity for every cyclone picture 

frame measured in Knots. The primary source of information 

was obtained from the MOSDAC server. Examples of raw and 

Infrared images can be seen in Figures 4(a) and 4(b), which 

are taken from the INSAT-3D TIR1 Dataset. 
 

 
(a) 

 
(b) 

 

Figure 4. INSAT-3D TIR1 sample image data: (a) Set of raw 

images; (b) Set of infrared images 

 

3.2 Data augmentation 

 

In this work, data augmentation is applied to prevent 

overfitting. Data extension is made while retrieving the images 

in batches. The images are randomly rotated from training in 

the -30 to +30 degrees range and flipped with 50% vertical and 

horizontal, respectively. The contract and darkness are 

adjusted randomly with -5 to +5%. The zoom and shear ranges 

are set to 0.3 and 0.2, respectively. 

 

3.2.1 Pre-processing 

In few-shot learning for tropical cyclone prediction through 

image classification, pre-processing is a critical step to prepare 

the data for effective model training and prediction. It typically 

involves several key tasks, including data augmentation and 

feature extraction. Data augmentation techniques, such as 

rotation, scaling, cropping, and flipping, are applied to the 

limited available cyclone images to artificially expand the 

dataset and enhance model generalization. Additionally, 

images may be normalized to ensure consistent brightness and 

contrast. Feature extraction is vital to extract meaningful 

representations from the cyclone images. convolutional neural 

networks (CNNs) are commonly employed to automatically 

extract relevant features from the images, capturing important 

patterns and structures. These pre-processed features serve as 

the input for Few-shot learning models, enabling them to 

better understand the relationships between different cyclones 

and make accurate predictions, even when provided with only 

a few examples per class. 

 

3.3 Exploratory data analysis 

 

To predict the cyclone, we collected KALPANA-1 satellite 

images. Every single satellite image was labelled through 

determining the timestamp and its proper coordinates in each 

cyclone type’s intensity level time plot. The infrared images 

contained within the dataset were utilized for the purpose of 

predicting cyclone categories. Figure 5 shows the distribution 

of satellite image data based on wind speed. From Exploratory 

data analysis, it is observed that data in each class is not 

proportionally distributed. 

 

 
 

Figure 5. Distribution of satellite image data based on wind 

speed (Knots) 

 

3.4 Model development 

 

After the data augmentation and exploratory data analysis, 

the data is prepared to give input to the built deep learning 

models. Initially, we tried with Long-Short Term Memory 

(LSTM). LSTM is an algorithm that learns from remembering 

the dependencies from the long term without neglecting the 

gradient descent values. It consists of three gates and a 

memory cell state. The cell of LSTM is calculated as follows: 

 

𝑌 =
ℎ𝑡−1
𝑦𝑡

 (1) 

 

ft=σ(Wf.Y+bf) (2) 
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it=σ(Wi.Y+bi) (3) 

ot=σ(Wo.Y+bo) (4) 

ct=(ftʘct-1)+itʘ tanh(Wc.Y+bc) (5) 

ht=otʘtanh(ct) (6) 

In the above equations it, ft, and ot represents the input, 

forget, and output gate, respectively, ct defines the cell state. 

The weighted matrices Wi, Wf, Wo∈Rdx2d are mapped with 

hidden layer input with three gates and cell input. The biases 

are given by bf, bi, bo∈Rd and σ represents the sigmoid function, 

and multiplication is represented by ʘ. yt and ht denotes the 

input and hidden vector of LSTM bidirectional. LSTM 

includes forward and backward LSTM layers. The forward 

LSTM layer captures the historical information, and the future 

sequence is captured by the backward LSTM [24].  

After the LSTM, a convolutional neural network (CNN) 

model is built to predict tropical cyclones. In CNN, the kernel 

was responsible for producing a feature map that was passed 

on to the subsequent convolutional layers. This map was based 

on the input matrix. In order to bring down the dimensionality, 

the max pooling algorithm takes the mean and builds an input 

matrix for the subsequent convolutional layer. The 

categorization of reviews is derived using the information that 

is supplied into the fully connected layers from the outputs of 

the max pooling layers. Since the collected image samples are 

fewer, applying deep CNN may be adequate. Hence, we tried 

a new approach called a few-shot learning (FSL) model. Few-

shot learning is the problem of predicting based on a few data 

samples. It is a supervised learning algorithm [24]. The 

model’s objective is to identify the images in the train data and 

then generalize with the given test images dataset. 

