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Although earned value management (EVM) offers considerable advantages for 

schedule and cost control within oil projects, its implementation as a project control 

technique remains limited in Iraq. This study primarily aims to establish predictive 

models, utilizing support vector machine (SVM), to estimate earned value performance 

indicators namely schedule performance index (SPI), cost performance index (CPI), 

and to-complete cost performance index (TCPI) within the context of Iraqi oil projects. 

The dataset, encompassing 83 monthly reports spanning from 26th June 2015 to 25th 

August 2022, was sourced from the Karbala Refinery Project. This project, managed by 

the oil projects company (SCOP) under the Iraqi Ministry of Oil, represents one of the 

largest and most contemporary initiatives within the region. The results revealed 

significant findings, including an average accuracy (AA%) for CPI, SPI, and TCPI of 

96.093%, 91.709%, and 66.024%, respectively. Correlation coefficients (R) were 

registered at 92.8%, 98.2%, and 93.3%, while the root mean squared error (RMSE) 

stood at 0.0969, 0.0604, and 0.2260 respectively. In conclusion, the SVM technique 

was employed in this study to derive predictive models, yielding superior accuracy for 

earned value indexes. 

Keywords: 

earned value management, oil projects, Iraq, 

support vector machine, performance indicators, 

predictive models 

1. INTRODUCTION

Oil and gas construction projects play a pivotal role in 

facilitating production processes within the industry [1]. 

However, these projects frequently grapple with protracted 

risks, resulting in extended timelines, elevated costs, and 

compromised quality, thereby undermining their success [1]. 

The inherent complexity of technology and management 

within the oil and gas sector renders these projects among the 

most challenging to execute. For project managers, in addition 

to possessing relevant experience, adherence to a consistent 

reference framework predicated on the continual monitoring 

and evaluation of all formal project stages is essential [2]. 

Effective management within the oil and gas industry 

necessitates robust strategies for time, cost, and quality, 

thereby underscoring the need for techniques to mitigate the 

risk of future project failures [2]. 

EVM, a prevalent approach for project monitoring and 

control, facilitates project progress analysis by measuring 

scope, schedule, and cost [3]. Despite its benefits, the current 

methodologies and strategies for estimating earned value 

indexes in Iraq are deemed subpar and inefficient. The demand 

for novel and advanced technologies that enable the timely, 

accurate, and flexible estimation of earned value indexes has 

thus intensified [4]. Given the absence of an established 

modern methodology for estimating the earned value of Iraq's 

oil projects, this study primarily aims to formulate three 

mathematical models, leveraging the Support Vector Machine, 

to predict the key indicators of earned value in the construction 

of the Karbala Refinery Project. These performance indicators 

are CPI, SPI, and TCPI. 

2. LITERATURE REVIEW

Numerous researchers have explored employing SVM 

techniques for project management, focusing specifically on 

maintaining cost and timeline control. For instance, a SVM 

model was developed by Hasan et al. to estimate the cost of 

road projects, utilizing 43 sets of bills of quantity collated from 

Baghdad, Iraq [5]. The prediction equations formulated within 

this model demonstrated a robust performance in estimating 

construction costs for roads in Baghdad city, posting an 

average accuracy (AA) of 99.65% and a coefficient of 

determination (R²) of 97.63% [5]. 

Similarly, Juszczyk developed a model founded on machine 

learning and SVM techniques to predict site overhead costs, 

with the results affirming its effectiveness [6]. Alawadi et al. 

proposed an SVM-based model to furnish preliminary budget 

estimates for bridge construction, using basic data and metrics 

about bridges in the initial construction stages as input [7]. The 

forecasts derived from this model exhibited an acceptable 
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estimation error range of 25-30%, indicating reasonable 

accuracy [7]. 

Additionally, a mathematical model was developed to 

predict the optimal time of completion for repetitive 

construction projects [8]. The constructed model, which 

leveraged SVM techniques, demonstrated a significant 

capability to predict the time of repetitive construction projects 

(RCPs), with a correlation coefficient of 97%, a mean absolute 

error (MAE) of 3.6, and a RMSE of 7% [8]. 

Eltoukhy and Nassar employed SVM to develop a model 

for predicting cost and time overruns in construction projects, 

by elucidating the causes and effects of cost and schedule 

overruns in building projects [9]. In 2021, Chandanshive and 

Kambekar developed a cost prediction model to enable 

accurate cost predictions early in a project's lifecycle [10]. The 

resultant SVM model for cost prediction in building 

construction projects exhibited a correlation coefficient (R) of 

97.5257% and an R² of 94.299% between the actual and 

expected cost, with the overall accuracy defined as 94.29%. 

The mean absolute percent error (MAPE) of 8.96% signified 

that the model's percentage error met the error requirements 

[10]. 

Notably, Susilowati and Kurniaji integrated EVM 

methodology into a development project encompassing malls 

and hotels, measuring performance through indicators such as 

the cost performance index (CPI), and the schedule 

performance index (SPI) [11]. Hussien and Jasim proposed a 

tool that melds the building information modelling (BIM) 

technique with EVM, offering several features that assist 

project managers in circumventing errors during project 

progress stages by identifying conflicting elements that induce 

time delays and cost deviations [12]. 

 

 

3. METHODOLOGY 

 

To determine the factors that affect and develop 

mathematical equations to quickly and readily determine the 

indexes, the following steps can be used to achieve this goal: 

• Identifying the AI technique variables that have an 

impact on the EV indices in Iraqi oil projects. 

