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A comprehensive understanding of the propagation dynamics of COVID-19 is the 

paramount goal of this study. Two innovative mathematical models, namely the 

susceptible, infected, recovered, infected, dead (SIRID) model and the susceptible, 

infected, recovered, vaccinated, infected (SIRVI) model, are introduced. These models 

extend the conventional susceptible, infected, recovered (SIR) model by contemplating 

two pivotal factors: reinfections and the impact of vaccination. The SIRID model 

encapsulates the potential for a previously infected and recovered population to 

experience a secondary infection leading to death. The model forecasts crucial phases 

in this intricate progression: initial infection, recovery, reinfection, and subsequent 

fatality. Reinfections are underscored as a potentially significant driver of mortality in 

the SIRID model. The SIRVI model, however, integrates vaccination into the analysis, 

evaluating how immunization may modulate the virus's spread amid post-vaccination 

reinfections. In essence, the SIRVI model estimates the key stages: initial infection, 

recovery, vaccination, and reinfection notwithstanding immunization. This model 

underscores the potential for vaccination to mitigate the pandemic's severity, while also 

highlighting the ongoing challenges associated with reinfections. The methodologies 

employed to construct the SIR, SIRID, and SIRVI models stem from an adaptation of 

the classic SIR model to incorporate reinfections and vaccination. Each model was built 

using a comparable approach, albeit with additional compartments to capture the 

intricate interplay among various pandemic dynamics. The models' compartments (S, I, 

R, etc.) represent distinct population states based on disease status. The transitions 

between compartments illustrate the flux of individuals from one state to another. For 

the SIRID and SIRVI models, an innovative approach was adopted: every compartment 

accounts for incoming and outgoing fluxes as additions and subtractions, respectively. 

This allows infections, recoveries, reinfections, and deaths to be represented as dynamic 

variables, each with specific equations. The interactions between compartments were 

regulated according to inflows and outflows, capturing the complexity of viral spread, 

potential reinfections, and vaccination impact. Once the equations were formulated, 

numerical methods were employed to solve these differential equations. The model 

parameters were adjusted to align with real-world pandemic data, and iterations were 

conducted to observe various possible scenarios. This permitted detailed predictions 

about the pandemic's progression, considering potential reinfections and vaccination, 

thereby providing valuable insights for public health decision-making. 
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1. INTRODUCTION

As an interdisciplinary scientific field, epidemiology draws 

upon mathematical concepts such as statistics to thoroughly 

study biological phenomena, particularly epidemics [1-5]. 

Over its evolution, epidemiology has undergone notable 

advancements, especially in response to major outbreaks like 

the flu, and the influence of the progression of computer 

technology, enabling sophisticated numerical simulations [1-

5]. 

Understanding the spread of infectious agents necessitates 

the application of mathematical models, where ordinary 

differential equations play a significant role. The SIR model, 

representing individuals susceptible (S), infected (I), and 

recovered (R), serves as a fundamental framework to analyze 

disease transmission dynamics [1-14]. This model considers 

the distribution of the population across these compartments 

and introduces parameters such as β, representing infection 

probability, and γ, the recovery rate or the reciprocal of the 

average symptom duration [1-14] (Figure 1). 

Figure 1. SIR compartment 
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In the pursuit of monitoring and predicting the behavior of 

various viruses, numerous studies have been undertaken. 

These investigations aim to anticipate the disease's trajectory 

over time, thereby assisting decision-makers in devising 

public health strategies. Researchers have extended the SIR 

model to propose novel variations tailored to specific contexts. 

For instance, Ghostine et al. [15] introduced an enhanced 

SEIQRDV model comprising susceptible, exposed, infected, 

quarantined, recovered, deceased, and vaccinated 

compartments. Poonia et al. [16] presented an improved 

SEIRV model involving susceptible, infected, recovered, and 

vaccinated compartments. 

Within the scope of this study, we introduced two distinct 

deterministic nonlinear mathematical models to analyze 

influenza transmission dynamics, with particular emphasis on 

the COVID-19 example. These models aim to provide 

profound insights into scenarios involving reinfection, disease 

evolution over time, and the impact of vaccinations, which can 

significantly influence public health decision-making. The 

significance of this work resides in several key aspects: 

Prediction and Epidemic Management: The 

mathematical models developed in this study enable the 

prediction of epidemic evolution over time. They provide 

valuable insights into the potential spread of the disease, 

infection, recovery, and mortality rates, as well as the 

effectiveness of intervention measures like vaccination. Such 

insights are vital for crafting effective epidemic management 

strategies and guiding decisions of public health officials. 

Understanding Re-Infection Phenomena: The models 

introduce the concept of reinfection, where a population 

previously infected might face subsequent exposures. This 

perspective is crucial for evaluating the potential resurgence 

of epidemics following periods of decline and for anticipating 

measures necessary to control such resurgences. 

