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This study delves into the nonlocal inverse boundary-value problem for a second-order, 

two-dimensional parabolic equation within a rectangular domain. The primary focus is 

to identify the unknown coefficient and propose a resolution to the problem. The 

second-order, two-dimensional convection equation is addressed through the direct 

application of the alternating direction explicit (ADE) finite difference scheme. An 

adaptation of the ADE scheme is formulated to accommodate mixed boundary 

conditions, utilizing suitable expressions at the boundaries. Furthermore, unconditional 

stability is scrutinized through a series of examples. Each ADE scheme typically 

comprises two substeps, known as upward and downward sweeps, during which values 

computed at the new time level are incorporated into the discretization template. The 

inverse problem is restructured into a nonlinear regularized least-square optimization 

problem, with a defined boundary for the unknown factor, and is effectively resolved 

using the MATLAB subroutine lsqnonlin from the optimization toolbox. Given the 

typically ill-posed nature of the problem under investigation, where minor errors in the 

input data can significantly affect the output, Tikhonov's regularization technique is 

employed to produce stable and regularized results. 
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1. INTRODUCTION

In many fields of mathematical modeling, including biology, 

financial market behavior, medicine, mineral exploration, 

seismology, seawater desalination, liquid movement in porous 

media, etc., inverse problems can occur. Numerous authors 

have studied the two-dimensional heat equation inverse 

problems in great detail; for instance. In references [1-6], 

existence and uniqueness of solution have been discussed by 

many researchers using different methods. While, numerical 

solutions were also discussed by some researchers as, in 

reference [7] considered method of fundamental solutions, 

researchers [8] applied a meshless method. In references [9-

16], the Tikhonov regularization was used for solving specific 

inverse problems. In reference [17], researchers used FDM 

and predictor corrector method. The two sweeps that make up 

the ADE scheme are explicit sub steps. When moving from 

one boundary to another and vice versa, a sweeping step is 

created. ADM (Explicit or Implicit) is one of the most popular 

techniques for resolving well-posed one-two dimensions 

problems. As an illustration, see references [18-22]. Also used 

in solving in the inverse problems, in references [23, 24]. This 

method is considered unconditionally stable. By using two 

different methods of investigation into stability were used, the 

matrix and the von-Neumann [25, 26]. The inverse problem in 

this paper has been shown to be uniquely solvable in reference 

[1]. As no numerical solution has been proposed yet, the main 

aim of this work is to find such a solution. 

The novelty of the current study is to find the solution to the 

nonlinear nonlocal parabolic equation in two dimensions with 

a rectangular domain using the ADE scheme with the 

optimization method. 

The paper is structured as follows: the inverse problem's 

theoretical design in Section 2, while in Section 3, numerical 

solution which based on Alternating Direction Explicit (ADE) 

finite difference scheme for direct problem. A numerical 

method based on a minimization algorithm is presented for 

solving the inverse problem in Section 4. Present and discuses 

numerical results in Section 5. Finally, Section 6 presents 

conclusions. 

2. MATHEMATICAL FORMULATION

Consider the inverse problem of retrieving an unknown 

time-dependent potential coefficient 𝑎(𝜏) in the following 

two-dimensional parabolic equation: 

Ζ𝜏(𝑥, 𝑦, 𝜏) = 𝑐(𝜏) (Ζ𝑥𝑥(𝑥, 𝑦, 𝜏) + Ζ𝑦𝑦(𝑥, 𝑦, 𝜏))

+ 𝑎(𝜏)Ζ(𝑥, 𝑦, 𝜏)
+ ℱ(𝑥, 𝑦, 𝜏), (𝑥, 𝑦, 𝜏) ∈  𝐷𝑇

(1) 
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with nonlocal initial condition 

 

Ζ(𝑥, 𝑦, 0) + 𝜍Ζ(𝑥, 𝑦, 𝑇) = 𝜙(𝑥, 𝑦), (𝑥, 𝑦) ∈ Q̅𝑥,𝑦 (2) 

 

and the homogenous mixed (Neumann, Dirichlet) boundary 

conditions: 

 
Ζ(0, 𝑦, 𝜏) = Ζ𝑥(1, 𝑦, 𝜏) = 0, 𝜏 ∈ [0, 𝑇], 𝑦 ∈ [0,1] (3) 

 
Ζ𝑦(𝑥, 0, 𝜏) = Ζ(𝑥, 1, 𝜏) = 0, 𝜏 ∈ [0, 𝑇], 𝑥 ∈ [0,1] (4) 

 

and the overdetermination condition: 

 

Ζ(𝑥0, 𝑦0 , 𝜏) + ∫ ∫ K(𝑥, 𝑦)Ζ(𝑥, 𝑦, 𝜏) 𝑑𝑦𝑑𝑥

1

0

1

0

= 𝜇(𝜏),

0 < 𝑥0, 𝑦0 < 1, 𝜏 ∈ [0, 𝑇] 

(5) 

 

where, 𝜍 ≥0 is known number, 0 <
𝜙(𝑥, 𝑦), 𝜇(𝜏), 𝑐(𝜏), ℱ(𝑥, 𝑦, 𝜏), are given functions, (𝑥0, 𝑦0) ∈
Q̅𝑥,𝑦  is some fixed point, 𝑎(𝜏) and Ζ(𝑥, 𝑦, 𝜏)  are unknown 

functions, in the domain 𝐷𝑇 = Q̅𝑥,𝑦 × [0, 𝑇] , where Q̅𝑥,𝑦 =

{(𝑥, 𝑦): 0 < 𝑦 < 1, 0 < 𝑥 < 1}. 

