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The determination of an optimal factory cutoff grade represents a critical decision 

within the mining industry, immediately subsequent to the final delineation of open-pit 

mines. Given the pivotal role that the factory cutoff grade plays in operational 

economics, its optimal selection is of paramount importance. Traditionally, Lane's 

models have been employed for this purpose, which utilize mining capacity, processing 

capacity, and market demand as operational constraints, with profit maximization as the 

primary objective. In this study, we propose a novel methodology for solving the Lane's 

models. Our approach involves a strategic modification of the objective function across 

different grade areas. As an illustrative case study, we compare the results derived from 

our proposed method with those obtained using the classical Lane's algorithm. The 

comparative analysis reveals that our methodology yields superior results, thus 

providing a more effective solution for determining the optimal factory cutoff grade. 

The above interpretation necessitates the reevaluation of traditional methods in favor of 

innovative approaches. This study, hence, contributes significantly to the body of 

knowledge in the field of operational economics in mining, and has the potential to 

effect substantial improvements in industry practice. 
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1. INTRODUCTION

The cutoff grade represents a critical parameter within 

mining operations, its determination being pivotal during 

various stages of mine life due to its influence on numerous 

technical and economic factors [1, 2]. This has been identified 

as a key issue in the planning of mining production and, 

indeed, constitutes one of the most challenging and sensitive 

tasks confronting mining engineers [3-7]. 

Defined by Taylor, the cutoff grade serves to distinguish 

between two types of material activity - such as mining or non-

mining, and sending or not sending to the factory - for any 

particular reason [8, 9]. Within the framework of production 

planning, the determination of the factory cutoff grade 

emerges as one of the inaugural decisions following the final 

delineation of an open-pit mine [10-12]. The factory cutoff 

grade has been conceptualized as a tool employed in a 

hypothetical deposit for the demarcation of ore and tailings 

[13, 14]. 

Materials contained within the mineral deposit can be 

classified as either ore, if their grade surpasses the cutoff 

grade, or as waste if their grade falls below the cutoff grade. 

The former, representing the economic portion of the reserve, 

is channeled to the processing plant where it undergoes 

crushing and beneficiation, eventually being converted into a 

sales product [15-17]. The waste, on the other hand, is directed 

to the mine waste depository and does not contribute to the 

mine's profit [15-17]. 

The fundamental cutoff grade directly influences the 

tonnage of ore and tailings, thereby affecting the cash flow of 

mineral operations. A higher cutoff grade results in a higher 

input grade of ore into the factory, thereby enhancing the unit 

value of the ore [18-21]. Some scholars have utilized the 

standard break-even cutoff grade, capable of covering mining 

and processing costs, to define ore. However, this does not 

represent an optimal criterion, as mine planners aim for cutoff 

grade optimization to achieve their desired objectives, such as 

maximizing the net present value of operations [22-24]. 

As the cutoff grade can directly influence the intended 

purpose of the operation, the pursuit of the optimal cutoff 

grade is of considerable significance. The optimum cutoff 

grade is influenced by all technical aspects of mining, such as 

mining capacity, factory capacity, and the geometric shape and 

geology of the ore [10, 25]. The optimization of cutoff grades 

aiming to maximize net present value or profit is profoundly 

influenced by price changes, rendering the determination of 
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how to change the cutoff grade in response to price changes a 

formidable challenge for mining companies [23-28]. 

Historically, profits or net present values have been 

considered the primary goal that can be achieved with cutoff 

grade optimization. In a seminal paper titled "Optimal Cutoff 

Grade Choice," Lane introduced the eponymous algorithm, 

which was used to determine the optimal cutoff grade for a 

factory by maximizing profit or net present value [20, 22]. 

Since the presentation of Lane's theory, no other independent 

method or algorithm has been proposed, and all subsequent 

research has focused on applying other optimization methods 

based on this theory or studying the role of various factors in 

this problem, based on his theory [20, 22]. 

This algorithm enables open-pit mines to determine their 

optimal cutoff grades and comprises of three constraints and 

an objective function, forming an operational research model. 

The objective function aims to maximize the difference 

between liquidity and opportunity cost, ultimately leading to 

the maximization of net present value. The constraints of this 

model are mining capacity, processing plant capacity, and 

refining capacity [14, 18]. This model is nonlinear, and it is 

typically not feasible to formulate the objective function and 

its constraints as mathematical expressions. Beyond the 

formulation of this model, Lane also provided an innovative 

approach to solve it [20, 22]. 

In this paper, we propose a novel approach to solving the 

model and will compare the results of the two methods by 

solving an example using both the Lane method and the 

approach presented in this paper. 

