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The main objective of the research is to link the structure of the proximity space with 

the topological group structure to establish the central topological group structure. Our 

basic definition depends on the concept of the central set, which depends on the 

proximity space, which was used with the central continuous functions in constructing 

the central topological group. Also, we explained a set of properties related to this 

structure. We defined the center product of center set which used to establish the central 

product topological group. Also, we established the central product structure and the 

central quotient structure to define the central product topological group and the central 

quotient topological group, and we identified a set of properties associated with these 

concepts. 
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1. INTRODUCTION

Mathematicians developed the "fuzzy sets," "intuitionist 

fuzzy sets," "vague sets," "soft sets" [1] and "fuzzy soft sets" 

as methods of coping with uncertainty in their field. 

The concept of proximity space was first proposed by 

Efremovic. Kandil et al. [2] presented a subjective topology on 

the concealed set using clearer proverbs than those found in 

the surrounding region of Efremovic. Additionally, proximity 

is a crucial factor for tackling issues that require human 

observation, such image analysis [3] and facial recognition [4]. 

Cyclic compression and the optimal proximity point are two 

of the key concepts in the fixed point hypothesis, and various 

findings, like the reference [5], have been made. Kandil et al. 

[1] most recently developed a new method to proximity

structures that is based on the ideal and soft set ideas [6]. By

utilizing proximity space, the center set was first introduced in

reference [7]. In an analogous application with groups,

Rosenfeld the notion of fuzzy topological groups was

introduced in and properties of fuzzy topological groups were

studied in references [8, 9].

The purpose of this work is to introduce the concept of 

center topological group and the center continuous functions 

are used in setting up a center topological group. Also, we 

introduce the product and quotient center topological groups. 

And study the properties of these concepts. 

1.1 Basic definitions and notations 

We begin by introducing some fundamental concepts that 

we will use in our study.  

Definition 1.1 

A binary relation 𝛿  on the power set of 𝑋  is called an 

Efremovi ô  proximity on 𝑋  if and only if it satisfies the 

following axioms for each 𝐴, 𝐵, 𝐶, 𝐸 ⊆ 𝑋: 

P1. 𝐴𝛿𝐵 implies 𝐵𝛿𝐴; 

P2. (𝐴 ∪ 𝐵)𝛿𝐶 if and only if 𝐴𝛿𝐶 or 𝐵𝛿𝐶; 

P3.  𝐴𝛿𝐵 implies 𝐴 ≠ ∅, 𝐵 ≠ ∅; 

P4. 𝐴𝛿𝐵  implies that there exists a subset 𝐸  such that 

𝐴𝛿𝐸 and 𝑋 − 𝐸𝛿𝐵; 

P5. 𝐴 ∩ 𝐵 ≠ ∅ implies 𝐴𝛿𝐵. 

The pair (𝑋, 𝛿) is called a proximity space [10]. 

Definition 1.2 

Let (X,𝜹𝑿), (Y,𝜹𝒀) be proximity spaces the mapping f:X→ Y

is said to be a proximally mapping if A 𝜹𝑿 B implies f(A) 𝜹𝒀

f(B) for every two sets A, B ⊆ X [7]. 

Definition 1.3 

Let (𝑋, 𝛿) be a proximity space and 𝐴 ⊆ 𝑋. A center set of 

𝐴 is defined by 𝒞𝐴 ∶= {〈𝐴, 𝐵〉 ∶ 𝐵 ⊆ 𝑋 𝑎𝑛𝑑 𝐴𝛿𝐵} [7].

Definition 1.4 

For two center sets 𝒞𝐴 and 𝒞𝐵 over a  proximity space (𝑋, 𝛿),

we say that 𝒞𝐴 is a center subset of 𝒞𝐵 if and only if for each
〈𝐴, 𝐶〉 ∈ 𝒞𝐴, implies 〈𝐵, 𝐶〉 ∈ 𝒞𝐵. We write 𝒞𝐴 ≼𝒞 𝒞𝐵 [7].

Definition 1.5 

Center union of two center sets of 𝒞𝐴  and 𝒞𝐵  over a

proximity space (𝑋, 𝛿) is define by [6]: 

𝒞𝐴 ⋎𝒞 𝒞𝐵 = {〈𝐴 ∪ 𝐵, 𝐶〉 ∶  〈𝐴, 𝐶〉 ∈ 𝒞𝐴 𝑜𝑟 〈𝐵, 𝐶〉 ∈ 𝒞𝐵}
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Definition 1.6 

 

Let (𝑋, 𝛿) be a proximity space and {𝑥}, 𝐵 ⊆ 𝑋, such that 

{𝑥}𝛿𝐵. Then 𝑥𝐵 = {〈{𝑥}, 𝐵〉} is called a center point in 𝑋 [6]. 

 

Definition 1.7 [6] 

 

Let 𝑥𝐵 be a center point in (𝑋, 𝛿) and 𝒞𝐴 center set in (𝑋, 𝛿). 

Then 𝑥𝐵 ∈ 𝒞𝐴 if and only if 〈𝐴, 𝐵〉 ∈ 𝒞𝐴 and 𝑥 ∈ 𝐴 [6]. 

 

Definition 1.8  

 

Let (𝑋, 𝛿𝑋) and (𝑌, 𝛿𝑌) be two proximity spaces and 𝐴 ⊆
𝑋, 𝐵 ⊆ 𝑌  and let 𝒞𝐴  , 𝒞𝐵  be two center sets. The center 

product of these center sets defined by [11]: 

 

𝒞𝐴 𝑋𝒞 𝒞𝐵 ={〈𝐴 × 𝐵, 𝐶 × 𝐷〉: 〈𝐴, 𝐶〉 ∈ 𝒞𝐴 and 〈𝐵, 𝐷〉 ∈ 𝒞𝐵}. 

 

Definition 1.9  

 

Let (X, 𝛅𝑿) be a proximity space and 𝝉𝒄𝒆𝒏𝒕(𝑿)⊆ 𝒄𝒆𝒏𝒕(𝑿), 

then 𝝉𝒄𝒆𝒏𝒕(𝑿) said to be a center topology if 

 

1. 𝓒∅, 𝓒𝑿 ∈𝝉𝒄𝒆𝒏𝒕(𝑿).  

2. {𝓒𝑨𝒊
∶  𝒊 ∈  𝑰} ∈ 𝝉𝒄𝒆𝒏𝒕(𝑿)  ⇒⋎𝓒 {𝓒𝑨𝒊

∶  𝒊 ∈  𝑰} ∈ 

𝝉𝒄𝒆𝒏𝒕(𝑿).  

3. 𝓒𝑨𝟏
, 𝓒𝑨𝟐

∈ 𝝉𝒄𝒆𝒏𝒕(𝑿) ⇒ 𝓒𝑨𝟏
 ⋏𝓒  𝓒𝑨𝟐

∈ 𝝉𝒄𝒆𝒏𝒕(𝑿).  

