

INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY

ISSN: 0392-8764 Vol. 35, Special Issue 1, September 2017, pp. S108-S116 DOI: 10.18280/ijht.35Sp0115 Licensed under CC BY-NC 4.0

Economic, energetic and environmental analysis of the waste management system of Reggio Calabria

Concettina Marino, Antonino Nucara, Giovanna Nucera, Matilde Pietrafesa

Department of Civil, Energy, Environmental and Material Engineering (DICEAM), Mediterranea University of Reggio Calabria, Via Graziella-Feo di Vito, 8912 Reggio Calabria, Italy

Email: matilde.pietrafesa@unirc.it

ABSTRACT

In the last decades problems concerning waste disposal have assumed increasing interest due to the growth of their production and typologies following consumption escalation. In an advanced industrial society waste constitute one of the main aspects concerning environment protection; their impact is linked to material quantity, typology and persistence into the environment. A correct waste management must be included within an integrated strategy of sustainable development: among the necessary actions aimed to reduce flows to landfills, regulations particularly indicate reduction of resource use, energy recovery, use of waste as a resource. Until today in Italy a sustainable management system has not been implemented yet, making frequent use of temporary solutions which only delay the problem come up. Within this frame, in the paper a case study has been analysed, referring to the collection and delivery system of *Urban Solid Waste* in Reggio Calabria, carrying out an analysis of the management process from an economic, energetic and environmental point of view. Analysing the phases following the collection (waste selection, transport, treatment), a critical evaluation of the used technologies has been conducted, assessing cost, energy consumption and pollutant emission. The analysed case has finally been compared with different scenarios, showing increasing percentage of differentiated collection, relating them to the least advanced disposal modality, landfill.

Keywords: Waste, Recycling, Landfill, Greenhouse Gas Emission.

1. INTRODUCTION

The notion of waste as a residual to dismiss is present only in anthropic activities. In the nature, cycles are closed (i.e. carbon or water cycle), composed by a chain of biological and chemical processes: a process waste is used in other processes, at the end of which the initial status is re-established. Consequently, in the nature the notion of waste is not present, but only that of substance which transforms: natural ecosystems operate through natural processes, reconstituting substances and energy in their initial conditions.

On the contrary, as far as anthropic activity is concerned, any materials introduced on the market after use turn into waste as well as any production process generates wastes to be disposed of. In EU the production of urban waste (*USW*) like, after all, in other OCSE countries, has registered a continuous and progressive increase in the last decades, after the improvement of people's socio-economic conditions and of population and urban areas increase. Consequently, problems connected to waste management have assumed more and more critical and relevant proportions in both economic and environmental terms [1], [2]. In a developed industrial society, waste management today represents one of the main aspects concerning environment protection, to be tackled using an integrated and sustainable management, acting on treatment modalities and reducing fluxes to landfill and waste persistence in the environment, in the aim to mitigate or avoid (*zero waste*) its impact [3]–[7].

Waste emissions are relevant, characterized by presence of methane and carbon dioxide, released by decomposition of their biodegradable component. About one third of methane anthropogenic emissions in Europe can be ascribed to such source; by contrast, low percentages of carbon dioxide or nitrous oxide emissions can be referred to wastes. Consequently, methane emissions reductions in landfills represents a strong potential in global warming mitigation.

At standard level, program guidelines tend to avoid waste production or to use them as a resource [8]–[12] and indicate energy recovery among the most efficient actions of a sustainable waste management [13]–[19].

Moreover, it is important to dispose waste in plants close to production sites in order to avoid the relevant incidence of transport emissions.

2. URBAN SOLID WASTE DISPOSAL – METHODS AND ANALYSIS

The waste management and treatment process is illustrated with reference to a case study, concerning USW disposal system of Reggio Calabria. Particularly an economic, energetic and environmental analysis of the different process phases has been effected.

The society which manages the service handles waste collection, transport and sending to recovery, effecting a material selection treatment before their final disposal.

2.1 Case study: USW disposal system OFC

Monthly urban solid waste production in the city and its amount of selected collection in 2015 (year in which the society started its collection service) are reported in Figure 1: it can be observed that the differentiated amount in 2015 was still low (equal to 17,5%).

