
 

 
 
 

 
 

 
1. INTRODUCTION 

Having an accurate prediction of the pressure gradient of 
the multiphase flow in oil and gas wells is essential for the 
completion parameter design and production performance 
detection interpretation. The pressure gradient prediction is 
fundamental in the process of petroleum reservoir 
exploitation. It determines many aspects in the dynamically 
changing process of petroleum reservoir exploitation. Many 
researchers have done much work [1-5] in this field.  

Internationally, academics have long been working on the 
problem of multiphase flow in wells, having proposed several 
prediction models. Without considering the models that have 
not received wide acceptance, among the proposed models 
are the common models of the Hagedorn-Brown model, 
Orkiszewski model, Aziz model, Beggs-Brill model, 
Mukherjee-Brill model, Hasan model, Ansari model, Kaya 
model, Cheng Jialiang model, Wang qisheng model, Liao 
model. These models are empirical or semi-empirical 
correlations. Although there are many continued 
improvements on the pressure gradient prediction models by 
some researchers, statistical calculation shows that they are 
not very satisfactory in obtaining the pressure gradient 

currently. On one hand, because of the complexity of the 
multiphase flow, it is difficult to find an accurate model, and 
the model used is only approximate for describing some 
parameters, resulting in model error. On the other hand, there 
are many variable factors in collecting data, resulting in 
observation error. Hence, these errors affect the prediction 
results.  

In recent years, artificial intelligence methods (neural 
network, fuzzy logic, genetic algorithm, etc.) have become an 
increasingly powerful and reliable technological means for 
petroleum engineers to analyze and interpret the problems in 
oil and gas production areas. In 2004, Ayoub [6] proposed 
the common pressure drop model in pipes by using the neural 
network method. In 2010, Mohsen Ebrahimi [7] introduced 
the fuzzy logic and neural network for the research of the 
pressure drop prediction models of multiphase flow in 
horizontal pipes. In 2011, Ahmed Al-Shammari [8] 
researched the pressure distribution of gas and liquid two-
phase flow in vertical wells by using the fuzzy logic method. 
In 2012, W Al-Mudhafer [9] introduced the hybrid genetic 
algorithm and fuzzy logic method to the research of 
multiphase flow. In 2015, aiming at the pressure gradient 
prediction of multiphase flow, M. Attia [10] analyzed the 
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ABSTRACT  
 
It is crucial for the completion parameter design and production performance detection interpretation to have 
an accurate pressure gradient. The Aziz prediction model of pressure gradient is a common calculation model 
in oil-gas field development. The laboratory experiment results of multiphase flow show that the average 
prediction relative error is 29.62% and the maximum relative error reaches 70.1%. By comparing the 
prediction residual of the Aziz model with the experiment condition parameters, as the volume flow rate of 
the liquid phase is constant, this paper considers that the prediction residual of the Aziz model is closely 
related to the gas liquid ratio and has no clear correlation with the water fraction of fluid phase. Based on 
unifying the orders of magnitude of the prediction residual and the gas liquid ratio, this paper uses a cubic 
function of the gas liquid ratio to fit the prediction residual of the model to obtain a new pressure prediction 
method which is called Aziz-I model. The results for ninety groups of experimental data show that the 
average prediction relative error of the Aziz-I model is reduced to 10.82%. Hence, the Aziz-I model improves 
the prediction accuracy of pressure gradient for multiphase flow. 
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effects the four artificial intelligence methods which are the 
fuzzy logic method, neural network method, support vector 
machine, and decision-making tree, and the prediction 
accuracy is relatively high. But all these artificial intelligence 
methods use genetic algorithms to determine the parameters 
of the models. Because of a large number of parameters for 
the genetic algorithms, it is complicated to program. In 
addition, the convergence rate of genetic algorithms is 
relatively slow and the search efficiency is very slow so that it 
easily gets trapped into local optimal solution. 