The numerical solution of the inverse problem two-

dimensional parabolic equation (1)-(5) is written as 

{𝑎(𝜏), Ζ(𝑥, 𝑦, 𝜏)}  such that  𝑎(𝜏) ∈ 𝐶[0, 𝑇] and Ζ(𝑥, 𝑦, 𝜏)  ∈
𝐶2,2,1(𝐷𝑇). 

The existences and uniqueness theorems have been proved 

in reference [5], and mentioned as follows: 

 

2.1 Existence of the inverse problem solution 

 

Assume the following conditions: 

 

E1) 

 

𝜙(𝑥, 𝑦),
𝜙𝑥(𝑥, 𝑦), 𝜙𝑥𝑥(𝑥, 𝑦), 𝜙𝑦(𝑥, 𝑦), 𝜙𝑥𝑦(𝑥, 𝑦), 𝜙𝑦𝑦(𝑥, 𝑦)  

∈ 𝐶(Q̅𝑥,𝑦), 𝜙𝑥𝑥𝑦(𝑥, 𝑦), 𝜙𝑥𝑥𝑦(𝑥, 𝑦), 𝜙𝑥𝑥𝑥(𝑥, 𝑦), 𝜙𝑦𝑦𝑦(𝑥, 𝑦)  

∈ 𝐿2(𝑄𝑥,𝑦), 

 

𝜙(0, 𝑦) = 𝜙𝑥(1, 𝑦) = 𝜙𝑥𝑥(0, 𝑦) = 0, 𝑦 ∈ [0,1] 
 

𝜙𝑦(𝑥, 0) = 𝜙(𝑥, 1) = 𝜙𝑦𝑦(𝑥, 1) = 0, 𝑥 ∈ [0,1]; 

 

E2) 

 

ℱ(𝑥, 𝑦, 𝜏),
ℱ𝑥(𝑥, 𝑦, 𝜏), ℱ𝑥𝑥(𝑥, 𝑦, 𝜏), ℱ𝑦(𝑥, 𝑦, 𝜏), ℱ𝑥𝑦(𝑥, 𝑦, 𝜏), ℱ𝑦𝑦(𝑥, 𝑦, 𝜏)  

∈ 𝐶(𝐷𝑇), ℱ𝑥𝑥𝑦(𝑥, 𝑦, 𝜏), ℱ𝑥𝑥𝑦(𝑥, 𝑦, 𝜏), ℱ𝑥𝑥𝑥(𝑥, 𝑦, 𝜏), ℱ𝑦𝑦𝑦(𝑥, 𝑦, 𝜏)  

∈ 𝐿2(𝐷𝑇); 
 

ℱ(0, 𝑦, 𝜏) = ℱ𝑥(1, 𝑦, 𝜏) = ℱ𝑥𝑥(0, 𝑦, 𝜏) = 0,
𝑦 ∈ [0,1], 𝜏 ∈ [0, 𝑇] 

ℱ𝑦(𝑥, 0, 𝜏) = ℱ(𝑥, 1, 𝜏) = ℱ𝑦𝑦(𝑥, 1, 𝜏) = 0,

𝑥 ∈ [0,1], 𝜏 ∈ [0, 𝑇]; 
 

E3) 

 

𝜍 ≥ 0, K(𝑥, 𝑦) ∈ 𝐿1(𝑄𝑥,𝑦),

0 < 𝑐(𝜏) ∈ 𝐶[0, 𝑇], μ(𝜏) ∈ 𝐶1[0, 𝑇],
μ(𝜏) ≠ 0, 𝜏 ∈ (0, 𝑇]. 

Theorem 1. Let the assumptions (E1) - (E3) and the 

condition. 

 

(𝑊3(𝑇) + 𝑊4(𝑇))(𝑊1(𝑇) + 𝑊2(𝑇) + 2)2 < 1. (6) 

 

where, 

 

𝑊1(𝑇) = 3(𝑂1 + 𝑂2 + 𝑂3 + 𝑂4)

+ 3(1 + 𝜍)√𝑇 (𝑂5 + 𝑂6 + 𝑂7 + 𝑂8). 
 

𝑊2(𝑇) = ‖[𝜇(𝜏)]−1‖𝐶[0,𝑇] {‖𝜇′(𝜏)

− (ℱ(𝑥0, 𝑦0 , 𝜏)

+ ∫ ∫ 𝛷(𝑥, 𝑦)ℱ(𝑥, 𝑦, 𝜏) 𝑑𝑦𝑑𝑥

1

0

1

0

)‖

𝐶[0,𝑇]

+ 𝑂8 ((𝑂1 + 𝑂2 + 𝑂3 + 𝑂4)

+ (1 + 𝜍)√𝑇 (𝑂5 + 𝑂6 + 𝑂7 + 𝑂8))}. 

 

𝑊3(𝑇) = 3(1 + 𝜍)𝑇. 
 

𝑊4(𝑇) = ‖[𝜇( 𝜏)]−1‖𝐶[0,𝑇](1 + 𝜍)𝑇𝑂8. 