Referring to *EWC* (*Europe Waste Code*) the collected quantities have been reported in Figure 2, pointing out the analysed components.

Figure 1. USW collected mass and differentiated percentage

Figure 2. Waste quantity with reference to their classification according to *EWC*

Figure 3 reports the waste journey from the collection site to the disposal (for undifferentiated and organic components) or selection (for multi-material and paper) ones and the subsequent journey of selected materials to recycling plants.

Non-all the waste typologies are sent to treatment: in the analysed year only 75% of the selected component (13,1% of

total collected waste), formed by paper and cardboard, multimaterial and organic has been treated.

In undifferentiated waste, a part has been sent to stabilization and the remaining part to landfill.

Figure 3. Waste components travel from the collection site to the selection, disposal and recycling sites

2.2 Paper and cardboard

After being collected, the paper and cardboard fraction is sent to a selection plant in order to remove impurities through manual selection. A subsequent pressing gives the final cubic form of bales, allowing easy loading and transport.

2.3 Multi-material

Multi-material includes different fractions simultaneously collected: plastic, glass and metals (aluminium) that are separated in a selection plant; glass and plastic are prevailing in volume and weight.

After a first manual selection, a dimensional reduction is carried out through an oscillating sieve, removing materials with large or very small dimensions.

Undersize materials are directed on a tape where, after a second manual selection of residual voluminous fractions, light materials (cans and plastic) are aeraulically separated through an extractor hood and metals are captured by an over belt magnet. The hood directs materials to a cyclone, where they fall into a hopper and are sent to a press in bales, distinguished by material (containers, white bottles, colored bottles, cans, and so on).

After a further manual selection, the material is sent to recycling, plastics after a subdivision by polymers (PET, PE, etc.) and colour, carried out by optical readers, that allow to obtain highly pure materials.

2.4 Organic

The fraction of organic waste is transformed in high quality fertilizing through a composting process, a biological stabilization in solid phase taking place in aerobic conditions.

Organic waste follows a precise treatment sequence. After a compliance test, waste is pre-treated through crumbling and mixturing and undergoes a primary biologic treatment aimed to remove through sieving metals and plastic.

The mixture of wet and wood-cellulose wastes (these latter, with structure function, are used for particularly wet waste) goes to composting in reinforced concrete basins covered by holed tiles, where it remains for 21-23 days; a periodic blowing of purified air by a bio-filter guarantees idoneous growth of bacteria in bio-oxidation phase.

2.5 Undifferentiated waste

Undifferentiated waste can be sent to landfill or to incinerators/waste to energy plants. In the analysed case, such component is sent to a treatment/transference plant, where materials are selected before their disposal in landfill.

3. ECONOMIC ANALYSIS

The economic analysis of the process includes the evaluation of costs and benefits for all the process phases (collection, transport to selection/disposal plants and to the recycling ones).

Due to the difficulties inherent the availability of collection costs, the present analysis has concerned all the process phases carried out after collection (transport, selection/disposal and recycling).

The related cost refers to transport and delivery to selection/disposal plants in a first phase (*Step 1*) and to transport to recycling plants in a second one (*Step 2*); the benefits consist in the proceeds of material sales to recycling plants (*Step 2*).

3.1 Step 1. From collection to selection/disposal plants

3.1.1 Transport

The transport cost from the waste collection site to the selection/disposal plants has been calculated (Table 1).