 

 

2. MATERIALS AND METHODS 

 

As stated above, the issue under discussion in this article is 

to optimize the cutoff grade of the factory with the goal of 

maximizing the difference between liquidity and opportunity 

cost. This problem can be formulated in the form of a non-

linear operational research model with a maximizing objective 

function and three functional limitations. 

 

Table 1. Effective parameters in cut-off grade optimization 

 
Symbol Definition Unit 

Qm Material mined Ton 

Qh Ore processed Ton 

Qr Ore produced Ton 

M Mining capacity ton/year 

H Processing plant capacity ton/year 

R Unit refining capacity ton/year 

p Final selling price $/ton 

m Mining cost $/ton 

h Processing cost $/ton 

r Refining cost $/ton 

f Fixed cost $/year 

F Annual opportunity cost $/year 

T Years of production Year 

�̅� Average grade of ore - 

𝒈𝟎̅̅̅̅  Average grade of the entire material inside 

the cavity 

- 

gc Cutoff grade - 

x Ore in the mineral unit - 

u product obtained from mineral unit - 

y Recovery % 

δ Discount rate % 

 

 

2.1 Definition of the model parameters and decision 

variables  

 

Before introducing the model, the parameters and decision 

variables used in the model are given in Table 1. 

Qm: The total tonnage of the material in the final range, 

which is a fixed amount. 

Qh: The total tonnage of the ore within the final range, 

which increases with a cutoff grade decrease, resulting in a 

strictly descending function is cutoff grade. 

x: The ratio of the amount of ore to the total materials in the 

cavity or ore in the mineral substance unit, which increases by 

decreasing the cutoff grade, resulting in a strictly descending 

function is cutoff grade: 

 

𝑥 =  
𝑄ℎ

𝑄𝑚
  (1) 

 

The x value is always between 0 and 1. 

�̅�: average grade of ore, which increases with a cutoff grade 

increase, and as a result, a strictly upward function is cutoff 

grade. 

y: Operation efficiency, which is a constant value. 

Qr: The total tonnage of the manufactured product, which is 

the function of the ore volume and its average grade. 

According the fact that by decreasing the cutoff grade of the 

amount of ore sent to the plant, and thus increasing the 

production of the product, therefore, this quantitative function 

is strictly descending is cutoff grade [18, 21]: 

 

𝑄𝑟 = 𝑦. �̅�. 𝑄ℎ = 𝑦. 𝑄𝑚 . �̅�. (2) 

 

u: The ratio of the product to the total cavity materials or the 

product obtained from the mineral substance unit, which is 

dependent on the amount of ore and its average grade. 

According that by decreasing the cutoff grade the amount of 

ore in the mineral substance unit, and thus increasing the 

amount of the produced product, therefore, this quantitative 

function is strictly descending is cutoff grade: 

 

𝑢 =
𝑄𝑟

𝑄𝑚
= 𝑦. �̅�. 𝑥  (3) 

 

Also, according that x increases the amount of ore in the 

mineral substance unit, and as a result, the quantity of the 

product is increased, so this quantity is a strictly upward 

function of x. 

The value u is always between 0 and 𝑦. 𝑔0̅̅ ̅, which is �̅� the 

average grade of the total material within the cavity. 

m: Mining cost per ton material (including ore and waste), 

which is a fixed amount. 

h: Processing cost per ton of ore, which is a fixed value. 

r: The cost of melting, refining and sale of product unit, 

which is a fixed amount. 

p: Sales price of a unit of product, which is a fixed value. 

f: Annual operating cost, which is a fixed amount. 

δ: Annual interest rate, which is a constant value. 

V: is the net present value of the material remaining and 

transferable to the future. 

T: The time required for operation on an ore mineral, which 

is a cutoff grade function and functional limitations and one of 

the variables of the model decision. According to this 

definition, the life of the mine will be equal to 𝑄𝑚 . 𝑇. 

F: The annual opportunity cost depends on the interest rate 

and the net present value of the remaining materials. This cost 
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of liquidity transferred to the future results from operational 

constraints, and is obtained from the following equation [18, 

20, 21]: 

 

𝐹 =  𝛿𝑉 −
𝑑𝑉

𝑑𝑇
  (4) 

 

In the above relation, the first component represents the lost 

liquidity due to the transfer of potential profit of the remaining 

materials in the mine to the future, and the second component 

reflects the depreciation of the reserve due to its exploitation. 

M: The maximum annual mining capacity, which depends 

on the capacity of the drilling and blasting machines, and 

loading and haulage. 

H: The maximum annual capacity of the plant, which 

depends on the capacity of the devices involved in the 

processing operation. 