• Creating mathematical models that may be applied to 

estimate the cost performance index (CPI), schedule 

performance index (SPI), and to-complete cost performance 

indicator (TCPI) in Iraqi oil projects before execution phases. 

• Developing equations for calculating the SPI, CPI, 

and TCPI for the oil projects. 

• Verifying and validating their developed 

mathematical models allows them to test the efficiency and 

accuracy of the results. 

Figure 1 shows the methodology for development of SVM 

models. 

 

 
 

Figure 1. Methodology of research 

 

 

4. EXPERIMENTAL WORKS (CASE STUDY) 

 

The project of Karbala Refinery is selected as a case study 

to achieve the goal of the research being one of the huge 

projects, project Location is 25 km South of Karbala City, Iraq 

(100 km South of Baghdad City). The total site area is (10 km2) 

including the Refinery area is (6 km2). The total cost of this 

project is about (USD 6,641,089,012), with a working duration 

of (54 months). More information is summarized in Table 1. 

Figure 2 displays the units’ diagram for the Karbala Refinery 

project as well as Figure 3 shows a 3D picture and the site 

photo of the Crude & Vacuum Distillation Unit.

 

Table 1. Project background information 
 

Item Name Details 

Project Name Karbala Refinery Project 

Project Location 25km South of Karbala City, Iraq (100km South of Baghdad City) 

Employer State Company for Oil Projects (SCOP)/Oil Ministry 

Contractor 
The Korean Consortium Headed by Hyundai 

HDGSK JV(HDEC+GS+SK+HEC) 

Consultant TechnipFMC 

Refinery Area 3km×2km 

Site Area 5km×2km 

Production Capacity 140,000 BPSD 

Type of Contract EPC (design, purchase, and construction) 

Contract Signing Date (EPC) 15/4/2014 

Actual start date 28/5/2014 

Duration of the Original Contract 54 Months 

Planned Completion Date 16/2/2022+1 year (trial operation) 

Expected Completion Date 31/7/2023 

Contract Amount 6,641,089,012 $ 

The Value of the Original Contract 6,023,000,000 $ 

FEED Contractor Technip Italy S.p.A(2009-2010) 

Licensors UOP, Axens, Haldor Topsoe, Poener, Tecnimont 

2004



 

 
 

Figure 2. Units diagram of Karbala Refinery Project 

 

 
 

Figure 3. Crude and vacuum distillation unit 

 

 

5. PREPARATION OF DATA 

 

All reports of the Karbala refinery project have been 

obtained from the Karbala Refinery Project Authority, the 

state company for oil projects (SCOP), Iraqi Ministry of Oil, 

which (83) reports. (73) reports from it used for building the 

(SVM) models and, (10) used for generalization. For each one 

of the three models (CPI, SPI, TCPI), the data is separated into 

three categories (training, testing, and validation). The CPI 

model got 78% of the data in the training set, 11% in the test 

set, and 11% in the validation set. As a result, (57) reports were 

used for training, (8) for validation, and (8) for testing this 

model. While the SPI model received 70% of the data from the 

training set, the test set received 5% and the validation set 

received 25%. As a consequence, (51) reports were used for 

training, (18) for validation, and (4) for testing. As for the 

TCPI model the optimal division was found to be 84% for the 

training dataset, 5% for the testing dataset, and 11% for the 

validation datasets, as a consequence (61) reports were used 

for training, (8) for verification, and (4) for testing. The 

precision of all these divisions was based on the lowest testing 

errors and highest Correlation Coefficients (r) value. 

 

 

6. CHOOSING A SUITABLE SUPPORT VECTOR 

MACHINE SOFTWARE 

 

Today, support vector machine applications are used for 

solving many engineering problems such as earned value 

predicting. The researcher studied many support vector 

2005



 

machine programs such as Win SVM, MATLAB SVM 

Toolbox, LIBSVM, SVM light, STATISTICA, DTREG and 

WEKA. The present study made use of the WEKA Software 

because of the researcher found that the best software for 

support vector machine, which is easy to apply and has a high 

compatibility with both simple and more complex issues, and 

can accept different kinds of variables and factors. Weka is a 

set of state-of-the-arts ML algorithms and data pre-processing 

tool, which was developed by Waikato University, New 

Zealand. WEKA is short for Waikato environment for 

knowledge analysis, and its design enables a flexible and easy 

check of currently applied methods on data sets. Third edition 

of Weka was used in this study since the best stable version of 

Weka. There are five steps involved for the implementation of 

SVM using Weka, namely Data Division, SMOreg, function 

selecting, kernel selection, and determining the learning SVM 

parameters. As for the work presented in this chapter, the 

lowest root mean square error (RMSE) was adopted based on 

the Kernel and SVM parameters (C and epsilon). 
 

 

7. IDENTIFICATION OF THE VARIABLES FOR SVM 

MODELS 

 

The SVM model requires lots of information and data, 

which was collected from the Karbala Refinery Project for the 

period from 2015 to 2022. The data collection method used in 

this paper is direct data collection, as the project data was 

obtained from the Karbala Refinery Project Authority after 

many approvals, interviews and repeated visits to the project. 