Origin	Destination	Waste	Truck capacity (t/vehicle)	N. trips	Distance (km)	Time (h)	Cost (€)
Campo Calabro (RC)	Sambatello (RC)	Undifferentiated	12	5'453	4.6	0.08	34'339
Campo Calabro (RC)	Vazzano (VV)	Organic	7.5	336	70.6	3	49'225
Campo Calabro (RC)	Palmi (RC)	Multimaterial	3	1'269	29.5	1	68'371
Campo Calabro (RC)	Campo Calabro (RC)	Paper and Cardboard	4	1'025	1.3	0.05	2'624

Table 1. Transport cost to selection plants

The cost C_i of i-th disposal modality has been determined using the expression:

$$C_i = N_i [C_d \times d_i + C_a \times t_i] \tag{1}$$

in which:

- N_i is the number of trips:

$$N_i = \frac{M_{tot}}{Truck\ Capacity} \tag{2}$$

- *C_d* is the travel cost referred to the d_i distance. It consists of two rates, one referred to diesel consumption (0.55 €/km) and another to vehicle usury (0.3 €/km), for a total cost of 0.85 €/km
- d_i is the distance from origin to destination (km)
- C_a is the driver hourly cost (28.76 ϵ/h)
- t_i is time spent to travel d_i distance (h).
- 3.1.2 Delivery to selecting/disposal plants

Table 2. Materials delivering costs to the selection plants

Waste	Quantity (t)	Unit cost (€/t)	Total cost (€)
Undifferentiated	65'438	147.00	9'619'415
Organic	2'524	96.61	243'795
Multimaterial	3'808	205.00	780'681
Paper and Cardboard	4'099	4.00	16'398

Table 2 reports material delivering cost to selection plants.

3.2 Step 2. From selection plants to recycling consortiums

From the selection plants wastes are furtherly transported to the recycling consortiums.

The mass of each material coming out from the selection centres, reduced with respect to the one in entrance for the presence of product impurities, is determined hypothesizing that for multi-material it is 85% of the total collected one, whereas for paper, more easily perishable, only 50%.

The weight percentages of multi-material components are: glass (91%), plastic (3%), aluminium (6%).

3.2.1 Transport

Table 3. Step 2 transport cost

Origin	Destination	Waste	Truck capacity (t/vehicle)	N. Trips	Distance (km)	Time (h)	Cost (€)
Palmi (RC)	Naples	Glass	25	118	582	8.31	86'463
Palmi (RC)	Milan	Aluminium	50	4	1'120	16	5'485
Palmi (RC)	Ragusa	Plastic	20	5	248	3.54	1'518
Campo Calabro (RC)	Catania	Paper and Cardboard	25	82	108	1.54	11'165

Waste transport cost can be determined using the same analytical expression used in 3.1.1 (Table 3). It can be seen that the most expensive solution concerns glass transport to Naples, due to the large quantity of material.

3.2.2 Sales

.

Table 4 reports the proceeds of waste sales to recycling plants.

Table 4. Proceeds of waste sales to recycling plan	its
--	-----

...

Waste	Quantity (t)	Sales (€/t)	Total sales (€)
Glass	2'945	303.00	892'529
Aluminium	194	15.00	2'913
Plastic	97	394.00	38'260
Paper and cardboard	2'049	32.00	65'590

3.2.3 Total cost

Table 5. Total cost of waste management after collection

	Cost (€)					
Waste	Step 1		Step2	Step2		
	Transport	Disposal	Transport	Sales	-1014	
Undifferentiated	34'339	9'619'415	0	0	9'653'754	
Organic	49'224	243'795	0	0	293'019	
Glass	62'216	710'419	86'463	-892'529	-33'431	
Aluminium	4'102	46'840	5'485	-2'913	53'514	
Plastic	2'051	23'420	1'518	-38'260	-11'271	
Paper and Cardboard	2'623	16'397	11'165	-65'590	-35'405	

The total economic fluxes, obtained from Tables 1-4, are reported in Table 5.

Due to the involved quantity, the most expensive disposal is

that referring to undifferentiated waste. Thanks to their sales, glass, plastic and card economic fluxes are in active.

4. ENERGETIC AND ENVIRONMENTAL ANALYSIS

Energetic assessments have been carried out evaluating fuel consumption necessary for transport and electric energy consumption required to select and recycle multi-material components.

Every waste during transport and treatment generates CO_2 and other pollutant emissions, that have been determined using the related emission factor; as concerns CO_2 , the total amount emitted through the whole process has also been evaluated.