 

𝑂1 = ‖𝜙𝑥𝑥𝑥(𝑥, 𝑦)‖𝐿2(𝑄𝑥,𝑦), 𝑂2 = ‖𝜙𝑥𝑦𝑦(𝑥, 𝑦)‖
𝐿2(𝑄𝑥,𝑦)

,

𝑂3 = ‖𝜙𝑥𝑥𝑦(𝑥, 𝑦)‖
𝐿2(𝑄𝑥,𝑦)

, 

 

𝑂4 = ‖𝜙𝑦𝑦𝑦(𝑥, 𝑦)‖
𝐿2(𝑄𝑥,𝑦)

,  𝑂5 = ‖ℱ𝑥𝑥𝑥(𝑥, 𝑦, 𝜏)‖𝐿2(𝐷𝑇),

𝑂6 = ‖ℱ𝑥𝑦𝑦(𝑥, 𝑦, 𝜏)‖
𝐿2(𝐷𝑇)

, 

 

𝑂7 = ‖ℱ𝑥𝑥𝑦(𝑥, 𝑦, 𝜏)‖
𝐿2(𝐷𝑇)

, 𝑂8 = ‖ℱ𝑦𝑦𝑦(𝑥, 𝑦, 𝜏)‖
𝐿2(𝐷𝑇)

,

𝑂8 = 𝜌‖𝑐(𝜏)‖𝐶[0,𝑇] (∑ ∑ 𝜆𝑘
−2

∞

𝑘=1

∞

𝑘=1

)

1
2

 

 

𝜆𝑘 =
𝜋

2
(2𝑘 − 1), 𝑘 = 1,2, … ,

𝜌 = 1 + ∫ ∫|K(𝑥, 𝑦)| 𝑑𝑦𝑑𝑥

1

0

1

0

 

 

be satisfied. Then, the problem (1)-(5) have a single, classical 

solution in the closed ball 𝐾𝑅  of radius 𝑅 = (𝑊1(𝑇) +
𝑊(𝑇) + 2)  centered at zero in the space  𝐸𝑇

3 (𝐸𝑇
3 is Banach 

space). 

 

 

3. ADE FINITE DIFFERENCE SCHEME FOR DIRECT 

PROBLEM 

 

In the section, we aim to solve the governing equation when 

the unknown coefficient 𝑎(𝜏) assumed to be given. That mean 

we are dealing with a direct problem, and it is require finding 

the temperature distribution 𝑍(𝑥, 𝑦, 𝜏). In order to handle this 

1968



 

problem, we develop ADE scheme which firstly proposed by 

Barakat and Clark [18], for one-dimensional heat equation. 

The ADE methodology based on sweeping the spatial axis in 

a direction of x-space, for example, and then for the opposite 

direction we sweep in different direction the resulting solution 

at each sweep direction taken the numerical average in order 

to maintain the accuracy stability. 

We subdivide Qx,y into 𝑁1, 𝑁2 and 𝑀 subintervals of equal 

step lengths, form space 𝑥 =
1

𝑁1
 and 𝑦 =

1

𝑁2
 and time 𝜏 =

𝑇

𝑀
, 

where  N1, N2 and  M  are given positive integer. The grid 

points are given by: 

 

𝑥𝑖 = 𝑖∆𝑥, 𝑖 = 0, 𝑁1
̅̅ ̅̅ ̅̅ ;  𝑦𝑗 = 𝑗∆𝑦, 𝑗 = 0, 𝑁2

̅̅ ̅̅ ̅̅ . 

𝜏𝑘 = 𝑘∆𝜏, 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅ . 
 

We denote the discretized form of the quantities as follows; 

 

Ζ(𝑥𝑖 , 𝑦𝑗 , 𝜏𝑘) = 𝛧𝑖,𝑗
𝑘 , 𝑎(𝜏𝑘) = 𝑎𝑘 , ℱ(𝑥𝑖 , 𝑦𝑗 , 𝜏𝑘) = ℱ𝑖,𝑗

𝑘 ,

𝑐(𝜏𝑘) = 𝑐𝑘 , 𝜙(𝑥𝑖 , 𝑦𝑗) = 𝜙𝑖,𝑗  𝑎𝑛𝑑 𝜇(𝜏𝑘) = 𝜇𝑘, K(𝑥𝑖 , 𝑦𝑗) =

K𝑖,𝑗 , for 𝑖 = 0, 𝑁1
̅̅ ̅̅ ̅̅ , 𝑗 = 0, 𝑁2

̅̅ ̅̅ ̅̅  𝑎𝑛𝑑 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅ . 

 

In this section, the Alternating Direction Explicit Method 

(ADE) will outline an unconditionally stable numerical 

procedure for solving the two-dimensional parabolic Eq. (1) 

with initial condition (2), and boundary conditions (3)-(4) 

based on the approach described in reference [6]. We will 

assume that 𝑢  and 𝑣 are the solutions of the following 

equations, which represent the discretization finite differences 

for (1); 

 

𝑢𝑖,𝑗
𝑘+1 − 𝑢𝑖,𝑗

𝑘

∆𝜏
= 𝑐𝑘 (

𝑢𝑖+1,𝑗
𝑘 − 𝑢𝑖,𝑗

𝑘 − 𝑢𝑖,𝑗
𝑘+1 + 𝑢𝑖−1,𝑗

𝑘+1

(∆ 𝑥)2

+
𝑢𝑖,𝑗+1

𝑘 − 𝑢𝑖,𝑗
𝑘 − 𝑢𝑖,𝑗

𝑘+1 + 𝑢𝑖,𝑗−1
𝑘+1

(∆ 𝑦)2
)

+ 𝑎𝑘 (
𝑢𝑖,𝑗

𝑘 + 𝑢𝑖,𝑗
𝑘+1

2
)

+ (
ℱ𝑖,𝑗

𝑘 + ℱ𝑖,𝑗
𝑘+1

2
), 

𝑖 = 1, 𝑁1
̅̅ ̅̅ ̅̅ , 𝑗 = 0, 𝑁2 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑎𝑛𝑑 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅  

(7) 

 

𝑣𝑖,𝑗
𝑘+1 − 𝑣𝑖,𝑗

𝑘

∆𝜏
= 𝑐𝑘 (

𝑣𝑖+1,𝑗
𝑘+1 − 𝑣𝑖,𝑗

𝑘+1 − 𝑣𝑖,𝑗
𝑘 + 𝑣𝑖−1,𝑗

𝑘

(∆𝑥)2

+
𝑣𝑖,𝑗+1

𝑘+1 − 𝑣𝑖,𝑗
𝑘+1 − 𝑣𝑖,𝑗

𝑘 + 𝑣𝑖,𝑗−1
𝑘

(∆ 𝑦)2
)