Assessment of Vaccination Impact: In an era where 

vaccines play a significant role in combating infectious 

diseases, this study proposes specific models to assess the 

effectiveness of vaccination programs. It helps determine to 

what extent vaccination can reduce infection, transmission, 

and mortality rates and anticipates scenarios where infections 

may occur despite vaccination efforts. 

Decision-Making Support: The findings derived from 

these models provide key insights for decision-makers and 

public health officials to make informed choices. These 

insights can guide the implementation of vaccination 

campaigns, medical resource planning, containment measures, 

and epidemic management strategies. 

Contributions to Research: The SIRID and SIRVI models 

proposed in this study enrich the body of knowledge in 

mathematical epidemiology. They provide a robust foundation 

for future research endeavors aiming to refine models, 

consider disease-specific variables, and further examine 

interactions among transmission factors. 

In summary, this study addresses critical questions 

regarding the dynamics of infectious disease transmission and 

provides analytical tools to anticipate and manage epidemics. 

The developed models and insights obtained can contribute to 

understanding and combating diseases affecting global 

populations. 
 

 

2. BACKGROUND 

 

As mentioned before, the SIR model describes the evolution 

of the spread of a disease within a population [1-14]. This 

spread results from contaminated contact between the infected 

population and the healthy population, and the number of 

infected individuals increases as a function of the number of 

contaminated contacts between infected individuals and 

healthy individuals. This number is proportional to the size of 

the infected population and the size of the healthy population, 

and therefore to the product of these two numbers, I*S. 

Therefore, we can write [1-19]: 

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽 ∗ 𝐼 ∗ 𝑆  (1) 

 

The value 𝛽𝑆𝐼 represents the instantaneous measure of 

individuals transitioning from the S compartment to the I 

compartment, and the parameter 𝛽 is the incidence rate. The 

proportion of actual contacts between a susceptible individual 

and an infected individual and the probability of these contacts 

transmitting the disease from the infected individual to the 

susceptible individual determine this rate. Symmetrically, the 

size of the susceptible population decreases. Therefore, it can 

be written [15-19]: 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽 ∗ 𝐼 ∗ 𝑆  (2) 

 

If an individual stays on average λ days, I/λ is the 

instantaneous value of the flow between the "infected" 

compartment and the "recovered" compartment, i.e., the 

measure of the flow of individuals who recover, leaving the 

"infected" compartment, towards the "recovered" 

compartment. This action governing infected individuals, 

which we can write as [15-19]: 

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽 ∗ 𝐼 ∗ 𝑆 − 𝛾 ∗ 𝐼  (3) 

 

The number of recovered individuals I/λ of the healed 

individuals [15-19], where γ=1/λ. 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾 ∗ 𝐼  (4) 

 

Therefore, we write the SIR model as follows: 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽 ∗ 𝐼 ∗ 𝑆  (5) 

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽 ∗ 𝐼 ∗ 𝑆 − 𝛾 ∗ 𝐼  (6) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾 ∗ 𝐼  (7) 

 

The following improved model is the SIRID model. SIRID 

is useful for predicting the trends of the re-emergence of a 

disease during a given period and monitoring the number of 

deaths during the first and second infection. Thus, it can be 

important for epidemiologists to model epidemics. 

Additionally, it helps us visualize the evolution of a disease in 

a population. Furthermore, it categorizes a population into four 

categories, namely: susceptible (S), infectious (I), recovered 

(R), and deceased (D). We call people not yet infected but are 

at elevated risk of being infected, susceptible, or healthy. We 

call infected people who are responsible for the spread of the 

infection infectious (I). We call people who have recovered 

after being infected recovered (R). We also name people with 

a second infection infectious (I), and we will add them to the 

first compartment of infected individuals, and those who will 
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subsequently die we name them deceased (D). 

In this work, we propose a mathematical modeling approach 

to study the spread of a disease, based on the novel SIRID and 

SIRVI models. These models are common for the analysis of 

the spread of infectious diseases within a population. In these 

models, we divide the population into compartments based on 

their health status. The typical compartments are as follows: 

Susceptible (S): Infected individuals. 

Infectious (I): Infected individuals who can spread the 

disease. 

Recovered (R): Individuals who have recovered from the 

disease and are immune or not likely to catch it again. 

Deaths (D): Individuals who have died due to the disease. 

Vaccinated (V): Vaccinated individuals against the disease. 

In these models, we manage interactions between these 

compartments based on incoming and outgoing flows, 

allowing for the consideration of various scenarios, including 

new infections, recoveries, reinfections, and deaths. We can 

achieve this by using specific mathematical equations for each 

compartment that account for transition rates between 

different states based on model parameters and real pandemic 

data. We conducted numerical simulations by adjusting the 

model parameters according to real pandemic data and then 

running iterations to observe how the disease spreads and 

evolves in different scenarios. These simulations can help 

understand the impact of various interventions, such as 

vaccination, on the disease spread and evaluate strategies to 

contain it. 