 

The triplet (𝑿, 𝜹𝑿, 𝝉𝒄𝒆𝒏𝒕(𝑿)) is called a center topological 

space and the members of 𝝉𝒄𝒆𝒏𝒕(𝑿)  are said to be 𝓒 - 

open.  𝝉𝒄𝒆𝒏𝒕(𝑿)  is called indiscrete center topology if 

𝝉𝒄𝒆𝒏𝒕(𝑿) = { 𝓒𝑿 , 𝓒∅ } and called discrete  𝐜𝐞𝐧𝐭𝐞𝐫 toplogy if 

𝝉𝒄𝒆𝒏𝒕(𝑿) = 𝒄𝒆𝒏𝒕(𝑿) [6]. 

 

Definition 1.10 

 

Let (𝑿, 𝜹𝑿, 𝝉𝒄𝒆𝒏(𝑿)) , (𝒀, 𝜹𝒀, 𝝉𝒄𝒆𝒏𝒕(𝒀)) be center topological 

spaces. The function  𝐜𝐞𝐧𝐭(𝐟) : ( 𝑿, 𝜹𝑿, 𝝉𝒄𝒆𝒏(𝑿) ) → 

(𝒀, 𝜹𝒀, 𝝉𝒄𝒆𝒏𝒕(𝒀) ) is said to be center continuous function if 

(𝐜𝐞𝐧𝐭(𝐟))-1 (𝓒𝐀) is 𝓒- open set in X for every 𝓒- open set 𝓒𝑨 in 

Y [10]. 

 

Definition 1.11  

 

A topological group is a set 𝐺 with two structures: 

(i) (𝐺, 𝜇) is a group. 

(ii)(𝐺, 𝜏) is a topological space, such that the multiplication 

map 𝜇 : 𝐺 𝑋 𝐺 → 𝐺, 𝜇(𝑥, 𝑦) = 𝑥. 𝑦 and the inversion map 𝜈: 

𝐺 → 𝐺, 𝜈(𝑥) = 𝑥−1 are both continuous. In this definition the 

set 𝐺  × 𝐺  carries the product topology, and denote to it by 

(𝐺, 𝜇, 𝜏) [11]. 

 

 

2. CENTER TOPOLOGICAL GROUP 

 

In this section we begin by introducing some concepts that 

we will use in building a central topological group.  

 

Theorem 2.1  

Let (𝐺, 𝜇, 𝜏)  be a topological group. Then there exists a 

proximity relation 𝛿 such that (𝐺, 𝛿) is a proximity space.  

 

Proof: 

Suppose that ℧ be the system of symmetric neighborhoods 

at 𝑒 , for every 𝐴 , 𝐵 ⊆  𝐺  and 𝑉 ∈  ℧. We define 𝐴 𝛿 𝐵  iff 

𝐴 ∩  𝐵. 𝑉 ≠ ∅. 
Now, we show that 𝛿 is a proximity relation. 

(1) Let 𝐴 𝛿 𝐵 . Then, there exists 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵  s.t 𝑎 ∈
𝑏. 𝑉 then ∃𝑣 ∈ 𝑉  s.t 𝑎 = 𝑏. 𝑣 ⇒ 𝑎−1 = 𝑣−1. 𝑏−1 ⇒ 𝑎−1. 𝑏 =
𝑣−1. 𝑏−1. 𝑏 ⇒ 𝑎−1. 𝑏 = 𝑣−1. 𝑒 ⇒ 𝑎. 𝑎−1. 𝑏 = 𝑎. 𝑣−1. 𝑒 ⇒ 

𝑏 = 𝑎. 𝑣−1  ∈ 𝑎. 𝑉−1  = 𝑎. 𝑉 ⊆ 𝐴 · 𝑉 . Thus,  𝐵 ∩ 𝐴. 𝑉 ≠ ∅ 

⇒ 𝐵 𝛿 𝐴 

(2) Let 𝐴 𝛿 (𝐵𝑈𝐶) There exist 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵𝑈𝐶 s.t 𝐴 ∩
 ((𝐵𝑈𝐶). 𝑉)  ≠ ∅. Thus, 𝑎 ∈  (𝐵𝑈𝐶). 𝑉 there exists 𝑣 ∈ 𝑉 s.t 

𝑎 = 𝑏. 𝑣 . Since 𝑏 ∈ 𝐵𝑈𝐶 ⇒  𝑏 ∈ 𝐵 or 𝑏 ∈ 𝐶. 

If 𝑏 ∈ 𝐵 then 𝑎 = 𝑏. 𝑣 by the same way in (1) we have 𝑏 =
𝑎. 𝑣−1 ∈ 𝑎. 𝑉−1 = 𝑎. 𝑉 ⊆ 𝐴 · 𝑉. 

Thus, 𝐵 ∩ 𝐴. 𝑉 ≠ ∅ ⇒  𝐵 𝛿 𝐴 by (1) we have 𝐴 𝛿 𝐵. 

If 𝑏 ∈ 𝐶 then 𝑎 = 𝑏. 𝑣 thus 𝑏 = 𝑎. 𝑣−1 ∈  𝑎. 𝑉. 
Thus, 𝐶 ∩ 𝐴. 𝑉 ≠ ∅ ⇒  𝐶 𝛿 𝐴 by (1) we have 𝐴 𝛿 𝐶. 

 

Conversely:  

Let 𝐴 𝛿 𝐵 or 𝐴 𝛿 𝐶 → ∃ 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 s.t 𝑎 ∈ 𝐵. 𝑉 or ∃ 

𝑎 ∈ 𝐴 and 𝑐 ∈ 𝐶 s.t 𝑎 ∈ 𝐶. 𝑉. 

If 𝑎 ∈ 𝐵. 𝑉  then ∃  𝑣 ∈ 𝑉  s.t 𝑎 = 𝑏. 𝑣 → 𝑏 = 𝑎. 𝑣−1 ∈
𝐴. 𝑉−1 = 𝐴. 𝑉  . Thus, 𝐵 ∩ 𝐴. 𝑉 ≠ ∅ . 

If 𝑎 ∈ 𝐶. 𝑉  then ∃  𝑣 ∈ 𝑉  s.t 𝑎 = 𝑐. 𝑣 → 𝑐 = 𝑎. 𝑣−1 ∈
𝐴. 𝑉−1 = 𝐴. 𝑉  . Thus,𝐶 ∩ 𝐴. 𝑉 ≠ ∅.  

If 𝐵 ∩ 𝐴. 𝑉 ≠ ∅ → (𝐵 ∩ 𝐴. 𝑉)𝑈(𝐶 ∩ 𝐴. 𝑉 ) ≠ ∅ →
(𝐵𝑈𝐶) ∩ 𝐴. 𝑉 ≠ ∅ → (𝐵𝑈𝐶)𝛿 𝐴. By (1) we have 𝐴 𝛿(𝐵𝑈𝐶). 

Thus, 𝐴 𝛿 (𝐵𝑈𝐶) iff 𝐴 𝛿 𝐵 or 𝐴 𝛿 𝐶. 

(3) Let 𝐴 ∩ 𝐵 ≠ ∅,  then there exists 𝑥 ∈ 𝐴 ∩  𝐵 ⊆ 𝐴 ∩
 𝐵. 𝑉. Therefore, 𝑥 ∈ 𝐴 ∩  𝐵. 𝑉 ≠ ∅ thus 𝐴 𝛿 𝐵. 