+ 𝑎𝑘 (
𝑣𝑖,𝑗

𝑘 + 𝑣𝑖,𝑗
𝑘+1

2
)

+ (
ℱ𝑖,𝑗

𝑘 + ℱ𝑖,𝑗
𝑘+1

2
), 

𝑖 = 𝑁1, 1̅̅ ̅̅ ̅̅ , 𝑗 = 𝑁2 − 1,0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑎𝑛𝑑 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅  

(8) 

 
Simplifying the above equations, we obtain the following 

explicit difference equations 

 

𝑢𝑖,𝑗
𝑘+1 = 𝒜𝑘𝑢𝑖,𝑗

𝑘 + ℬ𝑘(𝑢𝑖−1,𝑗
𝑘+1 +𝑢𝑖+1,𝑗

𝑘 )

+ 𝒞𝑘(𝑢𝑖,𝑗−1
𝑘+1 + 𝑢𝑖,𝑗+1

𝑘 )

+
∆𝜏

1 + 𝛿𝑘
(

ℱ𝑖,𝑗
𝑘 + ℱ𝑖,𝑗

𝑘+1

2
), 

𝑖 = 1, 𝑁1
̅̅ ̅̅ ̅̅ , 𝑗 = 0, 𝑁2 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑎𝑛𝑑 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅  

(9) 

𝑣𝑖,𝑗
𝑘+1 = 𝒜𝑘𝑣𝑖,𝑗

𝑘 + ℬ𝑘(𝑣𝑖−1,𝑗
𝑘 +𝑣𝑖+1,𝑗

𝑘+1 )

+ 𝒞𝑘(𝑣𝑖,𝑗−1
𝑘 + 𝑣𝑖,𝑗+1

𝑘+1 )

+
∆𝜏

1 + 𝛿𝑘
(

ℱ𝑖,𝑗
𝑘 + ℱ𝑖,𝑗

𝑘+1

2
), 

𝑖 = 𝑁1, 1̅̅ ̅̅ ̅̅ , 𝑗 = 𝑁2 − 1,0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑎𝑛𝑑 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅  

(10) 

 

where, 

 

𝒜𝑘 = (1 − 𝛿𝑘) (1 + 𝛿𝑘)⁄ , 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅ , 

ℬ𝑘 =
∆𝜏 𝑐𝑘

(∆𝑥)2
(1 + 𝛿𝑘)⁄ , 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅ , 

𝒞𝑘 =
∆𝜏 𝑐𝑘

(∆𝑦)2
(1 + 𝛿𝑘)⁄ , 𝑘 = 0, 𝑀,̅̅ ̅̅ ̅̅  

and 

 

𝛿𝑘 = ∆𝜏 (
𝑐𝑘

(∆𝑥)2
+

𝑐𝑘

(∆𝑦)2
−

𝑎𝑘

2
) , 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅ . 

 

In order to maintain the stability for 𝑍𝑖,𝑗 
𝑘 , we use the 

arithmetic mean of 𝑢𝑖,𝑗
𝑘  and 𝑣𝑖,𝑗

𝑘 , specifically as: 

 

Ζ𝑖,𝑗
𝑘 =

𝑢𝑖,𝑗
𝑘 + 𝑣𝑖,𝑗

𝑘

2
 (11) 

 

Furthermore, assume  ς = 0  for simplicity (although it is 

possible to select a value other than zero, doing so will require 

data optimization, and the program is already built into the 

performance optimization, so the calculations will take a long 

time), and let the boundary and initial conditions are satisfied 

by 𝑣𝑖,𝑗
𝑘  and 𝑢𝑖,𝑗

𝑘 , then FDM discretizes Eqs. (2)-(4) as 

 

𝑢𝑖,𝑗
0 = 𝑣𝑖,𝑗

0 = 𝜙𝑖,𝑗 , 𝑖 = 0, 𝑁1
̅̅ ̅̅ ̅̅ , 𝑗 = 0, 𝑁2

̅̅ ̅̅ ̅̅  (12) 

 

𝑢0,𝑗
𝑘 = 𝑣0,𝑗

𝑘 = 0, 𝑢𝑁1+1,𝑗
𝑘 = 𝑢𝑁1,𝑗

𝑘 ,

𝑣𝑁1+1,𝑗
𝑘 = 𝑣𝑁1,𝑗

𝑘 , 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅ ,

𝑗 = 0, 𝑁2
̅̅ ̅̅ ̅̅  

(13) 

 

𝑢𝑖,0
𝑘 = 𝑢𝑖,−1

𝑘 , 𝑣𝑖,0
𝑘 = 𝑣𝑖,−1

𝑘 , 𝑢𝑖,𝑁2

𝑘 = 𝑣𝑖,𝑁2

𝑘 = 0,

𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅ , 𝑖 = 0, 𝑁1
̅̅ ̅̅ ̅̅  

(14) 

 

The doable integral overdetermination condition (5) is 

finally discretized by the trapezoidal rule as: 

 