4.1 Step 1. From the collection to the selection plants

4.1.1 Transport

Fuel consumption FC_i (diesel, kg) necessary to transfer the i-th waste to the plant has been determined using the expression:

$$FC_i = N_i \times d_i \times fc \tag{3}$$

where:

- N_i is the number of required trips
- d_i is the plant distance (km)
- fc is the unitary fuel consumption (0,42 kg/km).

The corresponding energy consumption E_i (*kWh*) during the transport (Table 6) is then given by:

$$E_i = FC_i \times LCV \tag{4}$$

where LCV diesel Low Calorific Value (11,86 kWh/kg).

Sambatello (RC)					
	Undifferentiated	4.6	5'453	10'536	124'952
Vazzano (VV)	Organic	70.6	336	9'978	118'343
Palmi (RC)	Multimaterial	29.5	1'269	15'743	186'712
Campo Calabro (RC)	Paper and Cardboard	1.3	1'025	568	6'739
۱ Р	/azzano (VV) Palmi (RC) Campo Calabro (RC)	Vazano (VV) Organic Palmi (RC) Multimaterial Campo Calabro (RC) Paper and Cardboard	Vazzano (VV)Organic70.6Palmi (RC)Multimaterial29.5Campo Calabro (RC)Paper and Cardboard1.3	Vazzano (VV)Organic70.6336Palmi (RC)Multimaterial29.51'269Campo Calabro (RC)Paper and Cardboard1.31'025	Vazzano (VV)Organic70.63369978Palmi (RC)Multimaterial29.51'26915'743Campo Calabro (RC)Paper and Cardboard1.31'025568

Table 6. Transport consumption

Moreover, j-th pollutant emissions generated during the transport of the i-th waste have been determined using the expression:

$$e_{ij} = FC_i \times EF_j \tag{5}$$

in which EF_j (g/kg) is the emission factor of the j-th pollutant [20], [21] (Table 7). The results are reported in Table 8.

Table 7. Emission factors of the main combustion products[20]

Pollutant	CO ₂	PM	CO	NO _x	NH ₃
Emission factor (g/kg fuel)	3'140	1.2	8	37	0.05

Table 8. Step 1 Transport emissions

W	Emissions (kg)							
waste	CO ₂	PM	СО	NOx	NH ₃			
Undifferentiated	33'082	12.64	84.28	389.81	0.52			
Organic	31'332	11.97	79.82	369.19	0.49			
Multi-material	49'436	18.89	125.90	582.52	0.78			
Paper and Cardboard	1'784	0.68	4.54	21.02	0.02			

4.1.2 Selection/disposal

Energy consumed by the selection of i-th waste E_i has been evaluated through the expression:

$$E_i = P_i \times t_i \times N_{di} \tag{6}$$

where

- *P_i* plant power (kW)
- t_i working time (h)
- *N_{di}* number of yearly working days.

Consequently, the j-th pollutant emissions generated by the selection of i-th waste are computed through the expression:

$$e_{ij} = E_i \times EF_j \tag{7}$$

with EF_j emission factor of the j-th pollutant (kg/kWh).

Using average values, we have made the hypothesis that plants are able to select 75 t/day.

In Table 9 energy consumption, emission factors and CO_2 emissions for multi material and paper selection are reported. Table 10 reports emission factors and Table 11 the related emissions of the main gases (CH₄ and CO₂) originating from undifferentiated and organic wastes, which do not undergo energetic treatments.

Table 9. Energy consumption and CO₂ emissions originating from multi material and paper selection

Waste	Plant power (kW)	Working time (h)	N days	Energy (kWh)	Emission factor (kg CO ₂ /kWh)	Emission (kg CO ₂)
Multimaterial	77	8	51	31456.8	0.22	6'920
Paper and Cardboard	42	8	34	11451.2	0.22	2'519

It can be seen that very high emissions originate from undifferentiated waste, due to its quantity; the most relevant ones are ascribable to CH_4 , but also CO_2 amount is noteworthy.