(4) Let 𝐴 𝛿 𝐵 Then there exist 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 

𝐴 ∩  𝐵. 𝑉 ≠ ∅ thus 𝐴 ≠ ∅ and 𝐵 ≠ ∅. 
(5) Let 𝐴 𝛿̅ 𝐵 and 𝐸 = 𝐵. 𝑉. if 𝐴 𝛿 𝐵. 𝑉, Then 

𝐴 ∩ (𝐵. 𝑉). 𝑉 ≠ ∅ Therefore 𝐴 ∩ 𝐵. 𝑉 ≠ ∅ 

Thus, 𝐴 𝛿 𝐵 that it is a contradiction. Hence 𝐴 𝛿̅ 𝐸.  

Also, if 𝐵 𝛿 𝐸𝑐 , it follows that 𝐵 ∩ (𝐵. 𝑉)𝑐  . 𝑉 ≠ ∅. 

Hence there exit 𝑏 ∈ 𝐵; 𝑥 ∈  (𝐵. 𝑉)𝑐 and 𝑣 ∈ 𝑉 s.t 𝑏 ∈ 𝑥. 𝑉 

by the same way in (1), we have 𝑥 ∈  𝑏. 𝑉−1 = 𝑏. 𝑉   thus 𝑥 ∈
 ( 𝑏. 𝑉)𝑐  and  𝑥 ∈  𝑏. 𝑉  and it is a contradiction. Therefore, 

𝐵 𝛿̅ 𝐸𝑐. 

Now, we introduce the concept of center topological group. 

 

Definition 2.2  

 

Let (𝐺, 𝜇, 𝜏)  be a topological group and (𝐺, 𝛿)  be the 

proximity Space which is defined in (Theorem 2.1) and let 𝜇 

and 𝑣 be a proximity map then the four fold (𝐺, 𝜇, 𝜏𝑐𝑒𝑛𝑡(𝐺), 𝛿) 

be center topological group if: 

(1) The center function cent (𝜇): 𝐶𝑝(𝐺) 𝑋𝑐𝐶𝑝(𝐺) →
 𝐶𝑝(𝐺) is center continuous. 

(2) The center inverse function cent  (𝑣) : 𝐶𝑝(𝐺) →
 𝐶𝑝(𝐺)is center continuous. 

Where 𝐶𝑝(𝐺) denote the set of all center point in 𝐺. 

 

Remark 2.3 

(1) cent (𝜇)  (𝑥𝐵𝑜
𝑋𝑐  𝑦𝐵1

) =  cent (𝜇) ({ 〈{𝑥} × {𝑦}, 𝐵𝑜 ×

𝐵1〉 :  𝑥𝛿𝐵𝑜  and 𝑦𝛿𝐵1 })={ 〈𝜇(𝑥, 𝑦), 𝜇(𝐵𝑜 , 𝐵1)〉  :  𝑥𝛿𝐵𝑜 and 

𝑦𝛿𝐵1 }= {〈{𝑥. 𝑦}, 𝐵𝑜 . 𝐵1〉: 𝑥𝛿𝐵𝑜  and 𝑦𝛿𝐵1 }=(𝑥. 𝑦)𝐵𝑜.𝐵1
and is 

denoted by 𝑥𝐵𝑜
.𝑐  𝑦𝐵1

. 

(2) The center inverse function cent  (𝑣)  (𝑥𝐵𝑜
) =

(𝑥𝐵𝑜
)

−1
= {〈{𝑥−1}, 𝐵𝑜

−1〉: 𝑥𝛿𝐵𝑜} = 𝑥−1
𝐵𝑜

−1 . 
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Proposition 2.4  

Let (𝐺, 𝜇, 𝜏𝑐𝑒𝑛𝑡(𝐺), 𝛿) be a center topological group and let 

𝑔𝐵𝑜
 be a center fixed element of ( 𝐺 , 𝜇 , 𝜏𝑐𝑒𝑛𝑡(𝐺) , 𝛿 ). The 

constant map 𝑥𝐵1
→ 𝑔𝐵𝑜

 is center continuous map. 

 

Proof: 

Let 𝒞𝐴 be a center open set in 𝐺 and 𝑔𝐵𝑜
 be a center fixed 

element in 𝐺and cent (𝑓) be the constant map 𝑥𝐵1
→ 𝑔𝐵𝑜

. If 

𝑔𝐵𝑜
∈ 𝒞𝐴  then (cent (𝑓) )−1 ( 𝒞𝐴 ) = { 𝑥𝐵1

∈

 𝐶𝑝(𝐺): cent (𝑓)(𝑥𝐵1
) ∈ 𝒞𝐴} = {𝑥𝐵1

∈  𝐶𝑝(𝐺): 𝑔𝐵𝑜
∈ 𝒞𝐴} =

⋎𝑐 {𝑥𝐵1
: 𝑥𝐵1

∈  𝐶𝑝(𝐺)} =  𝒞𝐺  .  Which is center open set. If 

𝑔𝐵𝑜
∉ 𝒞𝐴 then (cent (𝑓) )−1(𝒞𝐴)= 𝒞∅. Which is center open 

set. 

 

Proposition 2.5  

Let (𝐺, 𝜇, 𝜏𝑐𝑒𝑛𝑡(𝐺), 𝛿) be a center topological group then the 

identity map 𝑥𝐵1
→ 𝑥𝐵1

 is center continuous map. 

 

Proof:  

Let 𝒞𝐴 be a center open set in 𝐺 and cent (𝑓) be the identity 

map 𝑥𝐵1
→ 𝑥𝐵1

. Then (cent (𝑓) )−1 ( 𝒞𝐴 ) = { 𝑥𝐵1
∈

 𝐶𝑝(𝐺): cent (𝑓)(𝑥𝐵1
) ∈ 𝒞𝐴} = {𝑥𝐵1

∈  𝐶𝑝(𝐺): 𝑥𝐵1
∈ 𝒞𝐴} =

 𝒞𝐴 . Which is center open set. 

  

Remark 2.6 

Let (𝐺, 𝜇, 𝜏𝑐𝑒𝑛𝑡(𝐺), 𝛿) be a center topological group and let 

𝑔𝐵𝑜
 be a center fixed element of ( 𝐺 , 𝜇 , 𝜏𝑐𝑒𝑛𝑡(𝐺) , 𝛿 ). The 

constant map 𝑥𝐵1
→ 𝑔𝐵𝑜

 and the identity map 𝑥𝐵1
→ 𝑥𝐵1

are 

center continuous maps from 𝐶𝑝(𝐺) →  𝐶𝑝(𝐺), so they induce 

a center continuous map 𝑥𝐵1
→ (𝑔𝐵𝑜

, 𝑥𝐵1
) from 

𝐶𝑝(𝐺) to  𝐶𝑝(𝐺) 𝑋𝑐𝐶𝑝(𝐺) . Composing this with the center 

continuous multiplication 𝐶𝑝(𝐺) 𝑋𝑐𝐶𝑝(𝐺) →  𝐶𝑝(𝐺) we get 

a center continuous map cent (𝐿𝑔): 𝐶𝑝(𝐺) →  𝐶𝑝(𝐺) defined 

by 𝑥𝐵1
→ 𝑔𝐵𝑜

.𝑐 𝑥𝐵1
 called center left multiplication (or center 

left translation) by 𝑔𝐵𝑜
. This center map has inverse 

cent (𝐿𝑔−1
 ) which is also center continuous, so cent (𝐿𝑔) is a 

center homeomorphism from, 

𝐶𝑝(𝐺)  to 𝐶𝑝(𝐺) . cent  (𝐿𝑔)  o cent  (𝐿𝑔−1
 ) 