The SIRID model uses the coefficients β to represent the 

term of disease transmission. γ represents the recovery rate, α 

designates the term of disease transmission for the second time, 

and µ designates the death rate. The mathematical 

representation of the SIRCD model is in Figure 2, Eqs. (8)-

(11): 
 

 
 

Figure 2. SIRID model 
 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽 ∗ 𝐼 ∗ 𝑆  (8) 

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽 ∗ 𝐼 ∗ 𝑆 − 𝛾 ∗ 𝐼 + 𝛼 ∗ 𝑅 − 𝜇𝐷  (9) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾 ∗ 𝐼 − 𝛼𝑅  (10) 

 
𝑑𝐷(𝑡)

𝑑𝑡
= 𝜇 ∗ 𝐼  (11) 

 

The second improved model is the SIRVI model. SIRVI is 

useful for predicting the trends of disease occurrence for the 

second time during a given period despite population 

vaccination. Thus, it can be essential for epidemiologists to 

model epidemics. Additionally, it helps us visualize disease 

progression in a vaccinated population. Furthermore, it 

categorizes a population into four categories, namely: 

susceptible (S), infectious (I), recovered (R), and vaccinated 

(V). We call Individuals who are not yet infected but are at 

elevated risk of infection susceptible or healthy. We call those 

infected individuals who are responsible for spreading the 

infection infectious (I). We call those who have recovered 

after being infected recovered (R). we call those who have 

received a vaccine vaccinated (V), and those who infected for 

the second time despite their vaccination infectious (I), and we 

will add them to the first compartment of the infected. 
 

Table 1. Review of different versions of the SIR model 
 

Acronym 
Name of 

Model 

Parameter 

Added 
Definition 

SIR 

Susceptible-

Infectious-

Susceptible 

Simplest form 
Immunity does not 

build. 

SIRD 

Susceptible-

Infectious- 

Recovered-

Deceased 

Deceased 
D is the mortality 

rate. 

MSIR 

Maternal-

Susceptible- 

Infectious 

Recovered 

Carrier 

It applies to those. 

where infection 

resides in the 

body forever, such 

as TB. 

SICR 

Susceptible-

Infectious- 

Carrier-

Recovered 

Carrier 

It applies to those. 

where infection 

resides in the 

body forever, such 

as TB. 

SUQC 

Susceptible-

Unquarantined 

Quarantine-

Confirmed 

Unquarantined, 

quarantine 

Number of people 

who are 

quarantined and 

unquarantined. 

GSIR 

Generalized-

Susceptible- 

Infectious 

Recovered 

Generalized 

Assumed that 

throughout time, 

many waves of 

varied peak 

amplitude and form 

arise and fade 

away. 

SEIHR 

Generalized-

Susceptible- 

Infectious-

Hospitalized- 

Recovered 

Hospitalized 
Number of persons 

Hospitalized. 

SCEIR 

Susceptible-

Exposed- 

Infectious-

Recovered- 

Removed 

Confined 

When an individual 

is experiencing 

lockdown. 

ISSEIR 

Interacting 

Subpopulation

- 

Susceptible-

Exposed- 

Infectious 

Recovered 

Interacting 

subpopulation 

Separate SEIR 

model between 

each subgroup of 

the population. 

SIRV 

Susceptible-

Infectious- 

Recovered-

Vaccination 

Vaccination 

When the 

population is 

vaccinated. 

SIRVC 

Susceptible-

Infectious- 

Recovered-

Vaccination- 

contaminated 

Contamination 

and vaccination 

When the 

population is 

vaccinated and 

after that, it has 

become infected. 

SIRCD 

Susceptible-

Infectious- 

Recovered-

contaminated-

Deceased 

Contamination 

and deceased 

The population 

dies, once infected 

for the second time. 
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The SIRVI model uses coefficients β to represent the 

disease transmission term, γ for the recovery rate, ψ to 

designate the rate of vaccination among individuals, and α to 

designate the term for disease transmission for the second time 

despite vaccination. The mathematical representation of the 

SIRVC model is in Figure 3, Eqs. (12)-(15): 

 

 
 

Figure 3. SIRVC model 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽 ∗ 𝐼 ∗ 𝑆  (12) 

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽 ∗ 𝐼 ∗ 𝑆 − 𝛾 ∗ 𝐼 + V  (13) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾 ∗ 𝐼 −  ∗ R  (14) 

 
𝑑𝑉(𝑡)

𝑑𝑡
=  ∗ R − θ ∗ V  (15) 

 

We reviewed the different versions of the SIR model. One 

of the simplest compartmental models is the SIS model, in 

which individuals cannot develop lasting immunity and can be 

infected multiple times. The common flu is the best example 

of the SIS model. Another important model is the maternal 

sensitive infectious recovered (MSIR) model [15, 16, 20-30]. 

