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OpenStreetMap (OSM), recognised for its current and readily accessible spatial 

database, frequently serves regions lacking precise data at the necessary granularity. 

Global collaboration among OSM contributors presents challenges to data quality and 

uniformity, exacerbated by the sheer volume of input and indistinct data annotation 

protocols. This study presents a methodological improvement in the spatial accuracy of 

OSM datasets centred over Baghdad, Iraq, utilising data derived from OSM services 

and satellite imagery. An analytical focus was placed on two geometric correction 

methods: a two-dimensional polynomial affine transformation and a two-dimensional 

polynomial conformal transformation. The former involves twelve coefficients for 

adjustment, while the latter encompasses six. Analysis within the selected region 

exposed variances in positional accuracy, with distinctions evident between Easting 

(E) and Northing (N) coordinates. Empirical results indicated that the conformal

transformation method reduced the Root Mean Square Error (RMSE) by 4.434 meters

in the amended OSM data. Contrastingly, the affine transformation method exhibited a

further reduction in total RMSE by 4.053 meters. The deployment of these proposed

techniques substantiates a marked enhancement in the geometric fidelity of OSM data.

The refined datasets have significant applications, extending to the representation of

roadmaps, the analysis of traffic flow, and the facilitation of urban planning initiatives.
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1. INTRODUCTION

The collection, uploading, and dissemination of geographic 

data generated by individuals, a process termed volunteered 

geographic information (VGI), has been facilitated by 

advancements in digital technology [1]. Recent years have 

witnessed the emergence of various VGI projects. Social 

media platforms such as Facebook, Twitter, and Flickr have 

become rich sources of geospatial data. Furthermore, 

collaborative mapping services like Wikimapia fall under the 

VGI category; however, OSM has achieved notable 

prominence [2]. 

Initiated in 2004 by Steve Coast in the UK, OSM has rapidly 

expanded on a global scale, underpinned by Web 2.0 

technologies. These technologies denote the evolution of the 

internet into an interactive space characterized by user-

generated content and enhanced usability, fostering more 

collaborative interactions among web clients, users, and 

content providers [3]. OSM encompasses a diverse array of 

data, including roads, building footprints, and land use maps. 

Initially, geographic data generation for OSM primarily 

involved the use of global positioning system (GPS) receivers 

to capture coordinates for upload to the database. With the 

advent of Bing map aerial imagery made available to OSM in 

November 2010, users were empowered to generate data 

through the digitization of aerial photographs as well [4]. 

The value of OSM data is underscored in contexts where 

governmental geographic information is prohibitive in cost or 

otherwise inaccessible to the public. Moreover, the financial 

burden of data updating often precludes national mapping 

agencies from performing this task with regularity [5]. 

Consequently, the OSM database has proven to be a pivotal 

resource for political and humanitarian endeavors, as well as 

for managing natural disasters [6]. 

In disaster-stricken locales, where immediate access to 

current and reliable geospatial information is critical, OSM 

data has been instrumental. The literature documents various 

cases where OSM mapping played a role in disaster response. 

Neis et al. [7] explored the application of OSM data in 

developing Emergency Routing Services to aid in the 

management of the Haiti earthquake aftermath. Westrope et al. 

[8] analyzed the veracity of crowd-sourced damage

assessments in the Philippines following Typhoon Haiyan.

Poiani et al. [9] conducted an exploratory case study on the

organization of collaborative mapping efforts after the 2015

Nepal earthquake, detailing the mobilization of volunteers and

the outcomes of their contributions to emergency planning.

Lastly, Scholz et al. [10] provided an overview of the Red

Cross and Red Crescent movement's history, current needs,

and challenges, highlighting the role of OSM and digital

volunteers in humanitarian missions, with a focus on disaster

prevention as part of the Missing Maps project.
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Despite the myriad advantages presented by OSM data, 

concerns regarding their quality persist, primarily due to the 

lack of geographic or geomatics expertise among Web 2.0 

contributors [11]. Over the past decade, the maturation of 

OSM has been accompanied by scholarly efforts to evaluate 

its data quality. Jacobs [12] assessed the OSM roads' quality 

in the Ottawa-Gatineau region, employing a buffer method to 

gauge positional accuracy. It was revealed that a mere 76% of 

OSM roads aligned within 10 meters of the reference roads, 

with an even lower proportion, 70%, within a 5-meter range. 