𝜇(𝜏𝑘) = 𝛧𝑖0,𝑗0

𝑘 +
1

4𝑁1𝑁2
(𝐾0,0𝛧0,0

𝑘 + 𝐾𝑁1,0𝛧𝑁1,0
𝑘

+ 𝐾0,𝑁2
𝛧0,𝑁2

𝑘 + 𝐾𝑁1,𝑁2
𝛧𝑁1,𝑁2

𝑘

+ 2 ∑ 𝐾𝑖,0𝛧𝑖,0
𝑘

𝑁1−1

𝑖=1

+2 ∑ 𝐾𝑖,𝑁2
𝛧𝑖,𝑁2

𝑘

𝑁1−1

𝑖=1

+ 2 ∑ 𝐾0,𝑗𝛧0,𝑗
𝑘

𝑁2−1

𝑗=1

+ 2 ∑ 𝐾𝑁1,𝑗𝛧𝑁1,𝑗
𝑘

𝑁2−1

𝑗=1

+ 4 ∑ ∑ 𝐾𝑖,𝑗𝛧𝑖,𝑗
𝑘

𝑁1−1

𝑖=1

𝑁2−1

𝑗=1

) , 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅  

(15) 

 

3.1 Boundary treatment 

 

Since there are points out of the domain such as 

𝑢𝑁1+1,𝑗
𝑘 ,  𝑣𝑁1+1,𝑗

𝑘 , 𝑢𝑖,−1
𝑘  and  𝑣𝑖,−1

𝑘 , when 𝑖 = 𝑁1  and 𝑗 = 0 

1969



 

respectively, which are located out of domain values that can 

be calculated directly from boundary conditions. We noticed 

when using the central, backward, or three-point scheme to 

approximate Eqs. (3)-(4), it appears points will also be out of 

domain, so we use the forward finite difference scheme to 

approximate Eqs. (3)-(4), then we get: 

 

𝑢𝑁1+1,0
𝑘 = 𝑢𝑁1,0

𝑘 , 𝑣𝑁1+1,0
𝑘 = 𝑣𝑁1,0

𝑘 , 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅ , 

 

𝑢𝑖,−1
𝑘 = 𝑢𝑖,0

𝑘 , 𝑣𝑖,−1
𝑘 = 𝑣𝑖,0

𝑘 , 𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅ . 

 

After substituting into Eqs. (9)-(10), we get as: 

 

𝑢𝑖,0
𝑘+1 = 𝒜𝑘𝑢𝑖,0

𝑘 + ℬ𝑘(𝑢𝑖−1,0
𝑘+1 +𝑢𝑖+1,0

𝑘 ) + 𝒞𝑘(𝑢𝑖,0
𝑘+1 + 𝑢𝑖,1

𝑘 )

+
∆𝜏

2(1 + 𝛿𝑘)
(ℱ𝑖,0

𝑘 + ℱ𝑖,0
𝑘+1),

𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅  and 𝑖 = 1, 𝑁1 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 

 

simplifying the above equations, we get: 

 

𝑢𝑖,0
𝑘+1 = (

1

1 − 𝒞𝑘) (𝒜𝑘𝑢𝑖,0
𝑘 + ℬ𝑘(𝑢𝑖−1,0

𝑘+1 +𝑢𝑖+1,0
𝑘 ) + 𝒞𝑘𝑢𝑖,1

𝑘

+
∆𝜏

2(1 + 𝛿𝑘)
(ℱ𝑖,0

𝑘 + ℱ𝑖,0
𝑘+1)) ,

𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅  and 𝑖 = 1, 𝑁1 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(16) 

 

With similar steps, we can process the rest of the points: 

 

𝑢𝑁1,0
𝑘+1 = (

1

1 − 𝒞𝑘) (𝒜𝑘𝑢𝑁1,0
𝑘 + ℬ𝑘(𝑢𝑁1−1,0

𝑘+1 +𝑢𝑁1,0
𝑘 )

+ 𝒞𝑘𝑢𝑁1,1
𝑘

+
∆𝜏

2(1 + 𝛿𝑘)
(ℱ𝑁1,0

𝑘 + ℱ𝑁1,0
𝑘+1)) ,

𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅  

(17) 

 

𝑢𝑁1,𝑗
𝑘+1 = 𝒜𝑘𝑢𝑁1,𝑗

𝑘 + ℬ𝑘(𝑢𝑁1−1,𝑗
𝑘+1 +𝑢𝑁1,𝑗

𝑘 )

+ 𝒞𝑘(𝑢𝑁1,𝑗−1
𝑘+1 + 𝑢𝑁1,𝑗+1

𝑘 )

+
∆𝜏

2(1 + 𝛿𝑘)
(ℱ𝑁1,𝑗

𝑘 + ℱ𝑁1,𝑗
𝑘+1), 𝑘

= 0, 𝑀̅̅ ̅̅ ̅̅  and 𝑗 = 1, 𝑁2 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(18) 

 

𝑣𝑁1,𝑗
𝑘+1 = (

1

1 − ℬ𝑘) (𝒜𝑘𝑣𝑁1,𝑗
𝑘 + ℬ𝑘𝑣𝑁1−1,𝑗

𝑘

+ 𝒞𝑘(𝑣𝑁1,𝑗−1
𝑘 + 𝑣𝑁1,𝑗+1

𝑘+1 )

+
∆𝜏

2(1 + 𝛿𝑘)
(ℱ𝑁1,𝑗

𝑘 + ℱ𝑁1,𝑗
𝑘+1)) , 𝑘

= 0, 𝑀̅̅ ̅̅ ̅̅ , 𝑗 = 𝑁2 − 1,1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(19) 

 

𝑣𝑁1,0
𝑘+1 = (

1

1 − ℬ𝑘) (𝒜𝑘𝑣𝑁1,0
𝑘 + ℬ𝑘𝑣𝑁1−1,0

𝑘

+ 𝒞𝑘(𝑣𝑁1,0
𝑘 + 𝑣𝑁1,1

𝑘+1)

+
∆𝜏

1 + 𝛿𝑘 (
ℱ𝑁1,0

𝑘 + ℱ𝑁1,0
𝑘+1

2
)) ,

𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅  

(20) 

 

𝑣𝑖,0
𝑘+1 = 𝒜𝑘𝑣𝑖,0

𝑘 + ℬ𝑘(𝑣𝑖−1,0
𝑘 +𝑣𝑖+1,0

𝑘+1 )

+ 𝒞𝑘(𝑣𝑖,0
𝑘 + 𝑣𝑖,1

𝑘+1)

+
∆𝜏

1 + 𝛿𝑘
(

ℱ𝑖,0
𝑘 + ℱ𝑖,0

𝑘+1

2
) ,

𝑘 = 0, 𝑀̅̅ ̅̅ ̅̅  and 𝑖 = 𝑁1 − 1,1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(21) 

 

3.2 Example for direct problem 

 

We take T=1 in all examples, for simplicity. 