We present other improved models in Table 1 above, including 

the addition of two new models proposed in our article. 

 

 

3. PROPOSED METHOD 

 

3.1 The SIRID model  

 

In this work, we describe an extension of the classic 

epidemiological SIR (susceptible-infected-reestablished) 

model. This extended model, called the "SIRID model", 

incorporates additional compartments to provide a more 

detailed representation of disease progression as follows: 

• Susceptible (S): This compartment represents 

individuals who are vulnerable to disease and infection once 

exposed to an infectious person. As the disease spreads, the 

number of susceptible individuals decreases. 

• Mildly infected (I1): These are individuals infected 

with the disease but who have mild symptoms that do not 

require hospitalization. This compartment represents the less 

severe cases of the disease. 

• Severely infected (I2): Individuals in this 

compartment have a more severe form of the disease that 

requires hospitalization. This could include cases where they 

require medical intervention and care to manage the disease. 

• Critically infected (I3): This compartment includes 

individuals with critical cases of the disease, requiring 

admission to intensive care units (ICUs) for specialist medical 

treatment and monitoring. 

• Recovered (R): Individuals who have recovered from 

the disease and developed immunity are in this compartment. 

They are no longer susceptible to re-infection. Recovery may 

be from mild, severe, or critical cases. 

• Deceased: Unfortunately, this compartment 

represents individuals who have succumbed to the disease. 

A set of differential equations that governs the flow of 

individuals between these compartments describes how the 

disease spreads through the population over time. These 

equations consider factors such as infection, recovery, and 

mortality rates, which are influenced by a variety of factors, 

including disease characteristics, health system capacity and 

public health interventions. 

This extended model provides a more nuanced 

understanding of the dynamics of the disease, allowing 

researchers and policymakers to consider different scenarios 

and interventions to better manage and control the epidemic. 

The "SIRID" model appears to be an advanced variation of 

the classic SIR model, incorporating additional parameters to 

capture a wider range of disease outcomes. 

We illustrate the proposed model design in Figure 4. The 

proposed model consists of four main compartments, namely 

Susceptible, Infected, Recovered, and Dead. 

 

 
 

Figure 4. Proposed model SIRID 

 

The mathematical representation of the infection 

compartment (in Figure 4) is as follows: 

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽 ∗ 𝐼 ∗ 𝑆 − 𝛾 ∗ (𝐼 − 𝐼2 − 𝐼3) + 𝛼 ∗ 𝑅 − 𝜇 ∗ 𝐷  (16) 

 

We will add the two secondary compartments (I2) and (I3) 

to the main compartment (I). This compartment includes 

people infected for the first time, and people infected for the 

second time after recovery (I2) and (I3). Hence, the proposed 

model is in Figure 4. 

Then, we defined different coefficients for simulating the 

SIRID model. We describe these coefficients in Table 2. And 

we present the proposed model in Eqs. (17)-(20): 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽 ∗ 𝐼 ∗ 𝑆  (17) 

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽 ∗ 𝐼 ∗ 𝑆 − 𝛾 ∗ 𝐼𝑡 + α ∗ R − µ ∗ D  (18) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾 ∗ 𝐼 − 𝛼 ∗ R  (19) 

 
𝑑𝐷(𝑡)

𝑑𝑡
= µ ∗ D  (20) 
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3.2 The SIRVI model 

 

In epidemiology, modelling plays a crucial role in 

understanding and anticipating the spread of infectious 

diseases within a population. The classic SIR (Susceptible-

Infected-Recovered) model has been widely used to describe 

these dynamics but faced with increasingly complex situations 

and with the introduction of vaccination, we need an 

innovative approach. This is where the proposed new SIRVI 

model comes in. 

This model is an extension of the SIR model, designed to 

capture the finer details of modern epidemiology. It considers 

eight distinct compartments, each reflecting a particular facet 

of the dynamics of an infectious disease in each population. 

• S (Susceptible): The compartment of individuals who 

are vulnerable to the disease and not yet exposed to infection 

nor vaccinated. These individuals are at risk of contracting the 

disease if exposed. 

• I (Slightly infected): This compartment groups 

together unvaccinated individuals who have contracted the 

infection but have mild symptoms that do not require 

hospitalization. This may include symptoms such as mild fever, 

headache, and fatigue. 

• I1 (Vaccinated and infected): A key aspect of the 

SIRVI model is the consideration of vaccinated individuals 

who still contract the disease despite their vaccination. This 

may be due to partial immunity conferred by the vaccine or to 

a variant of the disease for which the vaccine offers less 

protection. 