Notably, the discrepancy between major and minor routes in 

terms of locational accuracy was found to be negligible. Al-

Bakri and Sfoog [13] investigated the congruence of OSM 

road data with reference datasets in central Baghdad and 

Karbalaa city, Iraq, observing variable accuracy across 

different regions. Similarly, Zheng and Zheng [14] critiqued 

the completeness and positional accuracy of OSM data against 

Baidu datasets, quantifying the distribution of OSM data based 

on feature density. The study indicated that 71% of OSM data 

lacked the thoroughness of Baidu datasets, although, on 

average, 66% of OSM data was deemed accurate. Jasem and 

Al-Hamadani [15] scrutinized the positional accuracy of OSM 

road networks in Baghdad-Iraq, comparing them with 

authoritative data from the Mayoralty of Baghdad (MB). Their 

findings pointed to substantial horizontal positional 

discrepancies between OSM datasets and the MB dataset, 

casting doubts on the viability of utilizing OSM data for 

updating Baghdad's road network database. 

Although extensive research has been conducted on the 

applications and quality assessment of OSM data, there is a 

dearth of interest in the enhancement of its spatial accuracy. 

Addressing this gap, the present study concentrates on the 

application of geometric methods to improve the positional 

accuracy of OSM road network data. The methodology 

underpinning this research is grounded in two-dimensional 

transformation techniques. The outcomes of this study are 

intended to augment the knowledge base regarding the quality 

and reliability of refined OSM data across various applications. 

Subsequent sections of this study are organized as follows: 

the methodology underpinning this study is delineated in the 

forthcoming section, including the two-dimensional 

polynomial affine and conformal transformations, along with 

an overview of the study area and data sources. Section 3 

elucidates the development of a MATLAB program designed 

to compute unknown polynomial coefficients. Section 4 

presents the results of the improvements made to OSM data, 

while the final section offers concluding remarks.  

 

 

2. METHODOLOGY 

 

2.1 Coordinate transformation in two-dimensional space 

 

In the realm of mapping and surveying, coordinate 

transformations serve a pivotal role in converting spatial data 

between disparate coordinate systems [16]. Such 

transformations can be manifested through map projections, 

which transmute spatial coordinates from a spherical or 

spheroidal shape to a planar surface with rectangular 

(Cartesian) coordinates. Additionally, two-dimensional 

transformations are utilized to alter point coordinates within 

one rectangular system (x, y) to another (X, Y) [17]. 

The effects of transformations on a point set that defines a 

two-dimensional polygon, or a three-dimensional object, 

range from simple positional and orientational adjustments, 

without alterations to shape or size, to uniform scaling that 

maintains the shape, and ultimately to transformations that 

modify both size and shape to varying nonlinear extents. For 

the purposes of this study, two transformation methods were 

employed to refine the OSM coordinates: the two-dimensional 

polynomial affine and conformal transformation. These 

methods are typically invoked when the coordinate systems in 

question exhibit non-uniformity in scale and orientation, thus 

necessitating the reduction of distortion within the OSM map 

data. 

 

2.2 Two-dimensional polynomial affine transformation 

 

The two-dimensional polynomial affine transformation 

model is applicable for the transposition of coordinates from 

one system (u, v) to another (x, y). This model can be 

articulated as follows [18]: 

 

𝑥 = 𝑃(𝑢, 𝑣) = ∑ ∑ 𝑐𝑚,𝑛𝑢𝑚𝑣𝑛

𝑞

𝑛=0

𝑝

𝑚=0

 

= 𝑐00𝑢
0𝑣0 + 𝑐01𝑢

0𝑣1 + 𝑐02𝑢
0𝑣2 + 𝑐03𝑢

0𝑣3 + ⋯ 

+𝑐10𝑢
1𝑣0 + 𝑐11𝑢

1𝑣1 + 𝑐12𝑢
1𝑣2 + 𝑐13𝑢

1𝑣3 + ⋯ 

+𝑐20𝑢
2𝑣0 + 𝑐21𝑢

2𝑣1 + 𝑐22𝑢
2𝑣2 + 𝑐23𝑢

2𝑣3 + ⋯ 

(1) 