To apply few-shot learning and earth mover's distance 

(EMD) for tropical cyclone prediction through image 

classification, a multi-step process can be devised. Firstly, you 

need to gather a diverse dataset of tropical cyclone images 

captured by remote satellites over time, ensuring that it 

includes a broad spectrum of cyclone intensities, sizes, and 

features. For Few-shot learning, select a subset of these images 

as your support set, which represents a few examples from 

different cyclone categories (e.g., categories like "weak," 

"moderate," and "severe"). The remainder of the images forms 

the query set, representing the new, unseen cyclones that need 

prediction. 

Next, utilize deep learning models, such as convolutional 

neural networks (CNNs), to extract rich features from the 

images in both the support set and the query set. Apply few-

shot learning techniques, such as Siamese networks or 

prototypical networks, to understand the similarities and 

differences between cyclones in the support set. Earth mover's 

distance can then be employed to measure the structural 

dissimilarity between the features of query cyclones and those 

in the support set. The cyclones in the support set that are most 

similar to the query cyclone, based on their EMD distances, 

can serve as prototypes for classification. By transferring the 

knowledge from the support set to classify cyclones in the 

query set, this approach enables accurate and efficient tropical 

cyclone prediction based on their intensity and other 

characteristics, even when provided with limited training 

examples. This methodology showcases the potential of Few-

shot learning and EMD as a powerful tool for enhancing 

tropical cyclone prediction through image classification, 

particularly when dealing with data scarcity. 

A support and query set make up FSL. The support set 

consists of a few labelled data on each new category of data, 

which is trained to generalize the new class. The query set is 

made up of new and old data classes on which the model has 

to generalize the knowledge gained from the support set. In 

this work, earth mover distance (EMD) is integrated to 

compute the similarity score. Figure 6 shows the integrated 

architecture of the FSL and EMD for cyclone prediction. 

The earth mover’s distance [25] is determined by separating 

two groups of loaded items or dispersions, with the foundation 

being the separation between each object. It takes the shape of 

the renowned transportation issue from the field of linear 

programming. Especially assumed that a set of sources 

S={si|i=1, 2, ..., m} are needed to transfer things to a set of 

destinations D={dj|j=1, 2, ..., k} where "si" stands for "source 

elements," "dj" stands for "provider," and "I" represents 

"request" from "jth required people". The price per component 

transferred from provider i to demander j is signified by cij, 

and the number of units moved is symbolized by xij. The aim 

of the carriage issue is then to discover the lowest priced flow 

of things X˜={x˜ij|i=1, ..., m, j=1, ..., k} from the providers to 

the requests: 

1 1

1

1

minimize  

subject to  0, 1,.. , 1,..,

, 1,...

, 1,...

ij

m k

ij iji jx

ij

k

ij ij

m

ij ji

c x

x i m j k

x s i m

x d i m

= =

=

=

 = =

= =

= =

 





(7) 

It is important to keep in mind that the positions of providers 

and consumers can be reversed without causing any change to 

the overall transport cost. The total number of corresponding 

flows produced by each node is controlled by si and dj, also 

referred to as the weights of the nodes. In order to reduce the 

total cost of matching, EMD prioritizes the creation of the best 

possible match, denoted by the symbol X~, between providers 

and demanders. Finding a solution to the linear programming 

problem can allow one to attain the ideal worldwide matching 

flows X~. In accordance with the initial definition of EMD 

shown in Eq. (8), the price per unit can be calculated by 

determining the pairwise proximity between the embedded 

nodes ui and vj  using the following two picture attributes: 

1

T

i j

ij

i j

u v
c

u v
= − (8) 

where, related depictions lead to lower comparing costs across 

nodes when we have the best matching flows X~. At this stage, 

we can calculate the similarity measures between picture 

depictions by using Eq. (9): 

( ) %

1 1

, (1 )
HW HW

ijij

i j

s U V c x
= =

= − (9) 

here, H and W stand for the attribute map's spatial measure, 

and C stands for the attribute dimension. Figure 6 shows the 

architecture of the few-shot learning model.
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Figure 6. Integration of few shots learning+EMD model architecture for cyclone prediction 

 

3.5 Model training and validation 

 

Initially, a subset of the available tropical cyclone images is 

selected as the training set, containing a limited number of 

examples per cyclone category [26]. The training process 

involves extracting deep features from these images using a 

convolutional neural network (CNN) and then computing the 

EMD distances between these feature representations. These 

distances help establish relationships among cyclone 

categories in the training set. During validation, a separate 

subset of images, distinct from the training set, is used to 

assess the model's performance. The EMD distances between 

the query cyclones in the validation set and prototype cyclones 

from the training set are computed. The model's predictions 

are based on the nearest prototypes in EMD space. This 

validation process ensures that the model can accurately 

generalize from the training examples and make reliable 

predictions for new cyclones, demonstrating the efficacy of 

Few-shot learning and EMD for tropical cyclone prediction 

through image classification, even with minimal training data. 