(𝑥𝐵1
)={〈 𝐿𝑔o 𝐿𝑔−1

 ({𝑥}),  𝐿𝑔o 𝐿𝑔−1
 (𝐵1)〉: 

𝑥𝛿𝐵1} = {〈{𝑔. (𝑔−1. 𝑥)}, 𝑔. (𝑔−1. 𝐵1)  〉 : 𝑥𝛿𝐵1} =
{〈{(𝑔. 𝑔−1). 𝑥}, (𝑔. 𝑔−1). 𝐵1

  
〉 : 𝑥𝛿𝐵1} =  {〈{𝑒. 𝑥}, 𝑒 . 𝐵1

  〉 : 

𝑥𝛿𝐵1} = {〈{𝑥}, 𝐵1
  〉: 𝑥𝛿𝐵1}=𝑥𝐵1

= cent (𝐼𝐺) (𝑥𝐵1
). 

The center identity map cent  (𝐼𝐺) 

(𝑥𝐵1
)= {〈 𝐼𝐺({𝑥}),  𝐼𝐺({𝐵1})  〉: 𝑥𝛿𝐵1}={〈{𝑥}, 𝐵1

  〉: 𝑥𝛿𝐵1}=𝑥𝐵1
.  

Similarly, all center right translations cent  (𝑟𝑔): 𝑥𝐵1
→

𝑥𝐵1
.𝑐  𝑔𝐵𝑜

 are center homeomorphisms from 𝐶𝑝(𝐺) to 𝐶𝑝(𝐺). 
 

Note: When we say 𝐺  is a center topological group we 

mean the fourfold (𝐺, 𝜇, 𝜏𝑐𝑒𝑛𝑡(𝐺), 𝛿). 

 

Remark 2.7  

If 𝒞𝐴 ,  𝒞𝐵  ≼𝑐  𝒞𝐺  and 𝑔𝐵𝑜
 ∈  𝐶𝑝(𝐺)  where 𝐺  is a center 

topological group.  

(1) 𝒞𝐴 .𝑐  𝑔𝐵𝑜
= cent (𝑟𝑔)(𝒞𝐴) = {𝑎𝐵1

.𝑐  𝑔𝐵𝑜 ; 𝑎𝐵1
∈ 𝒞𝐴} 

𝒞𝐴 .𝑐  𝑔𝐵𝑜
 is called the center right translate of 𝒞𝐴 by 𝑔𝐵𝑜

.  

(2) 𝑔𝐵𝑜
 .𝑐  𝒞𝐴 = cent (𝐿𝑔)(𝒞𝐴) = {𝑔𝐵𝑜 .𝑐  𝑎𝐵1

; 𝑎𝐵1
∈ 𝒞𝐴}  

(3) 𝒞𝐴 .𝑐  𝒞𝐵=  ⋎𝑐𝑏𝐵1∈ 𝒞𝐵
 𝒞𝐴 .𝑐  𝑏𝐵1

= ⋎𝑐𝑎𝐴1∈ 𝒞𝐴
 𝑎𝐴1

. 𝒞𝐵 . 

(4) (𝒞𝐴 )−1 ={〈𝐴−1, 𝐵−1〉: 𝐴𝛿𝐵} or {(𝑎𝐴1
)−1; 𝑎𝐴1

∈ 𝒞𝐴}. 

 

Proposition 2.8  

Let 𝐺  be a center topological group 𝒞𝐴 , 𝒞𝐵  ≼𝑐  𝒞𝐺 , 𝑔𝐵𝑜
 ∈ 

𝐶𝑝(𝐺) then 

(1) 𝒞𝐴  center open implies 𝒞𝐴  .𝑐  𝑔𝐵𝑜
and 𝑔𝐵𝑜

.𝑐 𝒞𝐴 , center 

open. 

(2) 𝒞𝐴  center closed implies 𝒞𝐴  .𝑐  𝑔𝐵𝑜
and 𝑔𝐵𝑜

.𝑐 𝒞𝐴, center 

closed. 

(3) 𝒞𝐴  center open implies 𝒞𝐴 .𝑐 𝒞𝐵  and 𝒞𝐵  .𝑐 𝒞𝐴  center 

open. 

(4) 𝒞𝐴  center closed and 𝒞𝐵  finite implies  𝒞𝐴 .𝑐 𝒞𝐵  and 

𝒞𝐵  .𝑐 𝒞𝐴 center closed. 

 

Proof:  

(1), (2) cent (𝐿𝑔), cent (𝑟𝑔) being center homeomorphisms 

are both center open and center closed. 

(3) 𝒞𝐴  .𝑐  𝒞𝐵 =  ⋎𝑐𝑏𝐵1
 𝒞𝐴  .𝑐  𝑏𝐵1

=  ⋎𝑐  
cent (𝑟𝑏)(𝒞𝐴) is a 

center union of center open sets and hence center open. 

Similarly, for 𝒞𝐵 .𝑐  𝒞𝐴 . 

(4) 𝒞𝐴  .𝑐  𝒞𝐵  and 𝒞𝐵  .𝑐  𝒞𝐴  are each the center union of a 

finite number of center closed sets and hence center closed. 

 

Definition 2.9  

 

Let (𝐺, 𝜇 , 𝜏𝑐𝑒𝑛𝑡(𝐺) , 𝛿  ) be a center topological group where 

(𝐺, 𝛿  ) is the proximity space which is defined in (Theorem 

2.1). We defined identity center point as follows let {𝑒 } 𝛿𝐵𝑜 

then 𝑒𝐵𝑜
= {〈𝑒 } , 𝐵𝑜〉 } and 𝐵𝑜  satisfies 

𝜇(𝐵 , 𝐵𝑜)= 𝜇(𝐵𝑜 
, 𝐵 ) = 𝐵 and 𝐵𝑜 

−1 = 𝐵𝑜 
 for any 𝐵 ⊆ 𝐺 .  

 

Definition 2.10  

 

A fundamental system of center neighborhoods of 𝑥𝐵𝑜
in 

𝐶𝑝(𝑋) is a collection ℱ𝑐 of center neighborhoods of 𝑥𝐵𝑜
such 

that every center neighborhood of 𝑥𝐵𝑜
contains a center 

member of ℱ𝑐. If each member of ℱ𝑐  is center open, we speak 

of a fundamental system of open center neighborhoods of 𝑥𝐵𝑜
. 

 

Proposition 2.11  

Any fundamental system ℱ𝑐  of center open neighborhoods 

of 𝑒𝐵𝑜
in 𝐶𝑝(𝐺) has the following properties: 

CFN1: If 𝒞𝑈 , 𝒞𝑉  ∈  ℱ𝑐 , then ∃  𝒞𝑊 ∈  ℱ𝑐  such that 

𝒞𝑊 ≼𝑐 𝒞𝑈 ⋏𝑐  𝒞𝑉 . 

CFN2: If 𝑎𝐵1
∈ 𝒞𝑈 ∈  ℱ𝑐  then ∃  𝒞𝑉  ∈  ℱ𝑐  such that 

𝒞𝑉 .𝑐 𝑎𝐵1
≼𝑐  𝒞𝑈 . 