Despite the fact that this method is somewhat complicated, a 

sufficient amount of reliable data has been collected from 

documents and reports on the planning and implementation of 

the refinery. Historical data contained both dependent and 

independent variables that were chosen and identified from 

(83) reports for the Karbala Refinery project. Three variables 

have been identified as being dependent, namely the Cost 

Performances Indicator (CPI), Schedule Performances 

Indicator (SPI), and To-Complete Cost Performances 

Indicator (TCPI) and six variables were chosen as being 

independent as following: 

• BAC: is the budget at completion; 

• ACWP: is the actual cost of the work performed, AC; 

• A%: is the real percentage; 

• BCWP: is the budgeted cost of the work performed, 

EV; 

• P%: is the planning Progress percentage; 

• BCWS: is the budgeted cost of the work scheduled, 

PV. 

The variables used in the SVM models that affect the EV 

index are shown in Table 2. 

 

Table 2. Variables of SVM models 

 

Parameters 
Input Values 

BAC(USD) AC(USD) A% EV(USD) P% PV(USD) 

N 83 83 83 83 83 83 

Range 0 1,725,290,950 0.987 1,773,593,250 0.985 1,770,717,250 

Minimum 1,797,500,000 5,392,500 0.005 8,088,750 0.015 26,782,750 

Maximum 1,797,500,000 1,730,683,450 0.991 1,781,682,000 1.000 1,797,500,000 

Mean 1,797,500,000 798,844,121 0.496 890,884,313 0.782 1,406,171,256 

St. D 0 611,143,561 0.358 642,934,013 0.324 581,851,806 

 
Output Values 

CPI SPI TCPI 

N 83 83 83 

Range 0.597 0.872 0.820 

Minimum 1.029 0.201 0.178 

Maximum 1.626 1.073 0.998 

Mean 1.177 0.606 0.771 

St. D 0.148 0.320 0.240 

To guarantee ensures all variables receive the same 

attention throughout training, the input and output variables 

are pre-processed by scaling them to eliminate their dimension. 

As part of this approach, scaled values with a minimum and 

maximum of (x min/x max) are computed for each variable in 

Eq. (1): 

 

Scale Value =
X − Xmin

Xmax − Xmin

 (1) 

 

 

8. DEVELOPMENT SVM MODELS 

 

It is necessary for SVM models to be organized, so as to 

improve the performance. The main factors to be addressed are 

developing model input, data divisions, and preprocessing, 

developing the model architecture, and its optimization 

(training), stop criteria, and model validation. A structured 

methodology is applied to develop the model, which involves 

four major phases: 

1. Data division 

2. Model architecture 

3. SVM model equation 

4. SVM model validity  

The same variables defined at the data identifying step are 

used for developing the three mathematical SVM models, 

using the project characteristics to predict the EV indexes. 

Through the third version of Weka, the following models were 

developed: 

• SPI: is the schedule performance indicator 

• CPI: is the cost performance indicator 

• TCPI: is the to-complete cost performance indicator 

 

8.1 Cost performance index (CPI) model 

 

This model's development involves the following five steps: 

 

8.1.1 Data division CPI model 

The data is divided into three sets, namely training, testing, 

and validating sets as shown in Table 3. 
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Table 3. Impact of data split on performance of CPI model 

 

Data Set 
Statistical 

Parameters 

Input Variables Output 

P% BCWS A% BCWP ACWP BAC CPI 

Training 

 

n=57 

Range 0.9851 1770717250 0.9867 1773593250 1717202200 0 0.5650 

Minimum 0.0149 26782750 0.0045 8088750 5392500 1797500000 1.0340 

Maximum 1.0000 1797500000 0.9912 1781682000 1722594700 1797500000 1.5990 

Mean 0.7741 1391507820 0.4724 849066469 758133077 1797500000 1.1855 

St. Deviation 0.3370 605735060 0.3547 637521603 602944073 0 0.1513 

Testing 

 

n=8 

Range 0.9509 1709242750 0.9568 1719848000 1655250180 0 0.3500 

Minimum 0.0491 88257250 0.0207 37208250 26671250 1797500000 1.0450 

Maximum 1.0000 1797500000 0.9775 1757056250 1681921430 1797500000 1.3950 

Mean 0.7633 1371964344 0.4714 847341500 751552641 1797500000 1.1818 

St. Deviation 0.3620 650610737 0.3817 686023075 645018042 0 0.1277 

Validation 

 

n=8 

Range 0.8742 1571374500 0.9102 1636084500 1641147940 0 0.5970 

Minimum 0.1258 226125500 0.0810 145597500 89535510 1797500000 1.0290 

Maximum 1.0000 1797500000 0.9912 1781682000 1730683450 1797500000 1.6260 

Mean 0.8568 1540098000 0.6391 1148714844 1058329529 1797500000 1.1690 

St. Deviation 0.3103 557694339 0.3863 694445675 682027724 0 0.1979 

 

8.1.2 Selection kernel CPI model 

The next step is to choose the kernel, as displayed in Table 

4. The poly-kernel was chosen as the optimal kernel for the 

CPI model because its root mean square error (RMSE) is equal 

to 0.1, which is the least number found. 