• I2 (Severely infected): Here we have unvaccinated 

individuals who are severely infected and require 

hospitalization. Symptoms in this category may be more 

intense, requiring close medical supervision. 

• I3 (Critically infected): Unvaccinated individuals 

with a critical infection requiring admission to an intensive 

care unit reside in this compartment. These cases are the most 

serious and require specialized intensive care. 

• R (Recovered/immunized): Individuals who have 

recovered from infection enter this compartment. They have 

developed immunity to the disease and cannot be reinfected in 

the short term. 

• V (Vaccinated): We place vaccinated Individuals 

against the disease in this compartment. However, the level 

and durability of their immunity may vary depending on the 

vaccine used. 

This extension of the SIR model, with its eight distinct 

compartments, offers a more complete view of the spread of 

an infectious disease in a mixed population of unvaccinated 

and vaccinated people. It allows more complex scenarios to 

explore, such as the impact of different vaccination strategies 

on reducing infections, and the capacity of the healthcare 

system to manage serious cases. 

We illustrate the proposed model in Figure 5. It comprises 

four main compartments: susceptible, infected, recovered and 

vaccinated. 

 

 
 

Figure 5. The proposed SIRVI model 

The mathematical representation of the infection 

compartment (Figure 5) is as follows: 

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽 ∗ 𝐼 ∗ 𝑆 − 𝛾 ∗ (𝐼 − 𝐼4) + 𝜃 ∗ 𝑉  (21) 

 

We will add the secondary compartment (I4) to the main 

compartment (I). This compartment includes individuals 

infected for the first time, and individuals infected for the 

second time despite vaccination (I4). Hence, the proposed 

model is in Figure 5. 

 

Table 2. Coefficient of the proposed methods 

 
Name of 

Coefficient  
Definition 

N 
Total population (comprising 100 000 

individuals in this research) 

S Susceptible individuals 

β The term of transmission of the disease 

I 
Infected people + people in critical care + 

people in hospital 

I1 People infected and they are in critical care 

I2 People are infected and they are in hospital 

ᵞ The term of transmission of the disease 

R 
Set of individuals who have recovered from 

the disease and are now immune 

𝜶 
The term of transmission of the disease for 

the second period  

D Set of removed populations 

𝝁 
The death rate of individuals in the most 

severe stage of the disease 

I4 Infected people despite vaccination 

Ψ the rate of individuals’ vaccination 

𝜽 
The term of transmission of the disease for 

the second period despite the vaccine 

 

Next, we defined different coefficients for simulating the 

SIRVI model. We describe these coefficients in Table 2. And 

we present the proposed model in Eqs. (22)-(25): 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽 ∗ 𝐼 ∗ 𝑆  (22) 

 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽 ∗ 𝐼 ∗ 𝑆 − 𝛾 ∗ 𝐼𝑡 + 𝜃 ∗ 𝑉  (23) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾 ∗ 𝐼 − 𝜓 ∗ R  (24) 

 
𝑑𝑉(𝑡)

𝑑𝑡
= ψ ∗ R −  θ ∗ V  (25) 

 

3.3 The reproductive rate R0  

 

The basic reproductive number, often denoted as R₀ 

(pronounced "R naught"), is a fundamental concept in 

epidemiology that measures the potential for a disease to 

spread within a population. In the context of the SIR model, 

which is a simplified mathematical framework used to 

describe the spread of infectious diseases, R₀ we define it as 

the average number of secondary infections generated by a 

single infected individual in a completely susceptible 

population. In the expression R₀=β/γ: 

β (beta) represents the transmission rate or the rate at which 

an infected individual meets susceptible individuals and 

successfully transmits the disease. It encompasses factors such 

as the frequency of contact between infected and susceptible 

individuals, the probability of transmission per contact, and 
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other relevant parameters. γ (gamma) represents the recovery 

or removal rate, which is the inverse of the average duration 

an individual remains infectious. In other words, 1/γ gives you 

the average time an individual spends in the infectious state 

before recovering or dying. When R₀ is greater than one, it 

indicates that each infected individual, on average, infects 

more than one other individual, leading to the potential for an 

epidemic outbreak. Conversely, when R₀ is less than 1, the 

disease will eventually die out because infected individuals are 

not able to infect enough new individuals to sustain the 

outbreak. The SIR model assumes a few simplifications, such 

as constant population size, homogeneous mixing, and lack of 

birth and death rates. More complex models like SEIR (which 

includes an exposed compartment) or spatial models consider 

these factors for a more realistic representation of disease 

spread. Nonetheless, the basic reproductive number remains a 

key concept in understanding the initial dynamics of disease 

outbreaks [31-35]. 