CFN3: If 𝒞𝑈 ∈  ℱ𝑐 , then ∃  𝒞𝑉  ∈  ℱ𝑐  such that 

(𝒞𝑉)−1.𝑐 𝒞𝑉 ≼𝑐  𝒞𝑈 . 

CFN4: If 𝒞𝑈 ∈ ℱ𝑐 , 𝑥𝐵2
∈ 𝐶𝑝(𝐺), then ∃ 𝒞𝑉 ∈ ℱ𝑐  such that 

 𝑥−1
𝐵2

−1
 
.𝑐 𝒞𝑉 .𝑐 𝑥𝐵2

≼𝑐  𝒞𝑈. 

 

Proof: 

In (1) 𝒞𝑈 ⋏𝑐  𝒞𝑉 , in (2) 𝒞𝑈 .𝑐  𝑎−1
𝐵1

−1
 
, are center open 

neighborhood of 𝑒𝐵𝑜
. So, contain a center element of ℱ𝑐. 

(3): The center map  cent(𝑓) : 𝐶𝑝(𝐺)𝑋𝑐𝐶𝑝(𝐺) →
𝐶𝑝(𝐺) given by ( 𝑎𝐵1

, 𝑏𝐵2
)  →  𝑎−1

𝐵1
−1

 
.𝑐  𝑏𝐵2

 is center 

continuous. Thus (cent(𝑓))
−1

(𝒞𝑈) is center open, contains 

(𝑒𝐵𝑜
, 𝑒𝐵𝑜

), and hence contains a center set of the form 𝒞𝐴𝑋𝑐𝒞𝐵, 

where 𝒞𝐴, 𝒞𝐵  are center open and contain 𝑒𝐵𝑜
. Since 𝒞𝐴 ⋏𝑐 𝒞𝐵 

is a center open neighborhood of 𝑒𝐵𝑜
, ∃ 𝒞𝑉 ∈  ℱ𝑐  so that 

𝒞𝑉 ≼𝑐 𝒞𝐴 ⋏𝑐  𝒞𝐵 . For this 𝒞𝑉 we have 𝒞𝑉𝑋𝑐𝒞𝑉 
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≼𝑐 (cent(𝑓))
−1

(𝒞𝑈), that is (𝒞𝑉)−1.𝑐 𝒞𝑉 ≼𝑐  𝒞𝑈 . 

(4): The center map cent(𝑓) : 𝐶𝑝(𝐺) → 𝐶𝑝(𝐺)  given by 

𝑎𝐵1
→  𝑥−1

𝐵2
−1

 
.𝑐  𝑎𝐵1

.𝑐 𝑥𝐵2
 is center continuous, so 

(cent(𝑓))
−1

(𝒞𝑈)  is center open and contains 𝑒𝐵𝑜
, hence 

contains some 𝒞𝑉 ∈  ℱ𝑐 . For this 𝒞𝑉  we have 

cent(𝑓)(𝒞𝑉)= 𝑥−1
𝐵2

−1
 
.𝑐  𝒞𝑉 .𝑐 𝑥𝐵2

≼𝑐 𝒞𝑈. 

 

 

3. CENTER QUOTIENT TOPOLOGICAL GROUP AND 

PRODUCT TOPOLOGICAL GROUP 

 

This section will contain the concepts of center product 

topological group and center quotient topological group. 

 

Theorem 3.1  

 

Let (𝐺, 𝜇, 𝜏) be a topological group and 𝐻 be a normal sub 

group then 𝐺/𝐻 with group structure and quotient topology is 

a topological group. We define 𝛿∗  on 𝐺/𝐻 by 𝐴𝐻  𝛿∗𝐵𝐻  iff 

𝐴 𝛿 𝐵 where 𝛿  is the proximity relation which is defined in 

(Theorem 2.1). Then (𝐺/𝐻, 𝛿∗) is a proximity space. 

 

Proof:  

(1) Let 𝐴𝐻 𝛿∗𝐵𝐻 then 𝐴 𝛿 𝐵 thus 𝐵 𝛿 𝐴 then 𝐵𝐻 𝛿∗𝐴𝐻. 

(2) Let 𝐴𝐻  𝛿∗ (𝐵𝐻 ∪ 𝐶𝐻)  then 𝐴𝐻  𝛿∗ (𝐵 ∪ 𝐶) 𝐻 ↔ 𝐴 

𝛿  𝐵 ∪ 𝐶 ↔ 𝐴 𝛿   𝐵 or 𝐴 𝛿  𝐶 ↔ 𝐴𝐻 𝛿∗ 𝐵𝐻 or 𝐴𝐻 𝛿∗ 𝐶𝐻. 

(3) Let 𝐴𝐻 𝛿∗ 𝐵𝐻 ↔  𝐴 𝛿 𝐵 → 𝐴 ≠ ∅ and 𝐵 ≠ ∅ →  𝐴𝐻 ≠
∅ and 𝐵𝐻 ≠ ∅ . 

(4) Let 𝐴𝐻  𝛿∗̅̅ ̅ 𝐵𝐻  ↔ 𝐴 𝛿  ̅𝐵 → 𝐴 ∩ 𝐵 = ∅ → 𝐴 ⊆ 𝐵𝑐 →
 𝐴𝐻 ⊆ 𝐵𝑐𝐻 →  𝐴𝐻 ∩ 𝐵𝐻 ⊆ 𝐵𝑐𝐻 ∩ 𝐵𝐻 = ∅ →  𝐴𝐻 ∩ 𝐵𝐻 =
∅. 

(5) Let 𝐴𝐻  𝛿∗̅̅ ̅ 𝐵𝐻  ↔ 𝐴 𝛿  ̅𝐵  then there exists 𝐸 = 𝐵. 𝑉  if 

𝐴𝐻 𝛿∗ (𝐵. 𝑉)𝐻 

𝐴 𝛿   𝐵. 𝑉 → 𝐴 𝛿  𝐸 that is a contradiction. Hence 𝐴𝐻 𝛿∗̅̅ ̅ 𝐸𝐻. 

Also, if 𝐵𝐻  𝛿∗𝐸𝑐𝐻 thus 𝐵 𝛿  𝐸𝑐  and we have by (Theorem 

2.1) (5) contradiction. Therefore 𝐵  𝛿  ̅𝐸𝑐  thus 𝐵𝐻  𝛿∗̅̅ ̅ 𝐸𝑐𝐻 . 

Thus (𝐺/𝐻, 𝛿∗) be a proximity space. 

 

Definition 3.2  

 

Let : (𝐺 , 𝜇 , 𝜏𝑐𝑒𝑛𝑡(𝐺), 𝛿 ) be a center topological group and 

let 𝒞𝐻  be a center subset of 𝐺  we say that 𝒞𝐻  be a center 

subgroup iff for each 𝑥𝐵𝑜
, 𝑦𝐵1

∈ 𝒞𝐻 then 𝑥𝐵𝑜
.𝑐 𝑦−1

𝐵1
−1 ∈ 𝒞𝐻 . 