 

Table 4. Effects of the kernel function on CPI model 

 

Kernel Type MAE RMSE 
Correlation 

Coefficient % 

Normalised poly-kernel 0.0917 0.1434 72.79 

Poly-kernel 0.0717 0.1 74.34 

RBF kernel 0.0855 0.1301 63.89 

 

8.1.3 Selection of the SVM parameters (C and epsilon) for the 

CPI model 

Table 5 illustrates an example of the C effect on the CPI 

model. When the C value is 10 the greatest (r) value is 

(96.98%), the mean absolute error (MAE) is (0.0354), and the 

least RMSE is (0.0786) making this the ideal value. According 

to the statistics in this table, changes in C, especially those 

falling between (1 to 10), have little impact on the performance 

of the CPI models. This supports including it in the study's 

suggested model. 

 

Table 5. Impact of changing parameter C on CPI model 

performance 

 

Parameter (C) MAE RMSE 
Coefficient 

Correlation (%) 

1 0.0717 0.1 74.34 

2 0.0641 0.0905 80.4 

3 0.0616 0.0861 82.56 

4 0.0601 0.0833 83.86 

5 0.0568 0.0779 86.04 

6 0.0535 0.0748 86.97 

7 0.0529 0.0746 86.98 

8 0.0529 0.0745 86.98 

9 0.0529 0.0745 86.99 

10 0.0528 0.0745 86.99 

 

Table 6 displays Epsilon's impact on the CPI model. 

Considering that the greatest (r) value is (87.06%), the smallest 

RMSE is (0.0744), and the mean absolute error (MAE) is 

(0.0528) Epsilon is considered to be at its best when it is 

valued equal to (0.006). The information in this table 

demonstrates that variations in Epsilon have little impact on 

the functionality of CPI models, especially when they fall 

between (0.001 to 0.05). This is in favor of including it in the 

study's model. 

 

Table 6. Impact of changing parameter Epsilon on CPI 

model performance 

 
Parameter 

Epsilon 
MAE RMSE 

Coefficient 

Correlation (%) 

0.001 0.0528 0.0745 86.99 

0.002 0.0528 0.0745 86.99 

0.003 0.0528 0.0746 87.01 

0.004 0.0527 0.0745 87.02 

0.005 0.0528 0.0745 87.04 

0.006 0.0528 0.0744 87.06 

0.007 0.0528 0.0745 87.06 

0.008 0.0528 0.0745 87.06 

0.009 0.0528 0.0747 87.06 

0.01 0.0528 0.0747 87.06 

0.02 0.0531 0.0749 87.08 

0.03 0.0534 0.0752 87 

0.04 0.054 0.0759 86.97 

0.05 0.0552 0.0768 86.83 

 

8.1.4 Equation of CPI model 

Table 7 shows the connection weights collected by the 

Weka software for the optimal CPI model. A scale is not 

necessary because the program decides whether or if the data 

should be transformed as well as the method of transformation. 

 

Table 7. Weight estimates for model CPI 

 

Layer 
Wji, (Weight from Node I in the Input Layer to Node 

J in the Hidden Layer) 

Input P% BCWS A% BCWP ACWP 

Weights -0.2287 -0.2287 1.5477 1.5477 -3.2236 

Bias 0.55889 

 

By using the connection weights and threshold level stated 

in Table 6, the CPI value might be predicted in the following 

method: 

 

CPInor = 0.5589 − (0.2287 × P%)
− (0.2287 × BCWS)
+ (1.5477 × A%)
+ (1.5477 × BCWP)
− (3.2236 × ACWP) 

(2) 
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CPIact = CPInor × range + min (3) 

 

CPIact = CPInor × 0.5650 + 1.0340 (4) 

 

The above-mentioned equation's implementation can be 

clarified by utilizing the data used in the SVM model training 

for CPI, as shown in report no.66 in Table 8. The predicted 

value obtained from the above equation equals (1.071), which, 

when compared to the real value measured by hand 

(CPI=1.064), is relatively accurate. These value variations are 

considered as minor. Before utilizing Eq. (2) it should be noted 

that all input variables must be transformed to values between 

(0-1) because Eq. (2) was built using Eq. (1). To obtain actual 

data out from normalized ones, conversions to actual values 

were made using Eq. (4) and Table 3.

 

Table 8. Verification of CPI model 
 

Report No. (P%) PV(BCWS) (A%) EV(BCWP) AC(ACWP) Actual CPI Predicted CPI Residual 

66 1.000 1,797,500,000 0.920 1,653,879,750 1,554,648,510 1.064 1.071 -0.007 

67 1.000 1,797,500,000 0.966 1,736,924,250 1,661,250,180 1.046 1.040 0.006 

68 0.126 226,125,500 0.081 145,597,500 89,535,510 1.626 1.367 0.259 

69 0.729 1,309,658,500 0.177 318,517,000 285,321,330 1.116 1.172 -0.055 

70 1.000 1,797,500,000 0.303 543,743,750 448,796,070 1.212 1.149 0.062 

71 1.000 1,797,500,000 0.742 1,332,846,250 1,104,744,180 1.206 1.232 -0.025 

72 1.000 1,797,500,000 0.933 1,676,528,250 1,591,657,000 1.053 1.054 -0.001 

73 1.000 1,797,500,000 0.991 1,781,682,000 1,730,683,450 1.029 1.010 0.019 
 

8.1.5 Verification of the CPI model 

Table 8 summarizes and compares the CPI computation 

using SVM to validate the estimation model. It comprises the 

real CPI value received from the Karbala Refinery Project, as 

well as the estimated CPI value calculated using the SVM 

equation (as obtained from Weka V.3). 