In previous research, based on the experimental data of oil-
gas-water three phases flow in vertical wells which are from 
the branch of key laboratory of CNPC for oil and gas 
production, the research team of this paper compared and 
analyzed the prediction results of the above-mentioned 
models, and found that the prediction accuracy is generally 
low, and there is a great difference in prediction accuracy for 
the same model under different flow conditions. After 
analyzing the prediction residuals of some models, a 
mathematical regularity is obtained. The Aziz prediction 
model of pressure gradient [11] is a common calculation 
model and it has been widely applied. The reference [12] 
proposed a method based on the residual model to improve 
the existing prediction model of pressure gradient and 
achieved good results. Because of the particularity of the 
results of reference [12], it is difficult to generalize to other 
prediction models. The method proposed in the reference [13] 
can be generalized, but the realization process is very 
complex. Based on the experimental data obtained from oil-
gas-water three phases flow experiment in a vertical well with 
diameter 75 mm, this paper uses the Aziz model to calculate 
the average relative error between the calculation pressure 
gradient and experimental pressure gradient exceeding 29%. 
Hence, the Aziz model must be further researched to build the 
improved calculation model.  

    This paper firstly analyzes the prediction residual of the 
Aziz model. Here, the prediction residual, referred to as the 
Aziz residual, is defined by subtracting the experimental 
pressure gradient from the pressure gradient calculated by the 
Aziz model. Then, the relationships between the Aziz 
residual and the experiment parameters is analyzed, 
discovering that the gas liquid ratio and the Aziz residual 
have good correlation. Hence, this paper builds a new 
pressure gradient prediction model, referred to as the Aziz-I 
model, by using the cubic polynomial function of the gas 
liquid ratio to fit the Aziz residual. The results show that 
Aziz-I model more coincides with the experimental results.  

2. PREDICTION EFFECT OF AZIZ MODEL 

The basic experiment conditions are given below. The 
diameter of the vertical well is 75 mm. The water fractions 
are 30%, 60% and 90% respectively. The liquid flow rates 
are 10 m3/d, 15 m3/d, 20 m3/d, 30 m3/d, 40 m3/d and 50 
m3/d. The gas liquid ratios are 50, 100, 150, 200 and 300. 

The experiment temperature is between 14℃and 17℃. The 
flow media is air, 5# white oil and water. There are 90 groups 
of experimental data. The roughness is taken as 0.0002 mm. 
The comparison result between the pressure gradient 
calculated by the Aziz model and the experimental pressure 
gradient is shown in Figure 1. The average residual of the 
Aziz residual is 0.3528 kPa/m and the average relative error 
reaches 29.62%.  

 

 
 

Figure 1. Comparison results between the Aziz pressure 
gradient and experimental pressure gradient 

 

With regard to various liquid flow rates, a curve similar to 
the abscissa GLR and the ordinate predicted residual is 
shown in Figure 2. In Figure 2, three results can be seen: (1) 
For the residual curves with water content 30%, 60% and 
90%, there is no residual curve between the other two 
residual curves. This shows that there is no significant 
regularity between the pressure gradient and the water 
fraction; (2) As the liquid flow rate increases, the value of gas 
liquid ratio corresponding to the maximum prediction 
residual has a decreasing trend; (3) For the constant liquid 
flow rate, the prediction residual curves of gas liquid ratio 
have certain similarities in their geometry shapes. Hence, 
with respect to the constant liquid flow rate, this paper 
establishes the correlation between the prediction residual 
and the gas liquid ratio. 
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Figure 2. Correlation between the prediction residual and 
the gas liquid ratio 

3. CUBIC FUNCTION FITTING MODEL OF AZIZ 

RESIDUAL 

Bases on the foregoing analysis, for six different liquid 
flow rates, the cubic polynomial function must be used to fit 
the prediction residual with respect to the gas liquid ratio. 
Because of the large difference in the orders of magnitude 
between the Aziz residual and the gas liquid ratio, before 
building the cubic function fitting, the gas liquid ratio is 
divided by 300. 

This paper applies the cubic polynomial function to obtain 
the improved Aziz residual model, denoted as the Aziz-I 
model. It is shown in Eq(1). 
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1,2, ,6j                                                                    (1) 

 

In Eq(1), jz  represents the gas liquid ratio with unit 

m3/m3; ĵr  is the fitting value of the prediction residual of the 

Aziz model with unit kPa/m; jA , jB , jC  and jF  are 

undetermined fitting coefficients. 