 

𝑦 = 𝑃(𝑢, 𝑣) = ∑ ∑ 𝑑𝑚,𝑛𝑢𝑚𝑣𝑛

𝑞

𝑛=0

𝑝

𝑚=0

 

= 𝑑00𝑢
0𝑣0 + 𝑑01𝑢

0𝑣1 + 𝑑02𝑢
0𝑣2 + 𝑑03𝑢

0𝑣3+. .. 
+𝑑10𝑢

1𝑣0 + 𝑑11𝑢
1𝑣1 + 𝑑12𝑢

1𝑣2 + 𝑑13𝑢
1𝑣3 + ⋯ 

+𝑑20𝑢
2𝑣0 + 𝑑21𝑢

2𝑣1 + 𝑑22𝑢
2𝑣2 + 𝑑23𝑢

2𝑣3 + ⋯ 

(2) 

 

Given that u0 and v0 are set to 1, this simplification reduces 

the number of parameters and sorts them in ascending order, 

i.e., first-order terms include u or v, second-order terms u2, v2, 

or uv, and so forth. Thus, a polynomial transformation can be 

formulated as: 

 

𝑥 = 𝑐0 + 𝑐1𝑢 + 𝑐2𝑣 + 𝑐3𝑢𝑣 + 𝑐4𝑢
2 + 𝑐5𝑣

2 + 𝑐6𝑢
2𝑣

+ ⋯ 
(3) 

 

𝑦 = 𝑑0 + 𝑑1𝑢 + 𝑑2𝑣 + 𝑑3𝑢𝑣 + 𝑑4𝑢
2 + 𝑑5𝑣

2

+ 𝑑6𝑢
2𝑣 + ⋯ 

(4) 

 

where, (𝑐0: 𝑐6 ) and (𝑑0: 𝑑6)  represent the unknown 

coefficients of the polynomial. These equations can also be 

delineated through matrix representations. By resolving the 

system matrix that embodies the polynomial, the unknown 

parameters ci and di are discerned [19]. 
 

[
 
 
 
 
 
 
 
 
 
𝑥1

𝑦1

𝑥2

𝑦2

.

.

.

.
𝑥𝑛

𝑦𝑛]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1    𝑢1    𝑣1    𝑢1𝑣1    𝑢1
2    𝑣1

2   0   0   0   0   0   0 
 

0    0    0   0   0   0   1    𝑢1    𝑣1    𝑢1𝑣1    𝑢1
2    𝑣1

2

   
1    𝑢2    𝑣2    𝑢2𝑣2    𝑢2

2    𝑣2
2   0   0   0   0   0   0  

 
0   0   0   0   0   0   1    𝑢2    𝑣2    𝑢2𝑣2    𝑢2

2    𝑣2
2   

.

.

.

.
1    𝑢𝑛    𝑣𝑛    𝑢𝑛𝑣𝑛    𝑢𝑛

2     𝑣𝑛
2   0   0   0   0   0   0

0    0    0   0   0   0   1    𝑢𝑛    𝑣𝑛    𝑢𝑛𝑣𝑛    𝑢𝑛
2     𝑣𝑛

2   ]
 
 
 
 
 
 
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑐0

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑑0

𝑑1

𝑑2

𝑑3

𝑑4

𝑑5

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      (5) 

 

To ascertain the coefficients, the equation and associated 

matrices can be rendered as: 
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AX=L (6) 
 

X=(At A)-1(At L) (7) 
 

The dimensions and condition of the matrix system are 

contingent upon the number of ground control point (GCP) 

pairings selected and their spatial distribution within the study 

area. A minimum of six non-collinear GCP pairs must be 

chosen to establish the polynomial affine transformation 

framework. The selection of six GCP pairings yields a 12×12 

square matrix that encodes the transformation, enabling the 

resolution of the polynomial equation system and the 

determination of the transformation parameters. 

Upon the computation of the transformation parameters, the 

derived polynomial equations can be utilized to convert the 

coordinates of points from the initial system to the subsequent 

system. 
 