 

Definition 3.3  

 

Let: (𝐺 , 𝜇 , 𝜏𝑐𝑒𝑛𝑡(𝐺), 𝛿 ) be a center topological group and let 

𝒞𝐻 be a center subset of 𝐺 we say that 𝒞𝐻 be a center normal 

subgroup iff 

 

𝑥𝐵1
.𝑐 𝒞𝐻 .𝑐 𝑥−1

𝐵1
−1

  
= 𝒞𝐻 . 

 

Theorem 3.4 

 

Let 𝐺  be a center topological group and 𝐻  be a center 

normal sub group then cent (𝜇 ,
 
) and cent (𝑣 ,

 
)  are center 

continuous, i.e ( 𝐺/𝐻, 𝜇 ,, 𝜏𝑐𝑒𝑛𝑡(𝐺/𝐻), 𝛿∗ ) be center quotient 

topological group. 

 

Proof: 

Let 𝐺  be a center topological group and 𝐻  be a center 

normal sub group and let cent (𝑞 ): 𝐶𝑝(𝐺) → cent (𝐺/𝐻 ) be 

a center quotient map defined by𝑥𝐵𝑜
.c   𝒞𝐻  define a center 

quotient topology on 𝐺/𝐻  ( 𝒞𝐴  is center open in 𝐺/𝐻  iff 

(cent (𝑞 ))−1(𝒞𝐴)∈  𝜏𝑐𝑒𝑛𝑡(𝐺)). 

The center quotient map is center open map for if 𝒞𝐴  is 

center open subset of 𝐺  then 

(cent (𝑞 ))−1(cent (𝑞 ))( 𝒞𝐴) =the center union of all center 

left cosets of 𝒞𝐻  which center meet 𝒞𝐴 = 𝒞𝐴.c   𝒞𝐻  which is 

center open by (Proposition 2.8) (3). And it follows that 

cent (𝑞 )( 𝒞𝐴) is center open in 𝐺/𝐻 by the definition of the 

center quotient topology. 

Now, let 𝜇 ,  and 𝑣 ,  be proximally maps. If cent (𝜇 )  and 

cent (𝜇 ,
 
)  are the Center multiplication in 𝐺  and 𝐺/𝐻  and 

cent (𝑣 ),  cent (𝑣 ,
 
)  the center inversion in 𝐺  and 𝐺/𝐻 

respectively, then cent (𝜇 ,
 
), cent (𝑣 ,

 
) are uniquely defined 

by Commutatively of the following diagrams as shown in 

Figure 1 and Figure 2. 

 

 
 

Figure 1. Diagram of center product of center quotient map 

 

 
 

Figure 2. Diagram of center inverse map of center quotient 

map 

 

Cent (𝑞 ) 𝑜 cent (𝑣  
 
)  is center continuous and so by the 

center universal property of cent (𝑞 ). There exists a center 

unique map cent (𝜃 ): cent (𝐺/𝐻 ) → cent (𝐺/𝐻 ) making 

cent (𝜃 ) 𝑜 cent (𝑞 ) =  cent (𝑞 ) 𝑜 cent (𝑣  
 
) . However, 

cent (𝑣 ,
 
) satisfies the condition cent (𝑣 ,

 
) 𝑜 cent (𝑞 ) =

cent (𝑞 )𝑜 cent (𝑣  
 
) and so cent (𝑣 ,

 
) =  cent (𝜃 ).  Also, 

cent (𝑞 ) 𝑜 cent (𝜇) 
 
is center continuous and so by the same 

way cent (𝜇 ,
 
)  is center continuous provided that 

cent (𝑞 ) 𝑋𝑐 cent (𝑞 ) is center quotient map. In our case 

cent (𝑞 ) is center open and so cent (𝑞 ) 𝑋𝑐  cent (𝑞 ) is center 

open. In addition, cent (𝑞 ) 𝑋𝑐  cent (𝑞 ) is center continuous 

and a surjection and hence a center quotient map. Thus, 

cent (𝜇 ,
 
) is center continuous and (𝐺/𝐻 ) is center quotient 

topological group. 
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Theorem 3.5  

 

Let (𝐺1, 𝜇1
 , 𝜏𝑐𝑒𝑛𝑡(𝐺1), 𝛿1

 
) and (𝐺2, 𝜇2

 , 𝜏𝑐𝑒𝑛𝑡(𝐺2), 𝛿2
 
) be two 

centre topological groups where 𝛿1 and 𝛿2
 
are the proximity 

relation which is defined in (Theorem 2.1) then 𝐺1 ×  𝐺2 be a 

topological group has a natural structure (product of groups) 

and a natural topology (product of topological spaces ) then 

there exists 𝛿∗∗  on 𝐺1 ×  𝐺2  which is defined as follows 

𝐴1 × 𝐴2  𝛿∗∗𝐵1 ×  𝐵2  iff 𝐴1𝛿1𝐵1  and 𝐴2𝛿2𝐵2 . Then ( 𝐺1 ×
 𝐺2, 𝛿∗∗ ) be a proximity space. 

 

Proof:  

(1) Let 𝐴1 × 𝐴2  𝛿∗∗𝐵1 ×  𝐵2  then 𝐴1𝛿1𝐵1  and 𝐴2𝛿2𝐵2. 
Since 𝛿1, 𝛿2 be two proximity relations thus 𝐵1  𝛿1𝐴1  and 𝐵2 

𝛿2𝐴2 thus 𝐵1 ×  𝐵2 𝛿∗∗ 𝐴1 × 𝐴2 . 

(2) Let 𝐴1 × 𝐴2  𝛿∗∗ (𝐵1 ×  𝐵2 ) ∪ (𝐶1 × 𝐶2 )  ↔  𝐴1 ×  𝐴2 

𝛿∗∗(𝐵1 ∪  𝐶1) × (𝐵2 ∪  𝐶2) ↔ 𝐴1𝛿1(𝐵1 ∪  𝐶1) and 𝐴2𝛿2(𝐵2 ∪
 𝐶2 )  ↔  ( 𝐴1𝛿1𝐵1  or 𝐴1𝛿1𝐶1 ) and ( 𝐴2𝛿2𝐵2  or 𝐴2𝛿2𝐶2)  ↔ 

𝐴1𝛿1𝐵1  and 𝐴2𝛿2𝐵2  or 𝐴1𝛿1𝐶1  and 𝐴2𝛿2𝐶2  ↔  𝐴1 ×  𝐴2 

𝛿∗∗𝐵1 ×  𝐵2 or 𝐴1 ×  𝐴2 𝛿∗∗𝐶1 ×  𝐶2. 

(3) Let 𝐴1 × 𝐴2  𝛿∗∗𝐵1 ×  𝐵2 ↔ 𝐴1𝛿1𝐵1  and 𝐴2𝛿2𝐵2  thus 

𝐴1 ≠ ∅  , 𝐵1 ≠ ∅ , 𝐴2 ≠ ∅  and  𝐵2 ≠ ∅ . Thus 𝐴1 ×  𝐴2 ≠ ∅ 

and 𝐵1 ×  𝐵2 ≠ ∅ . 

(4) Let (𝐴1 ×  𝐴2)  ∩ (𝐵1 × 𝐵2) ≠ ∅  → (𝐴1  ∩  𝐵1) ×
(𝐴2 ∩  𝐵2)  ≠ ∅ → 𝐴1  ∩  𝐵1 ≠ ∅  and 𝐴2 ∩  𝐵2  ≠ ∅  . Since 

𝛿1, 𝛿2 be two proximity relations. Then, 𝐴1𝛿1𝐵1 and 𝐴2𝛿2𝐵2. 