The values of undetermined coefficients jA , jB , jC , and 

jF  for 1,2, ,6j   can be determined by the least square 

method [14-16] or some optimization algorithms [17-19].  
In this paper, we use an improved particle swarm 

optimization [19], which is described in the next section, to 

determine the coefficients jA , jB , jC , and jF  for 

1,2, ,6j  . 

4. NEW CHAOS PARTICLE SWARM OPTIMIZATION 

COMBINED WITH CHAOTIC PERTURBATION 

The specific steps of the new chaos particle swarm 
optimisation algorithm combined with the chaotic 
perturbation are described as follows. 

Step 1 Initialize the inertia weight maxw  and minw , the 

learning factor 1c  and 2c , the group size N , the maximum 

iterations MaxDT , the problem dimension D , and the 

accuracy control 610eps  . Give the optimal space [ , ]lb ub  

and the speed limit maxv . Give the maximum iterations of 

chaos search HDT . 

Step 2 Randomly produce a D -dimensional particle over 

the interval [0,1) . According to the statement in section 2.2, 

obtain N s D -dimensional particles which are denoted as 

, 1,2, ,ix i N . A random D -dimensional space vector is 

selected from [0,1) . Use chaos mapping [20] to obtain 

1N  s particles, and obtain the N s D -dimensional vector 

which is the initial particle speed. Let the iterations be 0, and 
continue to step 3. 

Step 3 Insert ix  into the objective function to calculate the 

fitness if , and determine the global optimal positions of the 

particle swarm gbest , the experienced optimal positions of 

particles ipbest ， 1,2, ,i N . Continue to step 4. 

Step 4 w  decreases according to Eq(2). The positions and 

speed of the particles are updated according to Eq(3) and 
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Eq(4). The iterations increase by 1. Take 1

1MaxDT t
k

MaxDT

 
 , 

and determine the chaotic mutation and the chaos search 

interval [ ( ), ( )]lb t ub t  according to Eqs(5) and (6). Perform 

chaotic mutation to update gbest  and ipbest . Perform 

chaotic search to gbest , and update gbest  and ipbest . 

Compute the fitness variance of the current particle swarm. If 
the absolute value of the difference between the fitness 
variance of the current particle swarm and that of the pre-
iteration is less than eps . Go to step 5, or step 6. 

 

max max min( ) /w w t w w MaxDT                                       (2) 

 

1( 1) ( ) 1 ( ( ))v t w v t c rand pbest x t                                             

               2 2 ( ( ))c rand gbest x t                                      (3) 

 

( 1) ( ) ( 1)x t x t v t                                                            (4) 

 

1 2( ) (0)tCD t k k k CD                                               (5) 

 

1 2 1 2( ) (1 ) ( )t tub t k k k x t k k k ub                             (6) 

 

Step 5 Compute the numbers of the particles s  that need 

to be replaced. Produce s s new particles using a similar 

manipulation to produce the initial particle positions. Use the 

new particles to replace the current s s particles that have the 

worst fitness. Then go to step 4. 

Step 6 If the iterations are less than MaxDT , go to step 4. 

Otherwise, go to step 7. 

Step 7 Output the final results: gbest  and fbest . 

For different liquid flow rates, the values of jA , jB , jC , 

and jF  for 1,2, ,6j   are shown in Table 1. 

 

Table 1. Values of undetermined coefficients for different 
liquid flow rates 

 
Liquid flow 

rate（

m3/d） 

jA  jB  jC  jF  

10 -0.9011 -1.1512 3.6104 -1.1542 

15 10.2898 -21.2416 12.7851 -1.9154 

20 11.6489 -23.4322 13.4969 -2.0891 

30 6.6078 -8.0887 0.6005 0.6505 

40 -7.3502 16.3762 -11.0033 1.8583 

50 -18.8094 35.8775 -19.9684 2.7399 

 
When the liquid flow rates are taken as 10 m3/d, 30 m3/d 

and 50 m3/d respectively, the Aziz residual values and the 
improved Aziz residual values are shown in Figure 3. 

In Figure 3, the black curve represents the improved Aziz 
residual curve by fitting. Figure 3 shows that the improved 
Aziz residual value and the Aziz residual are very close at the 
measure point set by the experimental scheme. Hence, it is 
feasible to use the improved Aziz residual curve to 
approximate the Aziz residual. The improved Aziz residual 
model can be taken as a reliable estimation model of the Aziz 
residual. 
 