2.3 Two-dimensional polynomial conformal transformation 
 

In adherence to the Gauss theorem of conformal mapping 

and relevant complex polynomials, conformal transformations 

that exceed the initial power have been produced, as detailed 

in the analysis that follows [18]: 
 

𝑥 = 𝐴0 + 𝐴1𝑢 − 𝐵1𝑣 + 𝐴2(𝑢
2 − 𝑣2) − 𝐵2(2𝑢𝑣)

+ 𝐴3(𝑢
3 − 3𝑢𝑣2)

−  𝐵3(3𝑢2𝑣 − 𝑣3) 

(8) 

 

𝑦 = 𝐵0 + 𝐵1𝑢 + 𝐴1𝑣 + 𝐵2(𝑢
2 − 𝑣2) + 𝐴2(2𝑢𝑣)

+ 𝐵3(𝑢
3 − 3𝑢𝑣2)

+   𝐴3(3𝑢2𝑣 − 𝑣3) 

(9) 

 

The partial derivatives of the above equations are: 
 

𝜕𝑥

𝜕𝑢
= 𝐴1 + 𝐴2(2𝑢) − 𝐵2(2𝑣) + 𝐴3(3𝑢2 − 3𝑣2) − 𝐵3(6𝑢𝑣) 

𝜕𝑥

𝜕𝑣
= −𝐵1 − 𝐴2(2𝑣) − 𝐵2(2𝑢) − 𝐴3(6𝑢𝑣) − 𝐵3(3𝑢2 − 3𝑣3) 

𝜕𝑦

𝜕𝑢
= 𝐵1 + 𝐵2(2𝑢) + 𝐴2(2𝑣) + 𝐵3(3𝑢2 − 3𝑣2) + 𝐴3(6𝑢𝑣) 

𝜕𝑦

𝜕𝑣
= 𝐴1 − 𝐵2(2𝑣) + 𝐴2(2𝑢) − 𝐵3(6𝑢𝑣) + 𝐴3(3𝑢2 − 3𝑣2) 

 

From these foundations, the second-order two-dimensional 

polynomial conformal transformation is derived, presented as: 
 

𝑥 =  𝐴0 + 𝐴1𝑢 − 𝐵1𝑣 + 𝐴2(𝑢
2 − 𝑣2) − 𝐵2(2𝑢𝑣) (10) 

 

𝑦 =  𝐵0 + 𝐵1𝑢 + 𝐴1𝑣 + 𝐵2(𝑢
2 − 𝑣2) +  𝐴2(2𝑢𝑣) (11) 

 

where, (𝐴0: 𝐴2 ) and (𝐵0: 𝐵2)  represent the polynomial's 

unknown coefficients. These transformations are capable of 

being expressed in matrix form as: 
 

[
 
 
 
 
 
 
 
 
 
𝑥1

𝑦1

𝑥2

𝑦2

.

.

.

.
𝑥𝑛

𝑦𝑛]
 
 
 
 
 
 
 
 
 

 = 

[
 
 
 
 
 
 
 
 
 
 
1     𝑢1     − 𝑣1     (𝑢1

2 − 𝑣1
2)     − (2𝑢1𝑣1)     0

0     𝑣1         𝑢1         (2𝑢1𝑣1)       (𝑢1
2 − 𝑣1

2)    1

1     𝑢2     − 𝑣2     (𝑢2
2 − 𝑣2

2)     − (2𝑢2𝑣2)    0

0     𝑣2         𝑢2         (2𝑢2𝑣2)       (𝑢2
2 − 𝑣2

2)    1
.
.
.
.

1     𝑢𝑛     − 𝑣𝑛     (𝑢𝑛
2 − 𝑣𝑛

2)     − (2𝑢𝑛𝑣𝑛)    0

0     𝑣𝑛         𝑢𝑛         (2𝑢𝑛𝑣𝑛)       (𝑢𝑛
2 − 𝑣𝑛

2)    1]
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
𝐴0

𝐴1

𝐵1

𝐴2 
𝐵2

𝐵0 ]
 
 
 
 
 

 (12) 

To determine the unknown coefficient matrix, Eq. (7) is 

employed, thereafter utilizing Eqs. (10) and (11) to effectuate 

the transformation of coordinates through the two-dimensional 

polynomial conformal method. 