R: Annual demand, which is a fixed amount. 

gmh: The cutoff grade of mining-processing equilibrium, 

which if the factory cutoff grade is equivalent to this, both the 

mining and the factory will work at maximum capacity, that's 

mean: 

 

𝑥 =  
𝐻

𝑀
 ⇔  𝑔𝑐 = 𝑔𝑚ℎ  (5) 

 

gmr: The cutoff grade of mining-market equilibrium, which, 

if the cutoff grade of the factory is equal to this amount, while 

supplying the entire market demand, the mines will work at its 

maximum capacity, that's mean: 

 

𝑢 =
𝑅

𝑀
 ⇔  𝑔𝑐 = 𝑔𝑚𝑟   (6) 

 

ghr: The cutoff grade of mining-market equilibrium, which, 

if the factory cutoff grade is considered to be the equivalent of 

this amount, will meet the full potential of the factory's full 

market demand, in the other words: 

 
𝑢

𝑥
=

𝑅

𝐻
 ⇔  𝑔𝑐 = 𝑔ℎ𝑟  (7) 

 

gm: Cutoff grade of economic limitation, assuming that 

mining limitation is effective, that if the factory cutoff grade is 

equivalent to this, then the objective function will be 

maximized, assuming no processing and sales limitations. 

gh: Cutoff grade of economic limitation, assuming that the 

factory limitation is effective, that if the factory cutoff grade is 

equivalent to this, the objective function will be maximized, 

assuming no mining and sales limitations. 

gr: Cutoff grade of economic limitation, assuming that the 

sales limitation is effective, which if the factory cutoff grade 

is equivalent to this, the objective function will be maximized, 

assuming no mining and processing limitations. 

 

2.2 Model formation 

 

2.2.1 Model objective function 

As stated above, here the goal of cutoff grade optimization 

is to maximize the difference between liquidity and 

opportunity cost, which finally leads to the maximum net 

present value. If the liquidity resulting from the reduction of 

one unit of the stock in time T is equal to C, then the best grade 

of the plant is grade the result of which the difference between 

the liquidity and the opportunity cost lost in the period T, That 

means C-FT is maximized. In other words, the aim is to cutoff 

grade optimize the C-FT's maximum. In the mining operation, 

the liquidity resulting from the actualization of a unit of 

material in the mine is obtained from the following: 

 

𝐶 = (𝑆 − 𝑟)𝑢 − 𝑥𝑟 − 𝑚 − 𝑓𝑇 (8) 

 

Therefore, the objective function of the model can be 

represented by the following mathematical expressions 

according to the above symbols [18]: 

 

𝑀𝑎𝑥 𝑃 = 𝐶 − 𝐹𝑇 (9) 

 

𝑀𝑎𝑥 𝑃 = (𝑆 − 𝑟)𝑢 − 𝑚 − ℎ𝑥 − (𝐹 + 𝑓)𝑇 (10) 

 

In the above relation P is the difference between liquidity 

and opportunity cost. 

 

2.2.2 Model limitations 

It is assumed that the problem is faced with three functional 

limits of mining, processing and refining. These limitations 

can be formulated as follows with respect to the above 

symbols: 

 

𝑇 ≥
1

𝑀
  (11) 

 

𝑇 ≥
𝑥

𝐻
  (12) 

 

𝑇 ≥
𝑢

𝑅
  (13) 

 

The three above limitations can be summarized as follows: 

 

𝑇 ≥ max [
1

𝑀
 ,

𝑥

𝐻
 ,

𝑢

𝑅
]  (14) 

 

Therefore, the final model of the problem is as follows: 

 

𝑀𝑎𝑥 𝑃 = (𝑆 − 𝑟)𝑢 − 𝑚 − ℎ𝑥 − (𝐹 + 𝑓)𝑇 (15) 

 

𝑠. 𝑡. 𝑇 ≥ max [
1

𝑀
 ,

𝑥

𝐻
 ,

𝑢

𝑅
] 

As previously stated, x and �̅� are a cutoff grade function, 

and u is also a function of x and �̅� according to Eq. (3). If the 

relationship between these quantities and the cutoff grade can 

be represented as mathematical relations, the number of 

decision variables in the above model will be reduced to two 

variables (gc and T), and the two-variable models, whether 

linear or nonlinear, are the drawing method can easily be 

solved. 

Since the mathematical representations of x and �̅�  are 

usually not significant in terms of the cutoff grade of the 

factory, so to solve this model, we have to look for innovative 

methods. 