Table 10. Emission factors of the main landfill and organicgas emitted [22], [23]

	Undifferentiated		Organic	
Pollutant	CO ₂	CH ₄	CO_2	CH ₄
Emission factor (t/t waste)	0.87	23.68	0.396	4.00

 Table 11. Undifferentiated and organic components emissions

Weste	Owentity (t)	Emissions (t)	
waste	Quantity (t)	CO ₂	CH_4
Undifferentiated	65'438	56'931	1'549'572
Organic	2'523	999	10'092

4.2 Step 2. From selection plants to recycling ones

4.2.1 Transport

Fuel and energy consumption and the relative pollutant emissions have been calculated using the expressions described in 4.1.1. Table 12 reports the consumption values, Table 13 shows gas emissions, evaluated using emission factors reported in Table 7.

4.2.2 Recycling

The selected wastes undergo a recycling process. The plants unitary consumptions used in the analysis and the total energy consumption are reported in Table 14, CO₂ emissions are reported in Table 15.

Table 12. Transport consumption

Origin	Destination	Waste	Distance (km)	N. trips	Consumption (kg fuel)	Consumption (kWh)
Palmi (RC)	Naples	Glass	581	118	28'795	341'509
Palmi (RC)	Milan	Aluminium	1088	4	1'827	21'670
Palmi (RC)	Ragusa	Plastic	241	5	506	5'998
Campo Calabro (RC)	Catania	Paper and Cardboard	108	82	3'719	44'107

Table 13. Step 2 Transport emissions

	Emiss	sions (kg)		
Waste	CO_2	PM	CO	NO _x	NH ₃
Glass	90'416,40	34.55	230.36	1'065.42	1.44
Aluminium	5'737.12	2.19	14.62	67.60	0.09
Plastic	1'587.95	0.61	4.05	18.71	0.03
Paper and Cardboard	11'677.58	4.46	29.75	137.60	0.19

Table 14. Energy consumption by recycled material

Waste	Quantity (t)	Unit Energy (kWh/t)	Energy (kWh)
Glass	2'945	4.30	12'664
Aluminium	194	0.85	165
Plastic	97	15	1'455
Paper and Cardboard	2'049	2.75	5'635

Table 15. Recycling CO₂ emissions

Waste	EF (kgCO ₂ /kWh)	Emissions (kgCO ₂)
Glass	0.22	2'786
Aluminium	0.22	36
Plastic	0.22	320
Paper and Cardboard	0.22	1'239

4.2.3 Saved energy

Saved energy by waste recycling has been evaluated as difference between energy consumed during production by raw material and from recycling.

Table 16. Production specific consumption

Waste	Production Energy by raw material (kWh/t)	Recycling Energy (kWh/t)	
Glass	6.3	4.30	
Aluminium	16	0.85	
Plastic	45	15	
Paper and Cardboard	7.6	2.75	

From Table 16, reporting specific consumption referring to production by raw material and recycling, it can be seen that the greatest energy consumption is associated to plastic production (45 kWh/t), with reference to which the greatest energy saving is obtained (30 kWh/t), followed by that of aluminium (ca. 15 kWh/t). In Table 17 and in Figure 4 the respective total energy consumptions are reported: due to the collected quantities, the greatest ones are observed for glass, the recycling of which allows saving only 2 kWh/t. Moreover, Table 17 reports total emissions avoidable through recycling.

Table 17. Total consumption referred to production by raw material and recycling and relative avoidable emission

Waste	Quantity (t)	Production energy by raw material (MWh)	Recycling Energy (MWh)	Avoided emissions (tCO ₂)
Glass	2'945	18.6	12.7	1.3
Aluminium	194	3.1	0.2	0.6
Plastic	97	4.4	1.5	0.6
Paper and Cardboard	2'049	15.6	5.6	2.2

Figure 4. Energy consumption for material production

4.2.4 Total consumption and emissions

 Table 18. Total energy consumption

	Energy Consumption (MWh)					
Waste	Step 1		Step2		Tetal	
	Transport Treatment Transport Treatme		Treatment	- 10tai		
Undifferentiated	125.00				125.00	
Organic	118.30	0.00			118.30	
Glass	169.89	28.63	342.00	12.66	553.18	
Aluminium	11.20	1.89	22.00	0.17	35.25	
Plastic	5.60	0.94	6.00	1.45	13.99	
Paper and Cardboard	6.70	0.11	44.00	0.04	50.85	