 

2.4 Study area and data sources 

 

The area selected for this study is the Baghdad region of 

Iraq, depicted in Figure 1. As Iraq's central hub for economic, 

educational, cultural, and business activities, Baghdad is 

situated on both the Tigris River's banks and spans an area 

exceeding 4500km2 [20]. It lies longitudinally between 32° 48  ́

00˝ E and 33° 46´ 00˝ E and latitudinally from 43° 51´ 00˝ N 

to 44° 56´ 00˝ N. 

 

 
 

Figure 1. Study area 

 

For the comparative study, both OSM and official reference 

datasets were collated for Baghdad. OSM data, sourced in May 

2022, was obtained from the service provider Geofabrik, 

which offers data in various formats, 

including .osc.gz, .osm.pbf, .osm, .shp, .osh.pbf, and .poly. For 

this study, the ESRI shape-file (.shp) format was utilized. 

The OSM line vector data encompassed all linear features 

such as boundaries, roads, railways, and certain aerial 

transport infrastructure. Given the primacy and focus of road 

features in OSM projects, only these were assessed in the 

current study. Non-road features were filtered out, retaining 

only those classified under the 'highway' key. Typically 

represented by a centerline, the OSM road data are contributed 

by various users and data sources. 
Reference data were derived from the digitization of 

WorldView-3 satellite imagery, boasting a resolution of 0.3 

meters. The digitizing process yielded a series of files 

encapsulating the digitized lines or points, complete with 

georeferenced positions and other necessary details. For the 

enhancement process of OSM data, road intersections served 

as point features. A total of 115 points, including control and 

check points, were employed for the study area. Control points 

are those used in model processing for referencing, while 

checkpoints serve to verify the accuracy of processed data by 
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comparison with known positions. These points were 

strategically positioned, both around and within the perimeter 

of the study area, with sufficient spacing to preclude ambiguity. 

Checkpoints were distributed uniformly and randomly, each 

clearly demarcated for easy identification on the map. Figure 

2 illustrates the distribution and location of these tested points. 
 

 
 

Figure 2. Distribution of the tested points 

 

 

3. CODE DEVELOPMENT FOR OSM DATA 

IMPROVEMENT 

 

The computation of unknown polynomial coefficients 

requires extensive numerical operations, often necessitating 

the use of a computational programming language. In this 

study, MATLAB, a specialized software application known 

for its problem-solving and graphical representation 

capabilities, was utilized [21]. MATLAB is commonly 

operated interactively, allowing the user to input expressions 

and receive immediate results. Additionally, scripts and 

functions, which are sequences of commands executed in 

order, can be composed in MATLAB [22]. 

A MATLAB script was developed to resolve Eqs. (5) and 

(12), which are central to the calculation of the unknown 

polynomial coefficients and the coordinates of check points. 

Prior to employing the MATLAB-based methodology, two 

preprocessing steps were conducted. Initially, the E and N 

coordinates of both the OSM data and the corresponding 

reference data points were extracted using ArcGIS software. 

These data were then projected onto the UTM zone 38 

projection with the WGS84 coordinate system and exported 

in .xlsx format. 

The programme's functionality included the loading and 

processing of the coordinates file for both reference and OSM 

datasets. Subsequently, the design (A) and observation (L) 

matrices were constructed. This was accomplished by 

applying the specialized equations to calculate the matrix 

elements, with the code incorporating a for-end loop for 

equation application. Following this, the matrix representing 

the unknown polynomial coefficients (X) was computed. The 

final procedural step entailed the calculation of transformed 

coordinates for each check point, alongside the execution of 

statistical analyses. The results derived from the programme 

were saved in either .xlsx or .txt formats. Figure 3 illustrates 

the programme's flowchart. 

 

 
 

Figure 3. Flowchart of the designed programme 
 

 

4. RESULTS AND DISCUSSION 
 

Deformation errors inherent in OSM data were quantified 

using the derived transformation coefficients, as detailed in 

Tables 1 and 2. These coefficients illustrate the conversion 

process for enhancing OSM data. 

Table 1 presents the coefficients for the two-dimensional 

polynomial conformal transformation, whereas Table 2 lists 

those for the two-dimensional polynomial affine 

transformation. 
 