 

 
 

Figure 4. Comparison of predicted and actual for CPI model 

 

Figure 4 illustrates the predicted values against the actual 

values for the verification data to show the capacity of the 

SVM model for CPI to assess the model. It is clear from this 

figure that the (R2=86.1%). The ten spare data that have not 

yet been used in any subset can have their earned value index 

predicted using the trained SVM models. The generalization 

results of the CPI model with (R2=82.03%) are excellent, as 

illustrated in Figure 5. 

 

 
 

Figure 5. Generalization of CPI model 

 

8.2 Schedule performance index (SPI) model 

 

This model's development involves the following five steps: 

 

8.2.1 Data division SPI model 

The data is divided into three sets, namely training, testing, 

and validating sets, as show in Table 9.
 

Table 9. Impact of data split on performance of SPI model 
 

Data set 
Statistical 

Parameters 

Input Variables Output 

P% BCWS A% BCWP ACWP BAC SPI 

Training 

 

n=51 

Range 0.9851 1770717250 0.9867 1773593250 1717202200 0 0.8380 

Minimum 0.0149 26782750 0.0045 8088750 5392500 1797500000 0.2030 

Maximum 1.0000 1797500000 0.9912 1781682000 1722594700 1797500000 1.0410 

Mean 0.7517 1351159603 0.4634 832972074 747391901 1797500000 0.5833 

St. Deviation 0.3487 626752140 0.3630 652569381 618538507 0 0.3158 

Testing 

 

n=4 

Range 0.0012 2157000 0.4418 794135500 529322205 0 0.4420 

Minimum 0.9988 1795343000 0.2109 379092750 350235075 1797500000 0.2110 

Maximum 1.0000 1797500000 0.6527 1173228250 879557280 1797500000 0.6530 

Mean 0.9997 1796960750 0.3940 708125125 562434105 1797500000 0.3940 

St. Deviation 0.0006 1078500 0.2047 368017702 241926155 0 0.2049 

Validation 

 

n=18 

Range 0.9509 1709242750 0.9705 1744473750 1704012200 0 0.8470 

Minimum 0.0491 88257250 0.0207 37208250 26671250 1797500000 0.2020 

Maximum 1.0000 1797500000 0.9912 1781682000 1730683450 1797500000 1.0490 

Mean 0.8195 1473081208 0.5888 1058397958 962551076 1797500000 0.6867 

St. Deviation 0.3126 561817435 0.3712 667247781 643143526 0 0.3199 

R² = 0.861
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8.2.2 Selection kernel SPI model 

The next step is to choose the kernel, as displayed in Table 

10. The poly-kernel was chosen as the optimal kernel for the 

SPI model because its root mean square error (RMSE) is equal 

to (0. 0788), which is the least number found. 
 

Table 10. Effects of the kernel function on SPI model 

 

Kernel Type MAE RMSE 
Correlation 

Coefficient % 

Normalised poly-kernel 0.0343 0.0883 97.62 

Poly-kernel 0.0356 0.0788 96.97 

RBF kernel 0.1361 0.1595 92.04 

 

8.2.3 Selection of the SVM parameters (C and epsilon) for the 

SPI model 

Table 11 illustrates an example of the C effect on the SPI 

model. When the C value is 6 the greatest (r) value is (96.98%), 

the MAE is (0.0354), and the least RMSE is (0.0786) making 

this the ideal value. According to the statistics in this table, 

changes in C, especially those falling between (1 to 10), have 

little impact on the performance of the SPI models. This 

supports including it in the study's suggested model. 
 

Table 11. Effect of the parameter C in SVM model 

performance 
 

Parameter 

(C) 
MAE RMSE 

Coefficient 

Correlation (%) 

1 0.0356 0.0788 96.97 

2 0.0355 0.0786 96.97 

3 0.0354 0.0787 96.97 

4 0.0355 0.0786 96.97 

5 0.0354 0.0787 96.97 

6 0.0354 0.0786 96.98 

7 0.0354 0.0787 96.97 

8 0.0354 0.0786 96.97 

9 0.0354 0.0786 96.98 

10 0.0354 0.0787 96.97 

 

Table 12 displays Epsilon's impact on the SPI model. 

Considering that the greatest (r) value is (97.35%), the smallest 

RMSE is (0.0717), and MAE is (0.0478), Epsilon is 

considered to be at its best when it is valued equal to (0.006). 

The information in this table demonstrates that variations in 

Epsilon have little impact on the functionality of SPI models, 

especially when they fall between (0.001 to 0.05). This is in 

favor of including it in the study's model. 

 

Table 12. Impact of changing parameter Epsilon on SPI 

model performance 

 
Parameter 

Epsilon 
MAE RMSE 

Coefficient 

Correlation (%) 

0.001 0.0354 0.0786 96.98 

0.002 0.0356 0.0783 96.99 

0.003 0.0358 0.0781 96.99 

0.004 0.0361 0.0776 97.02 

0.005 0.0363 0.0773 97.03 

0.006 0.0365 0.0772 97.03 

0.007 0.0368 0.0768 97.05 

0.008 0.0369 0.0766 97.06 

0.009 0.0372 0.0767 97.06 

0.01 0.0374 0.0766 97.05 

0.02 0.0396 0.0742 97.17 

0.03 0.0423 0.0725 97.26 

0.04 0.0448 0.0719 97.3 

0.05 0.0478 0.0717 97.35 

 