 

Example 1: 

 

In the first stage, we assume the situation where the 

unidentified coefficients are provided in order to test the 

effectiveness of the proposed ADE scheme for direct problems. 

We have the precise solution as 

 

Ζ(𝑥, 𝑦, 𝜏) =
𝑒−𝜏cos (

𝑦𝜋
2

) sin (
𝑥𝜋
2

)

150
, (𝑥, 𝑦, 𝜏) ∈ 𝐷𝑇 

 

and the input data are as follows: 

 

K(𝑥, 𝑦) = 𝑥𝑦, 𝜙(𝑥, 𝑦) =
cos (

𝑦𝜋
2

) sin (
𝑥𝜋
2

)

150
,

(𝑥, 𝑦) ∈ Q̅𝑥,𝑦 

 

𝑐(𝜏) =
(1.1 − 𝜏)

1000
, 𝑎(𝜏) =

(𝜏 − 12)

5
,

Ζ(0.5,0.5, 𝜏) = 0.003333 𝑒−𝜏,
𝜏 ∈ [0,1] 

 

𝜇(𝜏) = Ζ(0.5,0.5, 𝜏) +
4(−2 + 𝜋)

75𝜋4
 𝑒−𝜏 , 𝜏 ∈ [0,1] 

 

𝑓(𝑥, 𝑦, 𝜏) = (0.0093695 

− 0.001366𝜏)𝑒−𝜏 cos (
𝑦𝜋

2
) sin (

𝑥𝜋

2
) ,

(𝑥, 𝑦, 𝜏)  ∈ 𝐷𝑇 
 

 
 

Figure 1. The graphs showing absolute errors for the direct problem (17)-(18), when sizes of mesh 𝑁1 = 𝑁2 = 10 and 𝑀 ∈
{20, 40, 80} 

1970



 

 
 

Figure 2. The numerical value and accurate for 𝜇(𝜏) ,when sizes of mesh N1 = N2 = 10, and 𝑀 ∈ {20, 40, 80} 

 

The absolute error diagram for interior points when sizes of 

mesh for the space is N1 = N2 = 10, and time mesh are taken 

as 20, 40, and 80 is shown in Figure 1. This graph 

demonstrates the achievement of mesh independence, 

numerical solutions for each time mesh selection converge to 

an exact solution, and high agreement are obtained. Figures 1 

and 2 illustrate how the results become more precise and 

clearly converge as the number of discretization’s increases. 

 

 

4. INVERSE PROBLEM 

 

We aim to find numerical solutions to nonlinear inverse 

problems (1)-(5) that mean 𝑎(𝜏)  is unknown potential 

coefficient. As the inverse problem is being solved iteratively, 

we considered 𝑎(0) as a constant initial guess. This value can 

be obtained by using the input data at initial time 𝜏 = 0, which 

will be handled in next subsection. We recast this type of 

problem as a nonlinear minimization problem. In other words, 

we try to minimize the difference between the measured data 

𝜇(𝜏) and the numerically computed solution (15). Because the 

problem is ill-posed, so we use Tikhonov's regularization 

method to find a stable numerical solution. From condition (5), 

the Tikhonov's regularization functional can be imposed as 

follows: 
 

𝐹(𝑎) = ‖Ζ(𝑥0, 𝑦0 , 𝜏) + ∫ ∫ K(𝑥, 𝑦)Ζ(𝑥, 𝑦, 𝜏) 𝑑𝑦𝑑𝑥

1

0

1

0

− 𝜇(𝜏)‖

2

𝐿2[0,𝑇]

+ 𝛽‖𝑎(𝜏)‖2 

(22) 

 

where, 𝛽 ≥ 0,  is a regularization parameter should be 

determined according to some selections methods like L-curve 

method by Hansen and O’Leary [27], Morozov’s discrepancy 

principle [28]. We used trial and error, in our work as 

described in reference [29]. The discretization of (22) is as; 

 

𝐹(𝑎) = ∑ [Ζ(𝑥0, 𝑦0, 𝜏𝑗)

𝑁

𝑗=1

+ ∫ ∫ K(𝑥, 𝑦)Ζ(𝑥, 𝑦, 𝜏𝑗) 𝑑𝑦𝑑𝑥

1

0

1

0

− 𝜇(𝜏𝑗)]

2

+ 𝛽 ∑ 𝑎𝑗
2

𝑁

𝑗=1

 

(23) 

The unregularized case, i.e., 𝛽 =  0, produces the regular 

nonlinear least-squares functional, which is inherently 

unstable when dealing with noisy data. The toolbox subroutine 

lsqnonlin from MATLAB is used to minimize the functional 𝐹, 

which does not need the user to provide the gradient of the 

objective functional (23). The lsqnonlin subroutine performs a 

constrained nonlinear optimization in order to find the 

minimum of a scalar function with numerous variables. We 

use the following parameters for the subroutine: 

• The upper and lower bounds for the coefficient 𝑎(𝜏) 

assumed to be 102 and −102, respectively. 