Table 19. Total CO₂ emissions

	CO ₂ Emissions (t)				
Waste	Step 1		Step2		TF + 1
	Transport	Fransport Treatment		Transport Treatment	
Undifferentiated	33.00	56'931.00			56'964.00
Organic	31.00	999.11			1'030.11
Glass	44.59	6.30	90.42	2.78	144.09
Aluminium	2.94	0.42	5.74	0.04	9.14
Plastic	1.47	0.21	1.59	0.32	3.59
Paper and Cardboard	1.78	2.52	11.70	1.24	17.24

Total consumption and CO_2 emissions referring to transport and treatment (Step 1 and 2) are reported in Tables 18 and 19. Concerning multi-material components in Step 1, they have been determined using the respective weight percentages.

Due to the involved quantities, the most relevant emissions are originated from undifferentiated waste.

4.2.5 Scenarios

The analysed case has been compared with different scenarios (Table 20) showing increasing percentage of differentiated collection (35% and 70%), relating them to the least advanced disposal modality, landfill. In Table 21 the total cost of waste management in the scenarios is reported. Moreover, Figures 6 and 7 respectively show the scenarios cost referring to waste components and phases of disposal Steps.

Table 20. Analysed scenarios

Scenario	Description
0	100% undifferentiated waste to landfill
1	17.5% differentiated waste (present case)
2	35.0% differentiated waste
3	70.0% differentiated waste

Table 21. Total cost of waste management for the scenario

Weste	Cost (€)			
waste	Scenario 0	Scenario 1	Scenario 2	Scenario 3
Undifferentiated	11'192'010	9'653'754	8'114'498	5'036'987
Organic		293'019	586'150	1'172'300
Glass		-33'431	-66'877	-133'755
Aluminium		53'514	107'015	214'030
Plastic		-11'271	-22'465	-44'930
Paper and Cardboard		-35'405	-87'224	-174'448
TOTAL	11'192'010	9'919'753	8'631'097	6'070'183

Figure 6. Cost of waste management scenarios referred to waste components

Particularly in Figure 7, referring to each phase of the two steps, also benefits can be represented, differently from Figure 6, which reports the final cost (or benefit) associated to each material disposal. It can be observed that, due to the recyclable material sales, increasing the percentages of differentiated collection can markedly reduce scenarios costs.

Figure 7. Cost and benefit of waste management scenarios referred to the Steps phases

	Total energy consumption (MWh)						
Waste	Scenario 0	Scenario 1	Scenario 2	Scenario 3			
Undifferentiated	144.88	125.00	105.04	65.21			
Organic		118.30	237.03	473.70			
Glass		553.18	1'079.70	2'159.39			
Aluminium		33.25	69.51	139.02			
Plastic		13.99	25.08	50.16			
Paper and Cardboard		50.85	119.98	239.96			
TOTAL	144.88	896.58	1'636.33	3'127.46			

Table 22. Scenarios total energy consumption

Figure 8. Scenarios energy consumption referred to waste components.

Figure 9. Scenarios energy consumption referred to Steps.

In Table 22 and Figures 8-9 the scenarios total consumptions are reported: the figures respectively refer to waste components and disposal steps. As it is possible to observe, consumption markedly increase as the percentage of differentiated selection increases, but this is pre-eminently due to the distance of the glass recycling plant.

Finally, Table 23 and Figures 10-11 show the corresponding scenarios CO_2 emissions; the figures respectively refer to waste components and Steps phases.

Table 23. Scenarios CO₂ emissions

CO ₂ emissions (t)							
Waste Scenario 0 Scenario 1 Scenario 2 Scenar							
Undifferentiated	66'044.39	56'964.00	47'883.90	29'723.42			
Organic		1'030.11	2'061.76	4'123.43			
Glass		144.09	288.87	577.74			
Aluminium		9.14	18.31	36.62			
Plastic		3.59	7.20	14.39			
Paper and Cardboard		17.24	33.42	66.84			
TOTAL	66'044.39	58'168.16	50'293.45	34'542.43			

Figure 10. Scenarios CO₂ emissions referred to components.