8.2.4 Equation of SPI model 

The SPI value might be estimated using the connection 

weights and threshold level shown in Table 13 as follows: 

 

Table 13. Weight estimates for model SPI 

 

Layer 
Wji, (Weight from Node I in the Input Layer to 

Node J in the Hidden Layer) 

Input P% BCWS A% BCWP ACWP 

Weights -0.3011 -0.3011 0.7557 0.7557 -0.2038 

Bias 0.2858 

 

By using the connection weights and threshold level shown 

in Table 12, the SPI value could be predicted in the following 

method: 
 

SPInor = 0.2858 − (0.3011 × P%) − (0.3011 × BCWS)
+ (0.7557 × A%)
+ (0.7557 × BCWP)(0.2038ACWP) 

(5) 

 

SPIact = SPInor × range + min (6) 
 

SPIact = SPInor × 0.8380 + 0.2030 (7) 

 

Table 14. Verification of SPI model 
 

Report No. P% PV(BCWS) A%) EV(BCWP) AC(ACWP) Actual SP Predicted SPI Residual 

56 0.791 1,421,463,000 0.817 1469096750 1,356,613,950 1.034 0.954 0.080 

57 1.000 1,797,500,000 0.898 1613615750 1,490,248,070 0.898 0.937 -0.039 

58 1.000 1,797,500,000 0.951 1709782000 1,625,839,430 0.951 0.992 -0.041 

59 1.000 1,797,500,000 0.978 1757056250 1,681,921,430 0.978 1.020 -0.042 

60 0.049 88,257,250 0.021 37208250 26,671,250 0.422 0.444 -0.022 

61 0.381 683,948,750 0.133 239427000 203,896,530 0.35 0.401 -0.051 

62 0.950 1,708,164,250 0.192 344580750 312,585,420 0.202 0.173 0.029 

63 1.000 1,797,500,000 0.242 434815250 387,053,895 0.242 0.205 0.037 

64 1.000 1,797,500,000 0.493 886347250 669,708,990 0.493 0.499 -0.006 

65 0.726 1,305,344,500 0.762 1369515250 1,104,744,180 1.049 0.941 0.108 

66 1.000 1,797,500,000 0.920 1653879750 1,554,648,510 0.92 0.959 -0.039 

67 1.000 1,797,500,000 0.966 1736924250 1,661,250,180 0.966 1.008 -0.042 

68 0.126 226,125,500 0.081 145597500 89,535,510 0.644 0.476 0.168 

69 0.729 1,309,658,500 0.177 318517000 285,321,330 0.243 0.271 -0.028 

70 1.000 1,797,500,000 0.303 543743750 448,796,070 0.303 0.276 0.027 

71 1.000 1,797,500,000 0.742 1332846250 1,104,744,180 0.742 0.775 -0.033 

72 1.000 1,797,500,000 0.933 1676528250 1,591,657,000 0.933 0.972 -0.039 

73 1.000 1,797,500,000 0.991 1781682000 1,730,683,450 0.991 1.033 -0.042 
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The above-mentioned equation's implementation can be 

clarified by utilizing the data used in the SVM model training 

for SPI, as illustrated in report no. 56 in Table 14. The 

predicted value obtained from the above equation equals 

(0.954), which, when compared to the real value measured by 

hand (SPI=1.034), is relatively accurate. These value 

variations are considered as minor. Before utilizing Eq. (5), it 

should be noted that all input variables must be transformed to 

values between (0-1) because Eq. (5) was built using Eq. (1). 

To obtain actual data out from normalized ones, conversions 

to actual values were made using Eq. (7) and Table 9. 

 

 
 

Figure 6. Comparison of predicted and actual for SPI model 

 

8.2.5 Verification of the SPI model 

Table 14 summarizes and compares the SPI computation 

using SVM to validate the estimation model. It comprises the 

real SPI value received from the Karbala Refinery Project as 

well as the estimated SPI value calculated using the SVM 

equation (as obtained from Weka V.3). 

Figure 6 illustrates the predicted values against the actual 

values for the verification data to show the capacity of the 

SVM model for SPI to assess the model. It is clear from this 

figure that the (R2=96.5%). Figure 7 shows the generalization 

results for the SPI model with it can be said are excellent. 

 

 
 

Figure 7. Generalization of SPI model 

 

8.3 To complete cost performance indicator (TCPI) model 

 

This model's development involves the following five steps: 

 

8.3.1 Data division TCPI model 

The data is divided into three sets, namely training, testing, 

and validating sets, similar to the previous network models as 

illustrated in Table 15.

 

Table 15. Impact of data split on performance of SPI model 

 