The concept of precision in statistics involves the 

computation of the ratio between the number of precise 

forecasts produced by an algorithm and the total number of 

forecasts made. In order to calculate the recall rate, simply 

divide the total number of true positives and false negatives by 

the number of true positives. The utilization of precision and 

recall metrics can provide valuable insights into the 

effectiveness of a given methodology and guarantee that the 

output conforms to predetermined specifications. Nevertheless, 

the task of selecting the most appropriate technique that suits 

the information while assessing multiple techniques trained on 

the same data sets is arduous when relying solely on these 

metrics for comparison. The significance of the F1score is 

paramount. The F1 score is a metric that represents the 

harmonic mean of the precision and recall scores. The 

subsequent equations, specifically Eqs. (10)-(13), represent 

the mathematical expressions for precision, recall, F1-score, 

and accuracy. 

TP
precision

TP FP
=

+
 (10) 

 

TP
recall

TP FN
=

+
 (11) 

 

2
1

precision recall
F score

precision recall

 
− =

+
 (12) 

 

TP TN
accuracy

TP TN FP FN

+
=

+ + +
 (13) 

 

3.6 Finding the best model 

 

In order to find the best model from five different models 

(LSTM, CNN and combination models CNN+LSTM, 

CNN+RF and the FSL+EMD), each model is evaluated with 

precision, recall and f1-score metrics. The best accuracy score 

is considered the best factor in selecting the best model for this 

predictive task. 

 

3.7 Predicting the cyclone 

 

After all the above steps are done, the best-fitting model 

predicts the tropical cyclone based on its severity. This 

severity can be of four types. They are as follows: 

·Depression  

·Cyclone Storm 

·Severe Cyclone 

·Super Cyclone Storm 

 

 

4. IMPLEMENTATION 

 

We used a computer set-up with a hardware configuration 

of 16 GB RAM, 8-10 GB graphics, and a CPU of 24-corefor 
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this work which is implemented in a Jupyter notebook with 

GPU enabled system. Python language is used for coding 

the few-shot learning models. TensorFlow and Keras 

libraries are imported to build the convolutional neural 

network models in python. We conducted experiments with 

INSAT 3D open-source dataset available in MOSDAC. In 

the initial implementation designed the learning model 

version that is entirely based on the cross-reference 

mechanism without EMD to check the model performance 

is solely driven by this mechanism. We calculate the cosine 

distance between each pair of vectors, and then we add the 

node weights produced by the cross-reference process to 

create a weighted sum of these distances. But the cosine 

technique found to be ineffective to enhance the 

performance in the few shot learning model scenario the 

intensity was varying. A blend of the cross-reference 

mechanism and the EMD can produce a significant 

performance enhancement, which again validates the 

benefits of using the EMD as the metric and the efficiency 

of the cross-reference method. 

 

 

5. RESULTS AND DISCUSSIONS 

 

The result of simple average operation can only be 

slightly improved by the model variant that relies specially 

on the cross-reference method as an attention. The 

outcomes from the various machine learning build models 

are displayed in Table 2. Figure 7 shows the comparison of 

overall accuracy obtained from each model. 

 

Table 2. The outcomes from the various machine learning 

build models 

 
Built 

Machine 

Learning 

Models 

Class Precision Recall 
F1-

Score 

Overall  

Accuracy 

(%) 

LSTM 

1 0.77 0.52 0.62 

56.32 
2 0.52 0.52 0.52 
3 0.54 0.59 0.56 

4 0.47 0.64 0.54 

CNN 

1 0.61 0.46 0.52 

61.56 
2 0.72 0.70 0.71 

3 0.53 0.61 0.57 
4 0.47 0.64 0.54 

CNN+ 
LSTM 

1 0.78 0.66 0.71 

75.03 
2 0.78 0.65 0.71 
3 0.67 0.81 0.73 

4 0.78 0.91 0.84 

CNN+ 

RF 

1 0.67 0.51 0.58 

70.35 
2 0.72 0.70 0.71 

3 0.76 0.81 0.79 

4 0.60 0.75 0.67 

FSL+ 
EMD 

(Proposed) 