Table 1. Coefficients of the two-dimensional polynomial 

conformal transformation 

 
Ccoefficients Values 

A0 353530.4125 

A1 1.019727409 

B1 -0.193936948 

A2 -2.62E-08 

B2 4.70E-10 

B0 -79312.59952 

2174



 

Table 2. Coefficients of the two-dimensional polynomial 

affine transformation 

 
Ccoefficients Values 

c0 327626.8478 

c1 1.033811211 

c2 -0.181373227 

c3 -8.23E-09 

c4 -3.80E-09 

c5 2.50E-08 

d0 -839016.636 

d1 0.025655291 

d2 1.452045596 

d3 -1.69E-08 

d4 4.13E-08 

d5 -6.03E-08 

 

The efficacy of the proposed transformations was assessed 

by calculating the RMSE, standard deviation (SD), and mean 

error for the study area, both pre- and post-application of the 

methodology, as shown in Table 3. The SD and RMSE for the 

E components were determined as follows: prior to 

methodology application (SD: 2.041m; RMSE: 3.252m), post-

application of the two-dimensional polynomial conformal 

transformation (SD: 1.894m; RMSE: 2.853m), and post-

application of the two-dimensional polynomial affine 

transformation (SD: 1.082m; RMSE: 1.732m). Similarly, for 

the N components, the corresponding values were (SD: 

1.959m; RMSE: 5.107m), (SD: 2.218m; RMSE: 3.395m), and 

(SD: 1.836m; RMSE: 3.229m), respectively. 

Discrepancies between the reference points and OSM 

coincident points for E ranged from 0.080 to 8.572 m before 

the application of the proposed methodology, from 0.054 to 

7.589 m after the application of the two-dimensional 

polynomial conformal transformation, and from 0.042 to 

3.922 m following the two-dimensional polynomial affine 

transformation. Variances in N were from 0.013 to 9.110m; 

0.037 to 9.033m; and 0.006 to 8.874m for the data before 

methodology application, after conformal transformation, and 

after affine transformation, respectively. 

Radial shifts in OSM data points, encompassing errors in 

both E and N coordinates, were evaluated and are presented in 

Table 3. Prior to the application of the proposed methods, the 

range of errors spanned 1.786 to 12.238m. Post-application, 

the ranges were reduced to 0.278 to 9.120m and 0.752 to 

8.882m for the six-parameter and twelve-parameter 

transformation methods, respectively. The SD and RMSE of 

the radial errors were as follows: before the application of the 

methods (SD: 1.800m; RMSE: 6.054m), after the application 

of the two-dimensional polynomial conformal transformation 

(SD: 2.330m; RMSE: 4.434m), and following the two-

dimensional polynomial affine transformation (SD: 1.633m; 

RMSE: 4.053m). 

Table 3 details the coordinate discrepancies between the 

reference points and the OSM data points. 

 

Table 3. Coordinate discrepancies between the reference and OSM points 

 
 ΔE (m) ΔN (m) Shift (m) 

 

Before applying 

the proposed 

methodology 

After applying two-

dimensional 

polynomial 

conformal 

transformation 

After applying two-

dimensional 

polynomial affine 
transformation 

Before 

applying the 

proposed 
methodology 

After applying 
two-

dimensional 

polynomial 
conformal 

transformation 

After applying 
two-

dimensional 

polynomial 
affine 

transformation 

Before 

applying the 

proposed 

methodology 

After applying 
two-

dimensional 

polynomial 
conformal 

transformation 

After applying 
two-

dimensional 

Polynomial 
affine 

transformation 

Min 0.080 0.054 0.042 0.013 0.037 0.006 1.786 0.278 0.752 
Max 8.572 7.589 3.922 9.110 9.033 8.874 12.238 9.120 8.882 

Mean 2.531 2.133 2.197 4.716 2.569 2.657 5.780 3.772 3.710 

SD 2.041 1.894 1.082 1.959 2.218 1.836 1.800 2.330 1.633 
RMSE 3.252 2.853 1.732 5.107 3.395 3.229 6.054 4.434 4.053 

Bar charts representing the E coordinate discrepancies (ΔE) 

for each approach were compiled and are depicted in Figure 4. 