 

2.3 The method of solving the model in the Lane algorithm 

 

In the Lane algorithm, an innovative method is proposed to 

solve the above-mentioned model. In this method, firstly, are 

calculated the three grade economic constraint gm, gh and gr, 

and then by establishing the operational balance, The three-

grade balancing gmh, ghr and gmr are determined. Finally, 

among these six calculated grades, which are in all limits in 

the justified region, are selected as the optimal cutoff grade 

[20, 22]. 
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2.3.1 Calculation of limiting grades 

To calculate gm, it is assumed that only the mining limitation 

is active and there is no limitation on plant capacity and 

refining. If only the mining limitation is active, according that 

the maximum mining capacity is M, the value of T will be 

equal to: 

 

𝑇 =
1

𝑀
  (16) 

 

Therefore, the objective function of relation 10 is as 

follows: 

 

𝑃𝑚 = (𝑆 − 𝑟)𝑢 − 𝑚 − ℎ𝑥 −
(𝐹+𝑓)

𝑀
  (17) 

 
To maximize the value of Pm,  the derivative of the above 

equation is assigned zero to gc: 
 

𝑑𝑃𝑚

𝑑𝑔𝑐
= (𝑆 − 𝑟)

𝑑𝑢

𝑑𝑔𝑐
− ℎ

𝑑𝑥

𝑑𝑔𝑐
= (𝑆 − 𝑟)

𝑑(𝑦.�̅�.𝑥)

𝑑𝑔𝑐
− ℎ

𝑑𝑥

𝑑𝑔𝑐
  (18) 

 

In the Lane method, the value of �̅� is assumed to be constant 

relative to gc, and the above relation is simplified as follows: 

 
𝑑𝑃𝑚

𝑑𝑔𝑐
= [𝑦. �̅�. (𝑆 − 𝑟) − ℎ]

𝑑𝑥

𝑑𝑔𝑐
  (19) 

 

With the equivalent of zero, the derivative of this equation 

is obtained as follows: 

 

𝑔𝑚 = �̅� =
ℎ

𝑦(𝑆−𝑟)
  (20) 

 

The values of gh and gr can also be obtained in the same 

way. If the limitation processing plant is active, T=x/H will be. 

By inserting this value in the target function and equal to zero, 

the derivative of that function will be equal to the ratio of the 

cutoff grade, above relations as follows: 

 

𝑃ℎ = (𝑆 − 𝑟)𝑢 − 𝑚 − ℎ𝑥 −
(𝐹+𝑓)

𝐻
𝑥  (21) 

 

𝑑𝑃ℎ

𝑑𝑔𝑐
= 0 ⇒ 𝑔ℎ =

ℎ+
𝐹+𝑓

𝐻

𝑦(𝑆−𝑟)
  (22) 

 

If the limitation refining is active, then T=u/R will be 

obtained. By inserting this value in the target function and 

equal to zero, the derivative of that function will be equal to 

the ratio of the cutoff grade, above relations as follows: 

 

𝑃𝑟 = (𝑆 − 𝑟)𝑢 − 𝑚 − ℎ𝑥 −
(𝐹+𝑓)

𝑅
𝑢  (23) 

 
𝑑𝑃𝑟

𝑑𝑔𝑐
= 0 ⇒  𝑔𝑟 =

ℎ

𝑦(𝑆−𝑟−
𝐹+𝑓

𝑅
)
  (24) 

 

According that �̅� is a gc cutoff grade function, it seems that 

fixed its assumption in calculating the limiting grades in order 

to simplify problem solving. 

 

2.3.2 Calculation of balancing grades 

Due to the definition of equilibrium grades, their value can 

be obtained by searching in the grade - tonnage of the mine of 

the table. According to Eq. (5), for a balance grade of mining 

- processing plant can be written: 

 

𝑥 =
𝐻

𝑀
 ⇒  

𝑄ℎ

𝑄𝑚
=

𝐻

𝑀
 ⇒  𝑄ℎ =

𝐻

𝑀
𝑄𝑚  ⇔  𝑔𝑚ℎ  (25) 

 

That is, in the table grade- tonnage, a cutoff grade that 

establishes the above relation between 𝑄𝑚 and 𝑄ℎ ,the 

equilibrium grade mining - processing plant. Similarly, for the 

other two equilibrium grades, the following relations are 

obtained: 

Equilibrium grade processing plant - refining: 

 

𝑄𝑟 =
𝑅

𝐻
 𝑄ℎ  ⇔  𝑔ℎ𝑟   (26) 

 

Equilibrium grade mining - refining: 

 

𝑄𝑟 =  
𝑅

𝑀
 𝑄𝑚  ⇔  𝑔𝑚𝑟   (27) 

 

After calculating 6 grade pre mentioned, from the 

intersection of two-to-two operations, three new grades are 

obtained according to the following relationships: 

 