In this study, the reproductive rates of the two proposed 

models, SIRID and SIRVI, are as follows: 

a) R0 for the SIRID model 

The only infected compartment in this model is (I), where, 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽 ∗ 𝐼 ∗ 𝑆 − 𝛾 ∗ 𝐼𝑡 + α ∗ R − µ ∗ D  -struck can be 

calculated as ℱ = 𝛽 ∗ 𝐼 ∗ 𝑆, 𝒱 = −𝛾 ∗ 𝐼 + 𝛼 ∗ 𝑅 − 𝜇 ∗ 𝐷𝔽 =

𝛽, 𝕍 = −𝛾 + 𝛼 − 𝜇 , 𝕍−1 =
1

−𝛾+𝛼−𝜇
 𝑅0 = −𝔽. 𝕍−1 =

𝛽

𝛾+𝜇−𝛼
  

b) R0 for the SIRVI model 

The only infected compartment in this model is (I), where, 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽 ∗ 𝐼 ∗ 𝑆 − 𝛾 ∗ 𝐼𝑡 + 𝜃 ∗ 𝑉, R0 can be calculated as ℱ =

𝛽 ∗ 𝐼 ∗ 𝑆 , 𝒱 = −𝛾 ∗ 𝐼𝑡 + 𝜃 ∗ 𝑉𝔽 = 𝛽 , 𝕍 = −𝛾 + 𝜃  , 𝕍−1 =
1

−𝛾+𝜃
 𝑅0 = −𝔽. 𝕍−1 =

𝛽

𝛾−𝜃
  

 

 

4. RESULT AND DISCUSSION  

 

The main objective of this article was to develop a 

mathematical model that could predict cases of COVID-19. 

We added a new compartment to the SIR base to achieve this 

goal. And we implemented these COVID-19 epidemic process 

models using the MATLAB programming language. We 

conducted an experimental study of the two proposed models 

using data related to COVID-19 cases in France, presented in 

the "COVID-19 government information" database. We made 

the forecasts for 7 days. 

The calculated values of the β and γ coefficients were 

determined using the R0 (reproduction rate) value of 0.74 

provided by the "COVID-19 government information" 

database. 

We conducted the validation of our two proposed models 

on 100,000 inhabitants of France over a period of 7 days. The 

following figures present the results obtained, with SSIR 

(0)=92590, ISIR (0)=7410, RSIR (0)=0. SSIRID(0)=92250, 

ISIRID(0)= 7704, which includes ISIRID (0)=7410 as the initial 

number of people infected for the first time, and I2SIRID(0) + 

I3SIRID(0)=294 as the initial number of people infected for the 

second time, RSIRID(0)= 0, DSIRID(0)=46. SSIRVI (0)=171724.03, 

ISIRVI (0)=7434.45, which includes ISIRID (0) =7410 as the 

initial number of people infected for the first time, and I4SIRVI 

(0)=24.45 as the initial number of people infected for the 

second time despite vaccination. VSIRVI (0)=79581.25 is the 

initial number of vaccinated people. 

In this study, we collected samples starting from November 

1, 2021, we simulated three models numerically, namely the 

SIR model, as well as two proposed models, the SIRID and 

SIRVI models. The three figures presented in the study show 

the results of these simulations. 

 

 
 

Figure 6. Numerical simulation of SIR of 100 000 

inhabitants from France for 7 days 
 

In Figure 6, we meticulously executed a simulation of the 

SIR model, utilizing data specific to the chosen timeframe. 

The outcomes derived from this simulation provide a nuanced 

perspective on the epidemic's progression and furnish a means 

to quantify the disease propagation rate. The graphical 

representation in the figure vividly illustrates the dynamic 

changes over time in three key components: the susceptible 

population (S), infected individuals (I), and those who have 

either recovered or succumbed to the disease (R). 

It's crucial to emphasize the SIR model's inherent simplicity, 

as it doesn't encompass the entirety of factors that influence 

epidemic evolution. Notable exclusions include the 

effectiveness of preventive and control measures, the potential 

impact of virus mutations, and considerations related to the 

geographic and demographic distribution of the population. 

Despite these omissions, the SIR model retains its utility as a 

valuable analytical tool. While it may not capture the full 

complexity of real-world scenarios, its ability to reveal general 

trends in epidemic dynamics makes it an indispensable 

resource for informing public health decisions. By 

acknowledging its limitations, the insights gleaned from the 

SIR model can be appropriately contextualized within the 

broader landscape of epidemiological considerations, 

contributing to more informed and nuanced public health 

policy decisions. 
 

 
 

Figure 7. Simulation of SIRID of 100 000 inhabitants from 

France for 7 days 
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Figure 7 presents the SIRID model, in which we placed 

second -time-infected individuals in the I compartment. The 

curve of infected individuals shows a clear progression 

compared to Figure 6, while the death curve does not seem to 

have experienced significant progression. We may explain that 

by the fact that the number of deaths recorded during the 

considered period is exceptionally low compared to the 

number of healthy people, sick people, and recovered people. 