Thus, 𝐴1 ×  𝐴2 𝛿∗∗𝐵1 × 𝐵2 . 

(5) Let 𝐴1 × 𝐴2 𝛿∗∗̅̅ ̅̅  𝐵1 ×  𝐵2 . Thus, either 𝐴1𝛿1̅𝐵1  or 

𝐴2𝛿2
̅̅ ̅𝐵2 . If 𝐴1𝛿1̅𝐵1  then ∃ 𝐸1 = 𝐵1. 𝑉1  such that 𝐴1𝛿1̅𝐸1  and 

𝐵1𝛿1̅𝐸1
𝑐
. If 𝐴2𝛿2

̅̅ ̅𝐵2  then ∃ 𝐸2 =𝐵2. 𝑉2  such that 𝐴2𝛿2
̅̅ ̅𝐸2  and 

𝐵2𝛿2
̅̅ ̅𝐸2

𝑐
. If 𝐴1 ×  𝐴2 𝛿∗∗𝐸1 ×  𝐸2. Then, 𝐴1𝛿1𝐸1 and 𝐴2𝛿2𝐸2 

(that’s a contradiction). Thus, 𝐴1 × 𝐴2 𝛿∗∗̅̅ ̅̅  𝐸1 × 𝐸2 . If 𝐵1 ×

 𝐵2 𝛿
∗∗ 𝐸1

𝑐 × 𝐸2
𝑐

. Then, 𝐵1𝛿1 𝐸1
𝑐  and 𝐵2𝛿2 𝐸2

𝑐  (that’s a 

contradiction). Hence, 𝐵1 ×  𝐵2 𝛿
∗∗̅̅ ̅̅   𝐸1

𝑐 × 𝐸2
𝑐
. 

From (1) to (5) we have (𝐺1 ×  𝐺2 , 𝛿∗∗) be proximity space. 

 

Theorem 3.6  

 

Let {( 𝐺𝑖 , 𝜇𝑖
 , 𝜏𝑐𝑒𝑛𝑡(𝐺𝑖), 𝛿𝑖

 
): 𝑖 ∈ 𝐼}  be a family of centre 

topological groups where 𝛿𝑖 be the proximity relation which is 

defined in (Theorem 2.1). Then there exists a proximity 

relation on ∏ 𝐺𝑖
 
𝑖∈𝐼  which is defined as follows 

∏ 𝐴𝑖
 
𝑖∈𝐼 𝛿∗∗∗ ∏ 𝐵𝑖

 
𝑖∈𝐼  iff 𝐴𝑖𝛿𝑖𝐵𝑖  for each 𝑖 ∈ 𝐼. 

 

Proof: 

(1) Let ∏ 𝐴𝑖
 
𝑖∈𝐼 𝛿∗∗∗ ∏ 𝐵𝑖

 
𝑖∈𝐼  then 𝐴𝑖𝛿𝑖𝐵𝑖  for each 𝑖 ∈ 𝐼. 

Since 𝛿𝑖 is a proximity relations for each 𝑖 ∈ 𝐼 thus 𝐵𝑖  𝛿𝑖𝐴𝑖 for 

each 𝑖 ∈ 𝐼 thus ∏ 𝐵𝑖
 
𝑖∈𝐼 𝛿∗∗∗ ∏ 𝐴𝑖

 
𝑖∈𝐼 . 

(2) Let ∏ 𝐴𝑖
 
𝑖∈𝐼 𝛿∗∗∗(∏ 𝐵𝑖

 
𝑖∈𝐼 ) ∪ (∏ 𝐶𝑖

 
𝑖∈𝐼 ) ↔

∏ 𝐴𝑖
 
𝑖∈𝐼 𝛿∗∗∗ ∏ (𝐵𝑖 ∪ 𝐶𝑖)

 
𝑖∈𝐼 ↔  𝐴𝑖𝛿𝑖(𝐵𝑖 ∪ 𝐶𝑖)  for each 𝑖 ∈ 𝐼 ↔

𝐴𝑖𝛿𝑖𝐵𝑖  or  𝐴𝑖𝛿𝑖𝐶𝑖  for each 𝑖 ∈ 𝐼 (Since 𝛿𝑖  is a proximity 

relations for each 𝑖 ∈ 𝐼 )  ↔ ∏ 𝐴𝑖
 
𝑖∈𝐼 𝛿∗∗∗ ∏ 𝐵𝑖

 
𝑖∈𝐼  or 

∏ 𝐴𝑖
 
𝑖∈𝐼 𝛿∗∗∗ ∏ 𝐶𝑖

 
𝑖∈𝐼 . 

(3) Let ∏ 𝐴𝑖
 
𝑖∈𝐼 𝛿∗∗∗ ∏ 𝐵𝑖

 
𝑖∈𝐼 ↔ 𝐴𝑖𝛿𝑖𝐵𝑖  for each 𝑖 ∈ 𝐼 (Since 

𝛿𝑖 is a proximity relation for each 𝑖 ∈ 𝐼) thus 𝐴𝑖 ≠ ∅ , 𝐵𝑖 ≠ ∅ 

for each 𝑖 ∈ 𝐼. Thus, ∏ 𝐴𝑖
 
𝑖∈𝐼 ≠ ∅ and ∏ 𝐵𝑖

 
𝑖∈𝐼  ≠ ∅. 

(4) Let (∏ 𝐴𝑖
 
𝑖∈𝐼 )  ∩ (∏ 𝐵𝑖

 
𝑖∈𝐼 ) ≠ ∅  ↔ ∏   

𝑖∈𝐼 (𝐴𝑖  ∩  𝐵𝑖)  ≠
∅ ↔ 𝐴𝑖  ∩  𝐵𝑖 ≠ ∅  for each 𝑖 ∈ 𝐼  (Since 𝛿𝑖 is a proximity 

relations for each 𝑖 ∈ 𝐼 ) →  𝐴𝑖𝛿𝑖𝐵𝑖  for each 𝑖 ∈ 𝐼 . Thus, 

∏ 𝐴𝑖
 
𝑖∈𝐼 𝛿∗∗∗ ∏ 𝐵𝑖

 
𝑖∈𝐼 . 

(5) Let ∏ 𝐴𝑖
 
𝑖∈𝐼  𝛿∗∗∗̅̅ ̅̅ ̅  ∏ 𝐵𝑖

 
𝑖∈𝐼 . Thus, either ∃ 𝑖 ∈ 𝐼 such that 

𝐴𝑖𝛿𝑖̅𝐵𝑖 . 

Since 𝛿𝑖 is a proximity relation thus, ∃ 𝐸𝑖 = 𝐵𝑖 . 𝑉𝑖  such that 

𝐴𝑖𝛿𝑖̅𝐸𝑖  and 𝐵𝑖𝛿𝑖̅  
𝐸𝑖

𝑐 . If ∏ 𝐴𝑖
 
𝑖∈𝐼  𝛿∗∗∗  ∏ 𝐸𝑖

 
𝑖∈𝐼  then 𝐴𝑖𝛿𝑖𝐸𝑖  for 

each 𝑖 ∈ 𝐼 (that’s a contradiction). If ∏ 𝐵𝑖
 
𝑖∈𝐼  𝛿∗∗∗  ∏ 𝐸𝑖

𝑐 
𝑖∈𝐼  

then 𝐵𝑖𝛿𝑖𝐸𝑖
𝑐

 
 for each 𝑖 ∈ 𝐼 (that’s a contradiction).  