𝐺𝑚ℎ = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑔𝑚, 𝑔𝑚ℎ , 𝑔ℎ) (28) 

 

𝐺ℎ𝑟 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑔ℎ, 𝑔ℎ𝑟 , 𝑔𝑟) (29) 

 

𝐺𝑚𝑟 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑔𝑚, 𝑔𝑚𝑟 , 𝑔𝑟) (30) 

 

Finally, the final optimum cutoff grade is selected from the 

last three grades: 

 

𝑔𝑜𝑝𝑡 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐺𝑚ℎ, 𝐺ℎ𝑟 , 𝐺𝑚𝑟) (31) 

 

 

3. RESULTS AND DISCUSSION  

 

3.1 A new proposed approach to solving a model 

 

Depending on the relationship between the three constraints 

of the model's 15, the objective function can be divided into 

three objective functions at different distances as follows: 

A. If 1 / 𝑀 ≥ 𝑥 / 𝐻  and 1 / 𝑀 ≥ 𝑢 / 𝑅 , the mining 

limitation will be the bottleneck of operation, and the 

objective function will be Eq. (17). According to the 

relationship 5 and the fact that x is decreasing 

compared to the cutoff grade, it can be concluded: 

 
1

𝑀
≥

𝑥

𝐻
 ⇒ 𝑥 ≤

𝐻

𝑀
 ⇔ 𝑔𝑐  ≥  𝑔𝑚ℎ  (32) 

 

In the same way and according the relationship 6 and 

considering the descending u to the cutoff grade, it can write: 

 
1

𝑀
 ≥  

𝑢

𝑅
  ⇒   𝑢 ≤

𝑅

𝑀
 ⇔  𝑔𝑐 ≥ 𝑔𝑚𝑟   (33) 

 

Therefore, as a result: 

 

𝑔𝑐  ≥ max (𝑔𝑚ℎ , 𝑔𝑚𝑟) (34) 

 

B. If 𝑥 / 𝐻 ≥ 1 / 𝑀  and 𝑥 / 𝐻 ≥ 𝑢 / 𝑅 , the processing 

plant limitation will be the bottleneck of operation, 

and the objective function will be as Eq. (21). 

According to the relationship 5 and the fact that x is 

decreasing compared to the cutoff grade, it can be 

concluded: 
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𝑥

𝐻
 ≥

1

𝑀
 ⇒ 𝑥 ≥  

𝐻

𝑀
 ⇔  𝑔𝑐  ≤  𝑔𝑚ℎ  (35) 

 

In the same way and according the relationship of 7, and 

considering the ascending 𝑢 / 𝑥 =  𝑦. �̅� to the cutoff grade, it 

can write: 

 
𝑥

𝐻
 ≥  

𝑢

𝑅
 ⇒  

𝑢

𝑥
 ≤

𝑅

𝐻
  ⇔  𝑔𝑐 ≤ 𝑔ℎ𝑟  (36) 

 

Therefore, as a result: 

 

𝑔𝑐 ≤ min (𝑔ℎ𝑟  , 𝑔𝑚ℎ) (37) 

 

C. If 𝑢 / 𝑅 ≥ 1 / 𝑀  and 𝑢 / 𝑅 ≥ 𝑥 / 𝐻 , the refining 

limitation will be the bottleneck of operation, and the 

objective function will be as Eq. (23). According to 

the relationship 6 and considering the descending u to 

the cutoff grade, it can be concluded: 

 
𝑢

𝑅
 ≥  

1

𝑀
  ⇒ 𝑢 ≥

𝑅

𝑀
  ⇔  𝑔𝑐  ≤ 𝑔𝑚𝑟   (38) 

 

In the same way and according the relationship of 7, and 

considering the ascending 𝑢 / 𝑥 =  𝑦. �̅� to the cutoff grade, it 

can write:  

 
𝑢

𝑅
 ≥

𝑥

𝐻
 ⇒  

𝑢

𝑥
 ≥

𝑅

𝐻
 ⇔  𝑔𝑐 ≥ 𝑔ℎ𝑟   (39) 

 

Therefore, as a result: 

 

𝑔ℎ𝑟  ≤  𝑔𝑐  ≤ 𝑔𝑚𝑟  (40) 

 

In other words, the model 15 becomes a three-objective 

objective function, which must be maximized. This new shape 

form of the model can be represented as follows: 

 

max 𝑃 = {

𝑃𝑚      𝑔𝑐 ≥ max (𝑔𝑚ℎ , 𝑔𝑚𝑟)

𝑃ℎ        𝑔𝑐 ≤ min (𝑔𝑚ℎ , 𝑔ℎ𝑟) 
𝑃𝑟                 𝑔ℎ𝑟 ≤ 𝑔𝑐 ≤ 𝑔𝑚𝑟

 (41) 

 

Therefore, the value of the objective function is calculated 

for all different cutoff grades according to the above equation. 