 

 
 

Figure 8. Simulation of SIRVI Of 100 000 inhabitants from 

France for 7 days 

 

Figure 8 presents the SIRVI model. In this model, we placed 

the infected individuals for a second time despite vaccination 

in the I compartment. Therefore, the curve of infected 

individuals shows a clear progression compared to Figure 6. 

This emphasizes the importance of continuing to monitor the 

disease's propagation and developing effective vaccines 

against emerging disease variants. In addition, the vaccination 

curve also shows a strong progression. We can attribute this 

increase to the importance of vaccination in the fight against 

the spread of the disease. Massive vaccination campaigns 

conducted in many countries have enabled a large part of the 

population to be vaccinated, thereby reducing the spread of the 

disease and the severity of cases. However, it is important to 

emphasize that the efficacy of vaccines can vary depending on 

disease variants, underscoring the need to closely monitor 

disease propagation and develop effective vaccines against 

emerging variants. 

Using the parameters indicated in Table 3, we found that the 

proposed models reported an R0 value of 0.74 to 1.3 for the 

SIRID model and 1.07 for the SIRVI model. The R0 (basic 

reproduction rate) is a measure of the spread of a disease in 

each population. It represents the average number of people 

that an infected person can infect in turn. Thus, an R0 value 

greater than one indicates active disease propagation, while a 

value less than 1 indicates a decrease in disease propagation. 

 

Table 3. Obtained values of coefficients 

 
Coefficient Values «SIRID» Values «SIRVI» 

β 0.01924 0.01924 

γ 0.026 0.026 

θ  _ 0 

ψ  _ 0.08571429 

μ 0.2 _ 

α 0.057 _ 

 

Our results show that, according to the proposed models, a 

person infected with the coronavirus can infect an average of 

1.3 additional people in France using the SIRID model, and 

1.07 additional people using the SIRVI model, during the 

study period. These R0 values indicate that disease 

propagation is low in France but remains a significant source 

of concern. 

These results are important for understanding disease 

propagation and can help plan the response and prevention to 

the COVID-19 pandemic. Using these models, it is possible to 

predict disease propagation in different situations and 

implement effective preventive measures to limit disease 

propagation. These measures can include confinement 

measures, vaccination campaigns, screening tests, hygiene, 

and social distancing measures, as well as contact tracing 

measures. 

Several observations and trends emerge from an analysis of 

the results presented in this study. Firstly, a comparison 

between the SIR, SIRID, and SIRVI models reveals distinct 

dynamics in the spread of the disease. Figure 5 highlights the 

progression of the epidemic according to the SIR model, 

showing the evolution of the susceptible, infected, and 

recovered populations. However, it is important to bear in 

mind that the SIR model does not consider various real factors, 

such as the effectiveness of prevention and control measures, 

mutations in the virus, and the geographical and demographic 

diversity of the population. Despite these limitations, this 

model provides a general view of epidemic trends, which can 

help to guide public health policies. 

Nevertheless, it is crucial to note the inherent limitations of 

these models. The SIRID and SIRVI versions take reinfection 

and vaccination into account, respectively, making them more 

realistic. However, even these improved models have certain 

limitations. They do not consider variations in vaccine efficacy 

as a function of virus variants. In addition, they do not fully 

consider other complex elements such as behavioral changes 

in the population, government interventions, and interactions 

between different regions. Consequently, although these 

models are powerful tools for predicting epidemics, we must 

interpret them with caution and with due regard for their 

simplifications. 

The proposed models provide valuable information for 

public health decision-making. For example, they enable 

decision-makers to predict the possible evolution of the 

disease according to different vaccination, containment, or 

screening strategies. However, it is important to recognize that 

the results are only estimates based on simplifying 

assumptions. Variations may be considerable. Consequently, 

we should consider the implications derived from these 

models as guides rather than precise predictions. These models 

are valuable tools for guiding public health policy, but other 

real data and a thorough understanding of the specific 

epidemiological context must complement them. 

In summary, analysis of the results of this study provides an 

interesting insight into the spread of COVID-19 using 

different epidemiological models. The observations, trends, 

limitations, and implications of these models highlight the 

importance of considering both their advantages and 

limitations when formulating public health policies and 

prevention strategies. 

 

 

5. DISCUSSION AND CONCLUSION  

 

Many people are now affected by COVID-19, as it is a 
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global pandemic. Contemporary models are reliable for 

predicting the spread of a pandemic disease. The classic SIR 

(Susceptible-Infected-Recovered) model laid the foundations 

of epidemiological modeling by dividing the population into 

compartments to predict disease trends. However, this initial 

model did not consider the effects of vaccination and did not 

consider cases of reinfection. 