Data Set Statistical Parameters 
Input Variables Output 

P% BCWS A% BCWP ACWP BAC TCPI 

Training 

 

n=61 

Range 0.9851 1770717250 0.9867 1773593250 1717202200 0 0.8020 

Minimum 0.0149 26782750 0.0045 8088750 5392500 1797500000 0.1960 

Maximum 1.0000 1797500000 0.9912 1781682000 1722594700 1797500000 0.9980 

Mean 0.7632 1371854947 0.4755 854758398 766424820 1797500000 0.7840 

St. Deviation 0.3448 619844587 0.3616 650055984 616477182 0 0.2360 

Testing 

 

n=4 

Range 0.2738 492155500 0.5702 1024934500 792158760 0 0.3600 

Minimum 0.7262 1305344500 0.1917 344580750 312585420 1797500000 0.6180 

Maximum 1.0000 1797500000 0.7619 1369515250 1104744180 1797500000 0.9780 

Mean 0.9191 1652127188 0.4222 758814625 618523121 1797500000 0.8425 

St. Deviation 0.1307 234992832 0.2621 471092745 358797432 0 0.1685 

Validation 

 

n=8 

Range 0.8742 1571374500 0.9102 1636084500 1641147940 0 0.7410 

Minimum 0.1258 226125500 0.0810 145597500 89535510 1797500000 0.2370 

Maximum 1.0000 1797500000 0.9912 1781682000 1730683450 1797500000 0.9780 

Mean 0.8568 1540098000 0.6391 1148714844 1058329529 1797500000 0.6759 

St. Deviation 0.3103 557694339 0.3863 694445675 682027724 0 0.2677 

8.3.2 Selection kernel TCPI model 

The next step is to choose the kernel, as displayed in Table 

16. The poly-kernel was chosen as the optimal kernel for the 

TCPI model because its RMSE is equal to (0.081), which is 

the least number found. 

 

Table 16. Effects of the kernel function on TCPI model 

 

Kernel Type MAE RMSE 
Correlation 

Coefficient % 

Normalised poly-kernel 0.0894 0.1315 82.97 

Poly-kernel 0.0422 0.081 94.12 

RBF kernel 0.0593 0.097 94.21 

 

8.3.3 Selection of the SVM parameters (C and epsilon) for the 

TCPI model 

Table 17 illustrates an example of the C effect on the TCPI 

model. When the C value is 1 the greatest (r) value is (94.12%), 

the Mean Absolute Error (MAE) is (0.0422), and the least 

RMSE is (0.081), making this the ideal value. According to 

the statistics in this table, changes in C, especially those falling 

between (1 to 10), have little impact on the performance of the 

TCPI models. This supports including it in the study's 

suggested model. 

Table 18 displays Epsilon's impact on the TCPI model. 

Considering that the greatest (r) value is (94.26%), the smallest 

RMSE is (0.0778), and the Mean Absolute Error (MAE) is 
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(0.0489), Epsilon is considered to be at its best when it is 

valued equal to (0.04). The information in this table 

demonstrates that variations in Epsilon have little impact on 

the functionality of TCPI models, especially when they fall 

between (0.001 to 0.05). This is in favor of including it in the 

study's model. 

 

8.3.4 Equation of TCPI model 

The TCPI value might be estimated using the connection 

weights and threshold level shown in Table 19. 

By using the connection weights and threshold level stated 

in Table 18, the value of TCPI might be forecasted as follows: 

 

TCPInor = 0.2858 + (0.0306 × P%)
+ (0.0306 × BCWS)
− (0.2616 × BCWP)
− (0.6319 × ACWP) 

(8) 

 

TCPIact = TCPInor × range + min (9) 

 

TCPIact = TCPInor × 0.8020 + 0.1960 (10) 

 

The above-mentioned equation's implementation can be 

clarified by utilizing the data used in the SVM model training 

for TCPI, as shown in report no. 66 in Table 20. The predicted 

value obtained from the above equation equals (0.440), which, 

when compared to the real value measured by hand 

(TCPI=0.591), is relatively accurate. These value variations 

are considered as minor. Before utilizing Eq. (8), it should be 

noted that all input variables must be transformed to values 

between (0-1) because Eq. (8) was built using Eq. (1). To 

obtain actual data out from normalized ones, conversions to 

actual values were made using Eq. (10) and Table 15. 
 

8.3.5 Verification of the TCPI model 

Table 20 summarizes and compares the TCPI computation 

using SVM to validate the estimation model. It comprises the 

real TCPI value received from the Karbala Refinery Project, 

as well as the estimated TCPI value calculated using the SVM 

equation (as obtained from Weka V.3). 

Table 17. Impact of changing parameter C on TCPI model 

performance 

 
Parameter (C) MAE RMSE Coefficient Correlation (%) 

1 0.0422 0.081 94.12 

2 0.0421 0.0817 94.06 

3 0.042 0.082 94.01 

4 0.042 0.0821 93.96 

5 0.042 0.0821 93.99 

6 0.042 0.0821 93.98 

7 0.042 0.0821 93.99 

8 0.042 0.0821 93.98 

9 0.042 0.0818 94.02 

10 0.042 0.082 93.97 

 

Table 18. Impact of changing parameter Epsilon on TCPI 

model performance 

 
Parameter 

Epsilon 
MAE RMSE 

Coefficient 

Correlation (%) 

0.001 0.0422 0.081 94.12 

0.002 0.0422 0.0814 94.1 

0.003 0.0424 0.0804 94.13 

0.004 0.0423 0.0805 94.12 

0.005 0.0423 0.0801 94.14 

0.006 0.0425 0.0794 94.17 

0.007 0.0426 0.0792 94.17 

0.008 0.0426 0.0794 94.15 

0.009 0.0427 0.0793 94.16 

0.01 0.0428 0.0797 94.16 

0.02 0.0445 0.0794 94.27 

0.03 0.0465 0.0785 94.25 

0.04 0.0489 0.0778 94.26 

0.05 0.0522 0.0789 94.14 

 

Table 19. Weight estimates for model TCPI 

 