Figure 11. Scenarios CO₂ emissions referred to Steps phases.

It can be observed that, like cost, also CO_2 emissions reduce in advanced scenarios, thanks to the reduced quantities sent to landfill: for 70% differentiated selection, CO_2 amount becomes half the value observed in the analysed case (17,5%).

5. CONCLUSIONS

The management of urban solid waste (USW), in continuous and progressive increase in the last decades, has become one of the most important aspects concerning environment protection; its impact must be mitigated acting on the treatment modalities, recovering energy and reducing fluxes to landfill.

Within this frame, in the paper a case study has been analysed, concerning USW management in the city of Reggio Calabria, effecting an analytic evaluation, from an economic, energetic and environmental point of view, of the phases after collection (selection, transport, recycling), assessing costs and benefits, energy consumption and pollutant emissions.

From the energetic point of view, fuel consumption required for transport and energy necessary for selection and recycling have been evaluated; the related emissions have been calculated for the transport combustion products, for CO_2 emitted during the selection/treatment processes and the nonenergetic ones, where also CH_4 emission has been computed.

From the economic point of view, the most relevant contribution, due to the delivery cost of large waste quantities into landfill, resulted that of undifferentiated waste; limitedly to transport, differently, the greater cost is imputable to glass.

Being the landfill close to the city, it is not responsible of the greatest consumption that, on the contrary, is associated to glass and pre-eminently due to the transport of its large quantities to Naples to be recycled. To such component is also associated the greatest saved energy for recycling, despite of the small unitary savings (2 kWh/t against 30 kWh/t of plastic).

As concerns emissions, the contribution of landfill is by far prevailing due to the relevant disposed quantities, followed by that of organic. For both the most relevant emissions are ascribable to CH_4 , but also CO_2 amount is noteworthy, above all in comparison to that emitted by other components.

A comparison with different scenarios, showing increasing percentage of differentiated collection (35% and 70%), has been carried out, relating them to the least advanced disposal modality, landfill.

It can be observed that, due to the recyclable material sales, increasing the percentages of differentiated collection can markedly reduce scenarios costs. Also, emissions reduce in advanced scenarios, thanks to the reduced waste quantities sent to landfill disposal: when differentiated selection reaches 70%, CO_2 amount becomes half the value observed in the analysed case (17,5% differentiated selection).

Differently, energy consumption markedly increases as the percentage of differentiated selection increases, pre-eminently due to the distance of the glass recycling plant.

REFERENCES

- Burnley S.J. (2007). A review of municipal solid waste composition in the United Kingdom, *Waste Manag.*, Vol. 27, No. 10, pp. 1274–1285. DOI: <u>10.1016/j.wasman.2006.06.018</u>
- [2] Cannistraro G., Cannistraro M., Cannistraro A., Galvagno A. (2016). Analysis of air pollution in the urban center of four cities Sicilian, *Int. J. Heat Technol.*, Vol. 34, No. Special Issue 2, pp. S219–S225. DOI: <u>10.18280/ijht.34S205</u>
- [3] Ferreira F., Avelino C., Bentes I., Matos C., Teixeira C.A. (2017). Assessment strategies for municipal selective waste collection schemes, *Waste Manag.*, Vol.