• (Maxlter) Maximum number of iterations = 400 ×
(M). 

• Objective function tolerance (FunTOL) and Solution 

tolerance (SolTOL) = 10−10. 

The solution to the inverse problem (1)-(5) is investigated 

to both noisy and exact measurements (5). 

A numerically simulated of the noisy data is adding by a 

random error as follows: 
 

𝜇𝜖(𝜏𝑗) = 𝜇(𝜏𝑗) + 𝜖𝑗 , 𝑗 = 0, 𝑀̅̅ ̅̅ ̅̅  (24) 

 

where, 𝜖, is random Gaussian normal distribution vectors with 

standard deviations 𝜎 and mean equal to zero, such that 
 

𝜎 = 𝑝 × max
𝜏∈[0,𝑇]

|𝜇(𝜏)| (25) 

 

where, 𝑝 is the percentage of noise. We use the MATLAB 

bulletin function normrnd as follows: 
 

𝜖 = 𝑛𝑜𝑟𝑚𝑟𝑛𝑑(0, 𝜎, 𝑀) (26) 
 

To generate the random variables 𝜖 = (𝜖𝑗) and 𝑗 = 0, 𝑀̅̅ ̅̅ ̅̅ . 
 

4.1 Initial guess 
 

As mentioned before, we require an initial guess to begin 

with when solving the inverse problem iteratively. These 

values 𝑎(0) can be calculated using the following input data: 

Consider the nonlinear inverse problem (1)-(5) with an 

unknown potential coefficient  𝑎(𝜏) evaluate, the nonlocal 

overdetermination condition (5) at 𝜏 = 0, and we have after 

differentiating with respect to time: 

 

Ζ(𝑥0, 𝑦0, 𝜏) + ∫ ∫ K(𝑥, 𝑦)Ζ(𝑥, 𝑦, 𝜏) 𝑑𝑦𝑑𝑥

1

0

1

0

= 𝜇(𝜏), ∫ ∫ 𝐾(𝑥, 𝑦) Ζ𝜏(𝑥, 𝑦, 𝜏) 𝑑𝑦𝑑𝑥

1

0

1

0

= 𝜇′(𝜏) − Ζ𝜏(𝑥0, 𝑦0, 𝜏) 

(27) 

1971



 

multiplying Eq. (1) by  𝐾(𝑥, 𝑦)  and integrating twice with 

respect to x and y over the interval [0, 1], we have: 

 

∫ ∫ 𝐾(𝑥, 𝑦) Ζ𝜏(𝑥, 𝑦, 𝜏) 𝑑𝑦𝑑𝑥

1

0

1

0

= 𝑐(𝜏) ∫ ∫ 𝐾(𝑥, 𝑦) (Ζ𝑥𝑥(𝑥, 𝑦, 𝜏)

1

0

1

0

+ Ζ𝑦𝑦(𝑥, 𝑦, 𝜏))  𝑑𝑦𝑑𝑥

+ 𝑎(𝜏) ∫ ∫ 𝐾(𝑥, 𝑦)Ζ( 𝑥, 𝑦, 𝜏)𝑑𝑦𝑑𝑥

1

0

1

0

+ ∫ ∫ 𝐾(𝑥, 𝑦)ℱ(𝑥, 𝑦, 𝜏) 𝑑𝑦𝑑𝑥

1

0

1

0

 

(28) 

 

evaluating the Eq. (28) at 𝜏 = 0, we get: 

 

𝜇′(0) − 𝜙′(𝑥0, 𝑦0)

= ℊ1 + 𝑎(0)(𝜇(0) − 𝜙(𝑥0, 𝑦0))

+ ℊ2 

(29) 

 

The first guess was made using Eqs. (2) and (29). 

 

𝑎(0) =
𝜇′(0) − 𝜙′(𝑥0, 𝑦0) − ℊ1 − ℊ2

𝜇(0) − 𝜙(𝑥0, 𝑦0)
 (30) 

 

where, 

 

ℊ1 = 𝑐(0) ∫ ∫ 𝐾(𝑥, 𝑦) (𝜙𝑥𝑥(𝑥, 𝑦) + 𝜙𝑦𝑦(𝑥, 𝑦))  𝑑𝑦𝑑𝑥,

1

0

1

0

 

ℊ2 = ∫ ∫ 𝐾(𝑥, 𝑦)ℱ(𝑥, 𝑦, 0) 𝑑𝑦𝑑𝑥.

1

0

1

0

 

 
provided that 𝜇(0) − 𝜙(𝑥0, 𝑦0) did not vanish. 

 

 

5. NUMERICAL RESULTS AND DISCUSSION 

 
The root mean squares errors (RMSE) utilized, calculated 

to determine the accuracy of the specified coefficient. 

 

𝑟𝑚𝑠𝑒(𝑎) = √
1

𝑀
∑(𝑎𝑖

𝑒𝑥𝑎𝑐𝑡 − 𝑎𝑖
𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙)

2
𝑀

𝑖=1

 (31) 

 

For simplicity, we fix spatial mesh to be 𝑁1 = 𝑁2 = 10 and 

time mesh to be M=40 which was discovered to be sufficiently 

accurate to ensure that any finer mesh as 𝑁1 = 𝑁2 = 20 and 

M=80, had no effect on the numerical solution's stability or 

accuracy. 

Next, we consider a numerical experiment for the two-

dimensional parabolic inverse problem (1)-(5) with the same 

input data in example 1 except the coefficient 𝑎(𝜏)  is 

unknown. The initial guess was taken 𝑎0 = −2.4 given by Eq. 

(30). It is easy to verify that the input data verify the conditions 

E1-E3 and Eq. (6), hence the inverse two-dimensional 

parabolic problem (1)-(5) has a unique solution. 