Layer 
Wji, (Weight from Node I in the Input Layer 

to Node J in the Hidden Layer) 

Input P% BCWS A% BCWP ACWP 

Weights 0.0306 0.0306 -0.2616 -0.2616 --0.6319 

Bias 1.0417 

 

Table 20. Verification of TCPI model 
 

Report No. (P%) PV(BCWS) (A%) EV(BCWP) AC(ACWP) Actual TCPI Predicted TCPI Residual 

66 1.000 1,797,500,000 0.920 1,653,879,750 1,554,648,510 0.591 0.234 0.357 

67 1.000 1,797,500,000 0.966 1,736,924,250 1,661,250,180 0.445 0.183 0.262 

68 0.126 226,125,500 0.081 145,597,500 89,535,510 0.967 0.980 -0.012 

69 0.729 1,309,658,500 0.177 318,517,000 285,321,330 0.978 0.911 0.067 

70 1.000 1,797,500,000 0.303 543,743,750 448,796,070 0.930 0.823 0.107 

71 1.000 1,797,500,000 0.742 1,332,846,250 1,104,744,180 0.671 0.443 0.228 

72 1.000 1,797,500,000 0.933 1,676,528,250 1,591,657,000 0.588 0.218 0.370 

73 1.000 1,797,500,000 0.991 1,781,682,000 1,730,683,450 0.237 0.152 0.085 

 
 

Figure 8. Comparison of Predicted and Actual for TCPI 

Model 

 
 

Figure 9. Generalization of TCPI Model 
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Figure 8 illustrates the predicted values against the actual 

values for the verification data to show the capacity of the 

SVM model for TCPI to assess the model. It is clear from this 

figure that the (R2=87.1%). The results of generalization from 

the TCPI model with (R2=87.53%) is an excellent as shown in 

Figure 9. 

 

 

9. VALIDATION OF THE SVM MODELS 

 

Mean percentage error (MPE), root mean squared error 

(RMSE), mean absolute percentage error (MAPE), average 

accuracy percentage (AA%), coefficient of determination (R2), 

and coefficient of correlation (R) are the statistical measures 

most frequently used to assess the model's accuracy [12, 13]. 

Table 21 clearly shows the comparative study's outputs in 

terms of results. The average accuracy (AA%) for the CPI, SPI, 

and TCPI was 96.093%, 91.709%, and 66.024%, respectively, 

while the correlation coefficients (R) were 92.8%, 98.2%, and 

93.3%. As a result, the models' consistency with actual data 

was very outstanding. 

 

Table 21. The outputs of the validation study for CPI, SPI and TCSPI-SVM models 

 
Parameters Equations  CPI-SVM Model SPI-SVM Model TCPI-SVM Model 

MPE% MPE = ﴾
∑

X − Y
X

n
﴿ ∗ 100 

(11) 2.0145 0.9071 33.6546 

RMSE 𝑅𝑀𝑆𝐸 = √
∑(𝑌 − 𝑋)2

𝑛
 (12) 0.0969 0.0604 0.2260 

MAPE% MAPE =
∑

│X − Y│
X

∗ 100%

𝑛
 

 

(13) 3.907 8.291 33.976 

AA% (𝐴𝐴%) = 100% − 𝑀𝐴𝑃𝐸 (14) 96.093 91.709 66.024 

R% 
r =

∑(𝑥 − �̅�)(𝑦 − �̅�)

√∑(𝑥 − �̅�)2 ∑(𝑦 − �̅�)2
 (15) 

92.8 98.2 93.3 

R2% 86.11 96.5 87.1 

Notes 

 x=actual value 

y=estimated value or predicted value 

n=total number of observations 

 

 

10. CONCLUSIONS 

 

Construction oil and gas projects especially Refineries are 

very important today in Iraq because they help with and 

support the operation and production process. However, these 

projects have had significant cost overruns, time overruns, and 

poor quality, which has hurt their success and is a major 

concern for the industry, therefore this study's concept came to 

forecast the earned value indices schedule performance index 

(SPI), cost performance index (CPI), and to-completion cost 

performance indicator (TCPI) of implementing projects of 

refineries using support vector machine. In this study, three 

models were used, with six variables as inputs which is the 

BAC, ACWP, BCWP, BCWS, A% and P%. Three equations 

were found. Many significant findings are shown by the 

research, including average accuracy (AA%) for the CPI, SPI, 

and TCPI was 96.093%, 91.709%, and 66.024%, respectively. 

The correlation coefficients (R) were 92.8%, 98.2%, and 

93.3% and the root mean squared error (RMSE) was 0.0969, 

0.0604, and 0.2260 respectively. It is noteworthy that the 

findings of this study serve as a crucial marker and a further 

prediction guide for forecasting the success of oil projects. The 

limit of this research is to forecast performance measurement 

for oil projects, especially refineries. Future studies should 

concentrate on estimating the performance of different project 

types utilizing more additional inputs or another artificial 

methodology like genetic algorithms, dynamic programming, 

and others. 
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NOMENCLATURE 

 

SVM Support Vector Machine 

CPI Cost Performance Index 

SPI Schedule Performance Index 

TCPI To-Complete Cost Performance Indicator 

MPE Mean Percentage Error 

RMSE Root Mean Squared Error 

MAPE Mean Absolute Percentage Error 

AA% Average accuracy percentage 

R2 The Coefficient of Determination 

R The Coefficient of Correlation 
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