To address cases of reinfection, we developed the SIRID 

model, incorporating new compartments to represent re-

infected individuals and associated deaths. This model brought 

a more realistic perspective to the prediction of the pandemic, 

although it remains limited by simplifying assumptions about 

the complex nature of immunity and reinfection. 

The SIRVI model also looked at the impact of vaccination 

on the spread of the virus. By considering both vaccination 

rates and new infections despite vaccination, this model 

provides crucial information for assessing the effectiveness of 

vaccination campaigns. However, it is important to note that 

vaccination rates and variant effects can significantly 

influence the model's predictions. 

Following the calculations conducted on the basic 

reproduction rate (R0), based on the system of equations that 

we have developed, the proposed models demonstrated 

significant values in terms of predictability of the spread of the 

virus. For the SIRVI model, we evaluated the basic 

reproduction rate at 1.07, reflecting the virus's capacity to 

infect new individuals despite the vaccination efforts in place. 

On the other hand, the SIRID model showed a base 

reproduction rate of 1.3, indicating a more pronounced 

tendency towards reinfection and case severity. These R0 

values highlight the crucial importance of factors such as 

vaccination, reinfection, and control measures in influencing 

the dynamics of virus spread within the population. 

We subjected the proposed models to a rigorous series of 

mathematical simulations and tests to better understand their 

behavior under various conditions. We conducted these 

simulations to assess the relevance and effectiveness of the 

SIRVI and SIRID models in the actual context of the COVID-

19 pandemic. 

As part of these simulations, we considered several 

scenarios to reflect different epidemiological and public health 

parameters. We evaluated the model in situations such as 

without vaccination (SIRID) and with vaccination (SIRVI), 

using a population of 100,000 individuals in France as the 

basis for the calculations. These contrasting scenarios 

highlighted how the two models react to different conditions 

and how they can help inform decision-making in a variety of 

contexts. 

The scenario without vaccination (SIRID) highlighted the 

effects of the natural spread of the virus without vaccine 

intervention. This made it possible to determine the extent of 

reinfection and the associated consequences, as well as the 

impact on mortality and disease dynamics in an unvaccinated 

context. 

In contrast, the scenario with vaccination (SIRVI) showed 

how the introduction of vaccination campaigns can influence 

the spread of the virus. This includes not only the positive 

effect of reducing new infections among those vaccinated but 

also considering cases of infection despite vaccination. This 

situation made it possible to assess how the models manage 

the nuances of the interactions between vaccination and viral 

transmission. 

By using a real population as the basis for simulation, these 

tests have provided concrete insights into the performance of 

the models under realistic conditions. This provides essential 

information for public health decision-makers, enabling them 

to anticipate challenges and take informed action to mitigate 

the spread of the disease. 

However, it is important to note that these simulations are 

based on assumptions and data available at a given time. The 

results may therefore evolve with the emergence of new data 

or changing circumstances. Despite this, these tests remain a 

valuable tool for exploring the implications of the SIRVI and 

SIRID models for managing the COVID-19 pandemic. 

Despite their usefulness, these models have intrinsic 

limitations. They simplify the complexity of epidemiological 

reality by assuming constant transmission rates and 

homogeneous interactions between individuals. In addition, 

the rapid evolution of science and the variability of data can 

call into question the accuracy of their predictions. 

Although the SIR, SIRID, and SIRVI models have shed 

valuable light on the prediction of COVID-19, they are fallible 

oracles. Their value lies in their ability to guide public health 

decision-makers, providing them with essential information 

for taking informed action. However, to further refine these 

models in the future, it is crucial to consider scientific 

advances and adapt to the constantly changing realities of the 

pandemic. 

Looking to the future, we do not limit the model we have 

proposed to its current state. We aim to refine and extend this 

approach so that it is even more representative of the 

complexity of the propagation of COVID-19 and its 

interactions within the population. To this end, we plan to 

incorporate new compartments into the model, which could 

provide a more complete and nuanced perspective. 

One of the avenues we plan to explore is the vaccination of 

infants and children. These demographic groups play a crucial 

role in the dynamics of disease spread, and by incorporating 

this dimension, our model could better reflect epidemiological 

reality. Understanding how vaccination spreads within these 

groups and how it impacts overall transmission would be a 

major step toward more informed decision-making. 

In addition, asymptomatic carriers of the virus, although 

healthy, may play a key role in the silent spread of the disease. 

Incorporating their influence into our model would enable us 

to consider more accurately community transmission. This 

could have significant implications for prevention and control 

strategies, by identifying at-risk groups even among 

asymptomatic individuals. 

In short, our model is only an initial step in understanding 

the spread of COVID-19. We are determined to continually 

improve it in line with new data and scientific discoveries. 

This evolutionary approach will ensure that our model remains 

relevant and useful for guiding public health decision-makers 

while adapting to the changing challenges presented by this 

global pandemic. 
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