The maximum value obtained for this objective function. The 

corresponding equivalent will be optimal cutoff grade. 

 

3.2 Example 

 

The specifications of the materials contained within a cavity 

designed in Table 2 and economic data and respective 

limitations are shown in Table 3. The goal is to determine the 

cutoff grade of the processing plant in such a way that the total 

profit from the operation is maximized.  (The opportunity cost 

is discounted.) 

 

3.3 Solve the problem using the Lane method 

 

In Table 4, the model required variables are calculated using 

the values of Tables 1 and 2. Changes in these variables 

relative to the cutoff grade are shown in Figures 1 to 4. In 

Figure 1, the changes of the average grade compared to the 

cutoff grade are shown, which have a direct relationship with 

each other, and with the decrease of the cutoff grade, the 

average grade decreases. Figure 2 shows the changes in the 

ratio of the amount of ore to the total material inside the cavity 

in relation to the cutoff grade, which decreases with the 

increase of the cutoff grade. Figure 3 shows the changes in the 

ratio of the amount of product to the total material inside the 

cavity compared to the cutoff grade, which decreases with the 

increase of the cutoff grade. Figure 4 shows the changes in the 

ratio of the amount of product to the amount of ore in relation 

to the cutoff grade, which decreases with the decrease of the 

cutoff grade. To get the answer, first, the 𝑔𝑚ℎ , 𝑔ℎ𝑟  and 𝑔𝑚𝑟  

values must be calculated. According to the definition of 𝑔𝑚ℎ 

the corresponding cutoff grade is the point that there 𝑥 =
𝐻 / 𝑀 =  0.5. According to Table 4, this point is between the 

cutoff grades of 0.3 and 0.5%. By introspection, the 

approximate result below is obtained: 

 

𝑔𝑚ℎ = 0.309 % 

 

Table 2. Specifications for materials inside the cavity 

designed 

 
Grade Average 

(%) 

Material Tonnage 

(thousand tons) 

Grade Range 

(%) 

3.55 

2.78 

2.27 

1.75 

1.24 

0.73 

0.40 

0.14 

35.31 

72.97 

226.07 

692.27 

2135.85 

6567.10 

5545.62 

14724.81 

> 3 

2.5-3 

2-2.5 

1.5-2 

1-1.5 

0.5-1 

0.3-0.5 

< 0.3 
 

Table 3. Economic and operational information of the mine 
 

Amount Parameter 

90 % 

$1 per ton 

$2 per ton 

$0.5 per kilogram product 

$550 a year 

$1 per kilogram product 

2.2 million tons per year 

1.1 million tons per year 

6600 tons per year 

Recovery (𝑦) 

Mining cost (𝑚) 

Processing cost (ℎ) 

Refining cost (𝑟) 

Fixed cost (𝑓) 

Sales price (𝑆) 

Mining Capacity (𝑀) 

Processing Plant Capacity (𝐻) 

Refining Capacity (𝑅) 

 

Table 4. Information on model variables 

 
𝒖

𝒙
  𝒖 (

𝒌𝒈

𝒕
)  𝒙 �̅� 𝑸𝒉 𝒈𝒄 

31.95 

27.31 

22.68 

18.04 

13.41 

8.78 

6.92 

4.14 

0.037 

0.098 

0.253 

0.617 

1.414 

2.845 

3.524 

4.140 

0.001 

0.004 

0.011 

0.034 

0.105 

0.325 

0.509 

1 

3.55 

3.035 

2.52 

2.005 

1.49 

0.975 

0.769 

0.46 

35.31 

108.28 

334.35 

1026.62 

3162.47 

9729.57 

15275.19 

30000 

3 

2.5 

2 

1.5 

1 

0.5 

0.3 

0 

 

Similarly, by definition, 𝑔ℎ𝑟  is the corresponding cutoff 

grade of the point that there 
𝑢

𝑥
=

𝑅

𝐻
= 6. According to Table 4, 

this point is between the cutoff grades of 0 and 0.3%. By 

interpolating, the approximate result below is obtained: 

 
𝑔ℎ𝑟 = 0.200 % 

 

Similarly, by definition, 𝑔ℎ𝑟  is the corresponding cutoff 

grade of the point that there  𝑢 =
𝑅

𝑀
= 3. According to Table 

4, this point is between the cutoff grades of 0.3 and 0.5%. By 

2018



 

interpolating, the approximate result below is obtained: 

 

𝑔𝑚𝑟 = 0.454 % 

 