1 0.81 0.86 0.83 

85.81 
2 0.87 0.87 0.86 

3 0.85 0.87 0.87 

4 0.91 0.85 0.88 

 

We employed five distinct approaches for the designing 

of predictive models. We started with CNN and LSTM 

approaches. CNN reached an accuracy of 61.56%, whereas 

the LSTM approach reached a 5.26% lower overall 

accuracy than the CNN one. The issue with both models is 

that the class 4 recognization precision score was low for 

both cases. Although the LSTM model has a lower overall 

accuracy than CNN, LSTM could recognize class 1 type 

tropical cyclones with a precision score of 0.77. Due to this 

reason, we tried a hybrid model, which was generated using 

the fusion of CNN and LSTM methods. This particular 

approach reached an overall accuracy of 75.03%. This 

model overcame some of the weaknesses of the individual 

approaches. It can recognize classes 1, 2 and 4 far better 

than the other two models. 

 The precision score (0.67) for class 3 shows that this 

model lacks the capability of identifying class 3 a bit. We 

also tried another hybrid model created using CNN and the 

random forest technique. This CNN+RF approach showed 

a lower accuracy (70.35%). The precision and recall scores 

were lower than the CNN+LSTM hybrid method. We 

employed a few-shot learning-based model to overcome the 

accuracy and recognization issues. This model combines 

with EMD data for the distance measuring feature in this 

framework. This hybrid model reached a way higher 

accuracy value (85.81%) than the other four predictive 

models. It indicates that this is a far better model than the 

state-of-the-art approaches. We checked the precision, 

recall and F1-score of each tropical cyclone class for further 

analysis of the model evaluation. All four classes have a 

precision score in the range of [0.82,0.85], which indicates 

that this model is capable of recognizing all four classes of 

tropical cyclones. Figure 7 shows the comparative bar-chart 

depiction of the designed and implemented models. 

 

 
 

Figure 7. Comparison of build ML models 

 

 
 

Figure 8. Comparison of the latest benchmark papers with 

the proposed model for cyclone prediction 

 

Training and inference of EMD-based models require 

more computational resources than the standard models 

because a linear programming issue must be addressed for 

every forwarding phase. But, involving EMD in the model 

designing significantly increases the model performance 

for class prediction. The hybrid model with a performance 
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accuracy of 85.81% indicates the advantage of using EMD 

and a few-shot learning approach. Figure 8 displays the 

comparison of the latest benchmark papers with the 

proposed model for cyclone prediction. Compare to the 

latest work. 

6. CONCLUSIONS

Tropical cyclone intensity is studied and predicted in this 

work. The work predicts storm intensity. The experimental 

studies use INSAT 3D satellite data and the MOSDAC web 

portal dataset. Registering and ordering photos is required 

to access cyclone information. The scholar will then receive 

download links. Data can be downloaded from those links. 

Exploratory data analysis helps extract insights from data. 

Data augmentation for feature extraction was followed by 

LSTM, CNN, CNN+LSTM, CNN+RF, and proposed FSL 

with EDM functionality to improve cyclone forecasting. 

The suggested FSL+EMD framework had 85.81% accuracy. 

A novel unified model of a few-shot learning and earth 

mover's distance algorithm predicts cyclones and compares 

accuracy to deep learning models. This accuracy exceeds 

state-of-the-art models. This can be extended to deeper 

distance functions, match functions, and other few-shot 

learning methods.  

The proposed work requires diverse and representative 

training support. Capturing a wide range of cyclone 

variations makes this set difficult to build. Few-shot 

learning methods may also struggle with extreme cyclone 

categories that deviate significantly from the support set. 

This study suggests expanding the application beyond the 

Indian Ocean to improve global cyclone monitoring. 

Adding temporal data like cyclone movement trajectories 

can also improve prediction accuracy. Meta-learning and 

attention mechanisms can improve model performance with 

limited training data. Optimizations and parallel processing 

can also speed up EMD predictions. Finally, ensemble 

methods and fusion with weather satellite data and 

atmospheric conditions can help predict and manage 

cyclones holistically. 
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