The charts display the frequency of discrepancies along the 

horizontal axis against the magnitude of these discrepancies 

on the vertical axis. The E discrepancies of the tested data, 

post-application of the transformation methods, indicated 

improvements, particularly for discrepancies below 0.5m and 

those in the range of 3.5 to 8.0m. These results suggest that the 

applied methods have successfully reduced the variations in 

ΔE, thereby diminishing the magnitude of these differences. 

Variations in N discrepancies (ΔN) across OSM datasets are 

graphically depicted in Figure 5. Initially, discrepancies within 

the 0.5 to 3.5m range were relatively fewer compared to the 

more substantial figures observed within the 3.5 to 9.5m range.  

Following the application of the proposed methodology, a 

notable concentration of discrepancies was found within the 

0.5 to 3.5m range, with a marked reduction in values from 3.5 

to 9.5m. This pattern suggests that the methodology 

implemented tend to yield ΔN that are lower and more 

consistent, contrasting with the higher discrepancies noted 

prior to methodology application. 

Figure 6 illustrates the radial shifts in OSM data, 

highlighting the impact of the transformation methods on 

positional accuracy. The application of a six-parameter 

transformation method showed an enhancement in accuracy, 

with a further increase observed following the twelve-

parameter transformation. The largest range of errors was 

recorded in the datasets prior to methodology application, with 

shifts exceeding 12m. A discernible improvement was 

apparent with the six-parameter method, indicated by an 

increase in discrepancies less than 2m, as well as those 

between 2 to 4m, and a significant reduction in errors beyond 

4m. The twelve-parameter method further amplified this trend, 

with a substantial number of shift errors below 4m, and a 

notable decrease in shift errors ranging from 4 to 10m. These 

findings underscore the effectiveness of two-dimensional 

transformation methods in reducing the RMSE of OSM data. 

The preference for these methods is attributed to their capacity 

to retain the true shape post-transformation. 
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(a) Before applying the proposed methodology 

 
(b) After applying the two-dimensional polynomial 

conformal transformation 

 
(c) After applying the two-dimensional polynomial affine 

transformation 
 

Figure 4. Bar charts of ΔE 
 

 
(a) Before applying the proposed methodology 

 
(b) After applying the two-dimensional polynomial 

conformal transformation 

 
(c) After applying the two-dimensional polynomial affine 

transformation 
 

Figure 5. Bar charts of ΔN 
 

 
(a) Before applying the proposed methodology 

 
(b) After applying the two-dimensional polynomial 

conformal transformation 
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(c) After applying the two-dimensional polynomial affine 

transformation 

 

Figure 6. Bar charts of the radial errors/shifts 

 

 

5. CONCLUSIONS 

 

This study has been directed at assessing and ameliorating 

the positional accuracy of OSM road network data, with a 

focus on the central area of Baghdad, Iraq. Two geometric 

enhancement methods were examined: the two-dimensional 

polynomial affine transformation, incorporating twelve 

unknown parameters, and the two-dimensional polynomial 

conformal transformation, involving six unknown parameters, 

using reference data for spatial accuracy improvement. 

Statistical analysis of residuals, employing diverse sets of 

checkpoints and control points, facilitated the evaluation. This 

analysis included a comparison of RMSE values derived from 

the differences between the enhanced and original OSM 

datasets. The results revealed that the six-parameter 

transformation method attained a moderate increase in spatial 

accuracy, while the twelve-parameter method demonstrated 

greater efficacy. This was evidenced by a reduction in the 

RMSE of linear errors from 6.054m in the pre-enhancement 

phase to 4.434 and 4.053m post-application of the six-

parameter and twelve-parameter methods, respectively, 

signifying improvements of 28% and 33%. Improvements 

were also observed in the E and N components, with 

enhancements of 12% and 47% for E, and 34% and 37% for 

N, respectively, when applying the two models. These 

enhancements are relative to the baseline accuracy of the 

original OSM data. While the twelve-parameter model offered 

substantial accuracy enhancements, it also necessitated a 

greater number of control points, implicating cost-

effectiveness considerations. 

Future research may extend the proposed methodology to 

enhance the spatial accuracy of other open-source datasets, 

such as Wikimapia, Google Earth, and Yahoo Maps. Further 

studies could investigate the correlation between feature type 

and the degree of spatial accuracy improvement in OSM data, 

potentially exploring elements beyond road networks, such as 

buildings, green spaces, railways, and water bodies. 
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