 

Case 1: No regularization and no noise 

 

The ideal numerical solution is discussed when, 𝑝 = 0 i.e., 

no noise included in Eq. (25). The objective function (23) 

represented Figure 3 (a), and a speed declining convergence is 

seen for achieving a shorter order tolerance 𝑂(10−12) in just 

below 5 iterations. Figure 3 (b) shows numerical results 

for 𝑎(𝜏). The stability of the approximation has been tested 

using inclusion of perturbed data. 

 

Case 2: No regularization and with noise 

 

In this case, we perturb the measured data with p ∈
{0.1, 0.5}%  noise added as in Eq. (25). In the absence of 

regularization, Figure 4 displays the related numerical 

outcomes. From Figure 4 (a) the criterion yields the iteration 

number=5, revealing that the objective function minimization 

(23) has converged to small stationary values of orders O 

(10−7) and O (10−8). As seen in Figure 4(b), the numerical 

solution of a(τ). Diverges from the exact solution but remains 

on the same path when the value of additive noise increases in 

Eq. (25). 

 

Case 3: With noise and Tikhonov’s regularization 

 

To restore the stability some regularization should be 

applied. To replicate real input data, noise of 𝑝 ∈ {0.1, 0.5}% 

is included with regularization  𝛽 ∈ {0,  10−12, … ,  10−7} . 

Figure 5 (a) and Figure 6 (a), the criterion yields the iteration 

number = 4 , revealing that the objective function 

minimization (23). Figure 5 (b) and Figure 6 (b), show the 

potential unknown coefficient a(τ). These Figures show that 

results are almost completely smooth, especially in the range 

[0, 0.8], before instabilities begin to show up when noise levels 

increase from 0.1% to 0.5%. A very excellent agreement is 

established while there is 𝛽 = 10−12 , and 𝛽 = 10−8 

respectively. Moreover, Table 1 is associated 𝑟𝑚𝑠𝑒(𝑎) values 

show that a reasonable range of values can be seen, with the 

best retrieval occurs at the smallest 𝑟𝑚𝑠𝑒(𝑎).  See the 

numerical results in Table 1 and Figures 5-6 for more 

information. 

The numerical and exact temperatures 𝑍(𝑥, 𝑦, 𝜏), with 𝑝 =
0.1%  noise,  𝛽 = 10−12, p = 0.5% noise,  𝛽 = 10−8,  as well 

as the absolute error between them are illustrated in Figures 7 

and 8. 

 

Table 1. The 𝑟𝑚𝑠𝑒(𝑎) (31) for the regularization 𝛽 ∈  {0, 10−12, … , 10−7} and noise 𝑝 ∈  {0.1, 0.5} % 

 

𝜷 0 𝟏𝟎−𝟏𝟐 𝟏𝟎−𝟏𝟏 𝟏𝟎−𝟏𝟎 𝟏𝟎−𝟗 𝟏𝟎−𝟖 𝟏𝟎−𝟕 

p=0.1% 𝑟𝑚𝑠𝑒(𝑎) 0.1572 0.1565 0.2576 0.3723 0.3835 0.4854 0.7381 

p=0.5% 𝑟𝑚𝑠𝑒(𝑎) 0.6683 0.6671 0.6803 0.6788 0.4927 0.4916 0.7366 
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Figure 3. (a) Objective function (23) and (b) 𝑎(𝜏) with noise free and without regularization 
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Figure 4. (a) Objective function (23) and (b) Reconstruction of 𝑎(𝜏), for different noise level 𝑝 ∈  {0.1, 0.5} % and no 

regularization 
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Figure 5. (a) Objective function (23) and (b) 𝑎(𝜏), for 𝛽 = {10−12, 10−11, 10−10} and 𝑝 = 0.1% noise 
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Figure 6. (a) Objective function (23) and (b) 𝑎(𝜏), for 𝛽 = {10−10, 10−9, 10−8} and 𝑝 = 0.5% noise 

 

 
 

Figure 7. Both accurate and numerical 𝑍(𝑥, 𝑦, 𝜏), with 𝑝 = 0.1% noise, and 𝛽 = 10−12, as well as the absolute error between 

them 

1974



 

 
 

Figure 8. both accurate and numerical 𝑍(𝑥, 𝑦, 𝜏), with 𝑝 = 0.5% noise and 𝛽 = 10−8, as well as the absolute error between them 

 

 

6. CONCLUSION 

 

The second order, two-dimensional convection equation 

with time-dependent prospective coefficient 𝑎(𝜏) under over 

specified condition of general integral type. The ADE finite 

difference schemes, in conjunction with the trapezoidal rule 

quadrature has been used for direct problems. The instability 

brought on by the ill-posed problem was resolved using the 

Tikhonov regularization. The RMS values for noise 𝑝 = 0 and 

β = 0 were contrasted for the numerical test problem. It has 

been noted that a stable solution that is accurate with 𝑝 =
0.1% and 𝑝 = 0.5% noise is produced upon the introduction 

of regularization with 𝛽 = 10−12  to  10−7 , and with 𝛽 =
10−10 to 10−7 respectively. We suggest the following future 

work is possible, the use of numerical methods different from 

the methods used in this thesis as shifted Chebyshev tau, 

predictor-corrector and a meshless to solve the direct problems. 
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NOMENCLATURE 

 

F Nonlinear objective least-squares functions 

lsqnonlin MATLAB optimization routine 

normrnd 
MATLAB function generating Gaussian 

random numbers 

βi Regularization parameter 

ϵ Total amount of noise 

p Percentage of noise 

rmse Root mean square equation 

 

 

  

1976

https://doi.org/10.1063/1.4964961