Thus, ∏ 𝐴𝑖
 
𝑖∈𝐼  𝛿∗∗∗̅̅ ̅̅ ̅  ∏ 𝐸𝑖

 
𝑖∈𝐼  and ∏ 𝐵𝑖

 
𝑖∈𝐼  𝛿∗∗∗̅̅ ̅̅ ̅  ∏ 𝐸𝑖

𝑐 
𝑖∈𝐼 . From 

(1) to (5) we have (∏ 𝐺𝑖
 
𝑖∈𝐼 , 𝛿∗∗∗) be proximity space.  

 

Theorem 3.7  

 

Let cent(f) be center function from a center space 𝑐𝑒𝑛𝑡(𝑌) 

into a center product space 𝑐𝑒𝑛𝑡(𝑋1) 𝑋𝒞 𝑐𝑒𝑛𝑡(𝑋2) . Then 

cent(f)  is center continuous if the composition 

𝑃𝑋𝑖

  𝑜 cent(f): 𝑐𝑒𝑛𝑡(𝑌)  →  𝑐𝑒𝑛𝑡(𝑋𝑖)  is center continuous, 

where 𝑖 = 1,2.  
 

Proof:  

Let cent(f)  be center continuous. Since 𝑃𝑋1
  and 𝑃𝑋2

  are 

center continuous then 𝑃𝑋𝑖

  𝑜 cent(f)  is center continuous, 

where 𝑖 = 1,2 . Conversely, let 𝑃𝑋𝑖

  𝑜 cent(f)  is center 

continuous, where 𝑖 = 1,2 and let 𝒞𝑈 be any center member of 

the defining sub base be 𝐵∗
𝒞  of the center product space 

𝑐𝑒𝑛𝑡(𝑋1) 𝑋𝒞 𝑐𝑒𝑛𝑡(𝑋2)  then 𝒞𝑈 = 𝑃−1
𝑋𝑖

 
( 𝒞𝐺 ) for some 𝑖 =

1,2  and some 𝒞𝐺 ∈ 𝜏𝑐𝑒𝑛𝑡(𝑋𝑖) also, (cent(f))−1
 

 
( 𝒞𝑈) =

(cent(f))−1
 

 
. 

(𝑃−1
𝑋𝑖

 
(𝒞𝐺)) = (𝑃𝑋𝑖

  𝑜 cent(f))−1(𝒞𝐺). Since 𝑃𝑋𝑖

  𝑜 cent(f) 

is center continuous. It follows that (𝑃𝑋𝑖

  𝑜 cent(f))
−1

(𝒞𝐺) =

(cent(f))−1
 

 
(𝒞𝑈) is 𝒞- open in 𝑐𝑒𝑛𝑡(𝑌). Thus, we shown that 

the invers image under cent(f) of every sub basic 𝒞- open set 

in the center product 𝑐𝑒𝑛𝑡(𝑋1) 𝑋𝒞 𝑐𝑒𝑛𝑡(𝑋2)  is 𝒞 - open in 

𝑐𝑒𝑛𝑡(𝑌). Thus 𝐹is center continuous.  

 

Theorem 3.8  

 

Let (𝐺1, 𝜇1
 , 𝜏𝑐𝑒𝑛𝑡(𝐺1), 𝛿1

 
) and (𝐺2, 𝜇2

 , 𝜏𝑐𝑒𝑛𝑡(𝐺2), 𝛿2
 
) be two 

centre topological groups where 𝛿1 and 𝛿2
 
are the proximity 

relation which is defined in (Theorem 2.1) then ( 𝐺1 ×
 𝐺2 , 𝜇𝐺1× 𝐺2 

, 𝜏𝑐𝑒𝑛𝑡(𝐺1) 𝑋𝑐. 

𝜏𝑐𝑒𝑛𝑡(𝐺2), 𝛿∗∗) be the center product topological group with 

this center topology on 𝐺1 ×  𝐺2 .  A center map 

cent (𝑓 ): cent (𝑋 ) → cent (𝐺1 ×  𝐺2  
) is center continuous 

iff each 𝑃𝐺𝑖
o  cent (𝑓 ) :  cent (𝑋 ) → cent(𝐺𝑖)  is center 

continuous ∀𝑖 = 1,2. 

 

Proof:  

Let 𝐺 = 𝐺1 × 𝐺2 . The center group operation 

cent (𝜇 ), cent (𝑣 )  are defined on 𝐶𝑝(𝐺),  so that the 

following diagrams Commute for each 𝑖 = 1,2 as shown in 

Figures 3 and 4. Whence, as 𝑃𝐺𝑖
, cent (𝜇𝑖

 
 
), cent (𝑣𝑖

 ) are 

center continuous for all 𝑖 , so are 𝑃𝐺𝑖
o cent (𝜇 

 
 
) and 𝑃𝐺𝑖

o 

cent (𝑣 
 
 
). Thus, cent (𝜇 

 
 
) ,cent (𝑣 

 
 
) are center continuous 

(by Theorem 3.7) and 𝐺 a center topological group. 
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Figure 3. Diagram of center product maps 

 

 
 

Figure 4. Diagram of center inverse map of center product 

maps 

 

 

4. CONCLUSION 

 

In our investigation of central set theory applied to 

topological groups, we have made significant strides in 

understanding the intricate relationship between proximity 

spaces and topological group structures. By focusing on the 

novel concept of central topological groups, we have laid the 

groundwork for a deeper exploration of the topological 

properties that emerge from central sets and central continuous 

functions. 

Throughout our research, we have meticulously defined the 

central set and utilized it as a fundamental tool in constructing 

the central topological group. By doing so, we have not only 

categorized a unique class of topological groups but have also 

shed light on the underlying structural properties that 

characterize such groups. 

The introduction of the center product of center sets has 

been a pivotal advancement in our work, providing the 

necessary framework to establish the central product 

topological group. This concept has bridged a critical gap in 

the literature, offering a robust structure for combining 

topological groups in a manner that respects the centrality of 

their components. 

Moreover, the establishment of the central product and 

central quotient structures has been instrumental in defining 

both the central product topological group and the central 

quotient topological group. Our research has unveiled a 

collection of properties that are inherent to these constructions, 

contributing to the theoretical development of central 

topological groups. Among these properties, we have 

identified and proven several that are pivotal to understanding 

the behavior of center sets under the operations of product and 

quotient. 

The implications of our findings are vast and suggest 

numerous avenues for future research. The properties we have 

proven provide a solid foundation for further exploratory 

studies into the dynamics of central topological groups, 

particularly in relation to their applications in various branches 

of mathematics and physics. 

In conclusion, our study has not only addressed a gap in the 

current mathematical literature regarding the structure of 

central topological groups but has also laid the groundwork for 

subsequent theoretical advancements. We anticipate that the 

concepts and structures we have introduced will be pivotal in 

the continued evolution of topological group theory and its 

applications. 
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