First, the problem is solved by the Lane method. According 

to the above relations [20, 22]: 

 

𝑔𝑚 =
ℎ

𝑦(𝑝−𝑟)
= 0.244; 𝑔ℎ =

ℎ+
𝐹+𝑓

𝐻

𝑦(𝑝−𝑟)
= 0.296; 

 𝑔𝑟 =
ℎ

𝑦(𝑝−𝑟−
𝐹+𝑓

𝑅
)

= 0.26 

 

 
Figure 1. Average grade variations relative to the cutoff 

grade 

 

 
Figure 2. Curve changes in the ratio of the amount of ore to 

total cavity material in relation to the cutoff grade 
 

 
Figure 3. Curve changes in the ratio of the amount of 

product to total material within the cavity than the cutoff 

grade 

 
Figure 4. Changes in the ratio of the amount of product to 

the amount of ore relative to the cutoff grade 

 

The result of the Lane method is shown in Table 5. 

 

Table 5. Results of the calculation of the Lane algorithm 

 
0.244% 

0.296% 

0.260% 

0.309% 

0.200% 

0.454% 

𝒈𝒎 

𝒈𝒉 

𝒈𝒓 

𝒈𝒎𝒉 

𝒈𝒉𝒓 

𝒈𝒎𝒓 

0.260% 𝒈𝒐𝒑𝒕 

 

3.4 Problem solving by analytical method 

 

To solve the problem in the method presented in this paper, 

by inserting balance grades values in the target function model 

50, this model is as follows: 

 

max 𝑃 = {

𝑃𝑚                       𝑔𝑐 ≥ 0.454
𝑃ℎ                         𝑔𝑐 ≤ 0.200
𝑃𝑟        0.200 ≤ 𝑔𝑐 ≤ 0.454

  

 

Also, the three functions 𝑃𝑚 and 𝑃ℎ and 𝑃𝑟 , According the 

Eqs. (34), (37) and (40), the following relations are obtained: 

 

𝑃𝑚 = 0.5𝑢 − 2𝑥 − 1.2 

𝑃ℎ = 0.5𝑢 − 2.5𝑥 − 1 

𝑃𝑟 = 0.42𝑢 − 2𝑥 − 1 

 

Table 6 shows the value of the target function in justified 

grade areas. The variation curve 𝑃  is relative to the cutoff 

grade in the maximum profit margin in Figure 5. The 

corresponding cutoff grade is the highest amount of profit, i.e., 

the optimal cutoff grade obtained by this method, is 

𝑔𝑜𝑝𝑡=0.454%. Also, changes in the ratio of the amount of ore 

to total materials within the cavity and changes in the ratio of 

the amount of product to total material within the cavity are 

shown in Figures 6 and 7, respectively, which decrease with 

the increase in cutoff grade. 

As can be seen, the optimum cutoff grade obtained in the 

Lane method is equivalent to the refining limiting cutoff grade 

(𝑔𝑟=0.260), while the optimum cutoff grade obtained in this 

method is equal to the equilibrium cutoff grade of mining-

refining (𝑔𝑚𝑟=0.454). The profit obtained from the optimal 

cutoff grade obtained in this method is about 20% more than 

the profit obtained from the optimal cutoff grade obtained by 

the Lane method [20, 22].  

First, the problem is solved by the Lane method. According 
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to the above relations: 

 

𝑔𝑚 =
ℎ

𝑦(𝑝−𝑟)
= 0.244  

𝑔ℎ =
ℎ+

𝐹+𝑓

𝐻

𝑦(𝑝−𝑟)
= 0.296  

𝑔𝑟 =
ℎ

𝑦(𝑝−𝑟−
𝐹+𝑓

𝑅
)

= 0.26  

 

0.5%. By interpolating, the approximate result below is 

obtained: 

 

Table 6. The value of the objective function in the grade 

different ranges 

 
𝑷 Value 𝒖 𝒙 Effective 𝑷 𝒈𝒄 

-1.164 

-1.110 

-0.970 

-0.651 

-0.003 

1.004 

1.374 

1.243 

1.145 

0.950 

0.640 

0.075 

0.196 

0.505 

1.234 

2.827 

5.708 

6.016 

7.050 

7.214 

7.460 

8.280 

0.001 

0.004 

0.011 

0.034 

0.105 

0.325 

0.367 

0.509 

0.574 

0.672 

1 

𝑃𝑚 

𝑃𝑚 

𝑃𝑚 

𝑃𝑚 

𝑃𝑚 

𝑃𝑚 

𝑃𝑚  ,  𝑃𝑟 

𝑃𝑟 

𝑃𝑟 

𝑃ℎ  ,  𝑃𝑟 

𝑃ℎ 

3 

2.5 

2 

1.5 

1 

0.5 

0.454 

0.3 

0.260 

0.200 

0 

 