 
 

 
 

 
 

Figure 3. Comparison between Aziz residual and the 
improved Aziz residual 

5. IMPROVED AZIZ MODEL 

As indicated in the introduction, the Aziz residual is 
obtained by subtracting the experimental pressure gradient 
from the Aziz pressure gradient. By combining the Aziz 
model and the improved Aziz residual model of residual, 
denoted as Aziz-RF model, the pressure gradient prediction 
model can be established, denoted as the Aziz-I model, which 
is obtained by subtracting the Aziz-RF model from the Aziz 
model.  

The prediction pressure gradient of the Aziz-I model is 
 

Aziz I Value Aziz Value Aziz RF Value              (7) 
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where, Aziz I Value  denotes the calculating pressure 

gradient value from the Aziz-I model with unit kPa/m; 

Aziz Value  denotes the calculating pressure gradient value 

from the Aziz model with unit kPa/m; Aziz RF Value  

denotes the improved Aziz residual value with unit kPa/m. 
The relative error between the prediction pressure gradient 

of the Aziz model and the experimental pressure gradient is 
defined in Eq(10). 

 

-Aziz I Value E Value
err

E Value


                                      (8) 

 

In Eq(8), E Value denotes the experimental pressure 

gradient with unit kPa/m. 
According to the 90 groups of experimental data shown in 

Figure 2, the average value of the prediction relative error of 
the Aziz-I model is 10.82% by comparing the relative error 
between the Aziz prediction pressure gradient and the 
experimental pressure gradient. 

The comparison between the calculating pressure gradient 
of the Aziz-I model and the experimental pressure gradient is 
shown in Figure 4. 

 

 
 

Figure 4. Comparison between the calculating pressure 
gradient of the Aziz-I model and experimental pressure 

gradient 
 

By comparing the results in Figure 1, the distribution of 
data points is closer to the diagonal. It shows that the new 
model (Aziz-I model) has higher accuracy. 

6. CONCUSION 

(1) This paper firstly establishes the cubic fitting function 
model of the Aziz prediction residual with respect to the gas 
liquid ratio. Then, it builds a new pressure gradient prediction 
model (Aziz-I model) by combining the cubic fitting function 
model and the Aziz model. 

(2) For the pressure gradient under the experimental 
condition, the average prediction relative error value of the 
Aziz-I model is 10.82%. This is a significant improvement on 
the prediction accuracy of the Aziz model. 

(3) The Aziz-I model proposed in this paper is more 
concise compared to that in reference [8]. It also has good 
extendibility. 
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NOMENCLATURE 

A  dimensionless fitting coefficient 

Aziz Value  calculating pressure gradient value by 
Aziz model, kPa/m 

Aziz I Value  calculating pressure gradient value by 
Aziz-I model, kPa/m 

Aziz RF Value  improved Aziz residual value, kPa/m 

B  dimensionless fitting coefficient 

C  dimensionless fitting coefficient 

1c  learning factor 

2c  learning factor 

CD  length of the corresponding interval of 
the mutation 

D  problem dimension 
eps  accuracy control 

E Value  experimental pressure gradient, kPa/m 

F  dimensionless fitting coefficient 

if  fitness 

fbest  optimum value 

gbest  global optimal positions of the particle 
swarm 

HDT  maximum iterations of chaos search 

k  adjustment coefficient of weight 

lb  lower limit of the initial search space 

ub  upper limit of the initial search space 

MaxDT  maximum iterations 

N  group size 

ipbest  experienced optimal positions of 
particles 

r  fitting value of the prediction residual of 
Aziz model, kPa/m 

1rand  uniform random numbers over the 
interval [0,1] 

2rand  uniform random numbers over the 
interval [0,1] 

s  numbers of the particles which is needed 
to be replaced 

 
t  

current iterations 

maxv  speed limit 

 
v  

particle velocity 

w  weight 
 

maxw  

maximum of the weight 

 

minw  

minimum of the weight 

x  particle position  

ix  the i-th D -dimensional particle 

z  gas liquid ratio, m3/m3 

Subscripts 

 

i  serial number of the particle 

j  the number of liquid flow rates 
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