 
 

Figure 5. Profit change curve relative to the cutoff grade 

 

This problem is designed so that the values �̅�  and 𝑥  of 

Table 4 can be represented by the following mathematical 

equations (In these relationships, 𝑔𝑐 and �̅� in percent, and 𝑥 in 

ton per ton): 

 

�̅� = 1.03𝑔𝑐 + 0.46 

𝑥 = 𝑒−2.25𝑔𝑐 

 

as a result: 

 

𝑢 = 𝑦. �̅�. 𝑥 = (9.27𝑔𝑐 + 4.14)𝑒−2.25𝑔𝑐 

 

These relationships are replaced in the three-dimensional 

objective functions: 

 

𝑃𝑚 = (9.27𝑔𝑐 + 2.14)𝑒−2.25𝑔𝑐 − 1.2 

𝑃ℎ = (9.27𝑔𝑐 + 1.64)𝑒−2.25𝑔𝑐 − 1 

𝑃𝑟 = (7.79𝑔𝑐 + 1.48)𝑒−2.25𝑔𝑐 − 1 

 
 

Figure 6. The changes curve of the ratio of the amount of ore 

to total material within the cavity relative to the cutoff grade 

 

 
 

Figure 7. Changes curve in the ratio of the amount of 

product to total material within the cavity relative to the 

cutoff grade 

 

The values of 𝑔𝑚 , 𝑔ℎ , and 𝑔𝑟  are obtained with the zero 

equation, the derivation of the above functions is relative to 

the cutoff grade:  

 
𝑑𝑃𝑚

𝑑𝑔𝑐
= 0 ⇒  𝑔𝑚 = 0.425  

𝑑𝑃ℎ

𝑑𝑔𝑐
= 0 ⇒  𝑔ℎ = 0.481  

𝑑𝑃𝑟

𝑑𝑔𝑐
= 0 ⇒  𝑔𝑟 = 0.466  

 

As seen, the 𝑔𝑚 , 𝑔ℎ , and 𝑔𝑟  values obtained here are 

different from values obtained from previous relationships. 

This difference arises from assume the constant �̅� relative to 

𝑔𝑐  in the Lane method. Final results obtained from the 

analytical solution method are shown in Table 7. In this table, 

the optimal cutoff grade is calculated from the 6th grade, 

selected by the Lane method. 

 

Table 7. Results of the calculation of the analytical solution 

method 

 
0.425% 

0.481% 

0.466% 

0.309% 

0.200% 

0.454% 

𝒈𝒎 

𝒈𝒉 

𝒈𝒓 

𝒈𝒎𝒉 

𝒈𝒉𝒓 

𝒈𝒎𝒓 

0.454% 𝒈𝒐𝒑𝒕 
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As can be seen, the optimum cutoff grade obtained by 

analytical method, like the method presented in this paper, is 

equivalent to the equilibrium mining-refining cutoff grade of 

0.454%. 

 

 

4. CONCLUSION 

 

Optimization of the factory cutoff grade is one of the most 

important works is to be done at the stage of planning the 

production of open pit mines. This paper presents a new 

approach is presented to solving the Lane model, a classical 

method for determining the optimal factory cutoff grade. To 

do this, the problem was formulated according to the Lane 

model as a three-step process with mining capacity limitations, 

processing plant and refining. Then, by analyzing the 

relationships between the parameters and the model decision 

variables, an innovative method for its solution was developed. 

Finally, a numerical example was once solved by the method 

of Lane and once by the method presented in this paper and 

the results of these methods are compared and their validity 

was evaluated by solving the problem in an analytical method. 

In Lane model, the values of 𝑔𝑚 , 𝑔ℎ , and 𝑔𝑟  are 0.244%, 

0.296% and 0.26%, respectively, while in the new method they 

are 0.425%, 0.481% and 0.466% respectively, also, the 

equilibrium grades of 𝑔𝑚ℎ , 𝑔ℎ𝑟  and 𝑔𝑚𝑟  were obtained as 

0.309%, 0.2% and 0.454% respectively. In the Lane method, 

the optimal cutoff grade is 0.26%, while in the new method, 

the optimal cutoff grade is equal to 0.454%. Comparison of the 

economic results obtained from the two methods shows that 

the profit from the cutoff grade obtained in the new method is 

more than the profit from the calculated cutoff grade by the 

Lane method. This difference arises since in the Lane method, 

the value of �̅� is assumed to be constant relative to 𝑔𝑐, while 

this was not so, and �̅� is ascending strictly functional of 𝑔𝑐. 
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