59, pp. 3–13. DOI: 10.1016/j.wasman. 2016.10.044

- [4] Azapagic A., Perdan S., Clift R. (2004). Sustainable development in practice: case studies for engineers and scientists, Chichester, West Sussex, England.
- [5] Shekdar A.V. (2009). Sustainable solid waste management: An integrated approach for Asian countries, *Waste Manag.*, Vol. 29, No. 4, pp. 1438– 1448. DOI: <u>10.1016/j.wasman.2008.08.025</u>
- [6] Cherubini F., Bargigli S., Ulgiati S. (2009). Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration, *Energy*, Vol. 34, No. 12, pp. 2116–2123. DOI: 10.1016/j.energy.2008.08.023
- [7] Al-Salem S.M., Evangelisti S., Lettieri P. (2014). Life cycle assessment of alternative technologies for municipal solid waste and plastic solid waste management in the Greater London area, *Chem. Eng. J.*, Vol. 244, pp. 391–402. DOI: <u>10.1016/j.cej.2014.01.066</u>
- [8] Al-Salem S.M., Lettieri P., Baeyens J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review, *Waste Manag.*, Vol. 29, No. 10, pp. 2625–2643. DOI:<u>10.1016/j.wasman.2009.06.004</u>
- [9] Jeswani H.K., Azapagic A. (2016). Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK, *Waste Manag.*, Vol. 50, pp. 346–363. DOI: <u>10.1016/j.wasman. 2016.02.010</u>
- [10] Cardinale T., Arleo G., Bernardo F., Feo A., De Fazio P. (2017). Investigations on thermal and mechanical properties of cement mortar with reed and straw fibers, in *11th AIGE 2017 2st AIGE/IIETA Int. Conf.*
- [11] Baccilieri F., Bornino R., Fotia A., Marino C., Nucara A., Pietrafesa M. (2016). Experimental measurements of the thermal conductivity of insulant elements made of natural materials: preliminary results, in *10th AIGE 2016 1st AIGE/IIETA Int. Conf.*, pp. 1–7.
- [12] Marino C., Nucara A., Pietrafesa M., Polimeni G. (2017). Natural and waste materials as building insulating elements: experimental measurements of thermal conductivities, (accepted for presentation), in SDEWES17 - 12th Dubrovnik Conf. Sustain. Dev. Energy Water Environ. Syst. Oct. 4 - 8, Dubrovnik, Croat..
- [13] Liamsanguan C., Gheewala S.H. (2006). Environmental assessment of energy production from municipal solid waste incineration, *Int. J. Life Cycle Assess.*, Vol. 12, No. 7, pp. 529. DOI: 10.1065/lca2006.10.278
- Jeswani H.K., Smith R.W., Azapagic A. (2013). Energy from waste: carbon footprint of incineration and landfill biogas in the UK, *Int. J. Life Cycle Assess.*, Vol. 18, No. 1, pp. 218–229. DOI: <u>10.1007/s11367-012-0441-8</u>
- [15] Astrup T.F., Tonini D., Turconi R., Boldrin A. (2015). Life cycle assessment of thermal Waste-to-Energy technologies: Review and recommendations, *Waste Manag.*, Vol. 37, pp. 104–115. DOI: <u>10.1016/j.wasman.2014.06.011</u>
- [16] Browne J.D., Murphy J.D. (2013). Assessment of the resource associated with biomethane from food waste, *Appl. Energy*, Vol. 104, pp. 170–177. DOI: <u>10.1016/j.apenergy.2012.11.017</u>
- [17] Zhang C., Xiao G., Peng L., Su H., Tan T. (2013). The anaerobic co-digestion of food waste and cattle manure, *Bioresour. Technol.*, Vol. 129, pp. 170–176. DOI:

10.1016/j.biortech.2012.10.138

- Appels L., Baeyens J., Degrève J., Dewil R. (2008). [18] Principles and potential of the anaerobic digestion of waste-activated sludge, Prog. Energy Combust. Sci., Vol. 34, No. 6. pp. 755–781. DOI: 10.1016/j.pecs.2008.06.002
- [19] Calabrò P.S., Panzera M.F. (2017). Biomethane production tests on ensiled orange peel waste, in 11th AIGE 2017 2st AIGE/IIETA Int. Conf.
- [20] EMEP/EEA air pollutant emission inventory guidebook - 2016, EEA Report No 21/2016, Copenhagen K Denmark, 2016.
- [21] Marino C., Nucara A., Pietrafesa M., Pudano A. (2016). The assessment of road traffic air pollution by means of an average emission parameter, Environ. Model. Assess., Vol. 21, No. 1. pp. 53-69. DOI: 10.1007/s10666-015-9489-8
- Eggleston S., Buendia L., Miwa K., Ngara T., Tanabe [22] K. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
- De Stefanis P., Landolfo P.G., Mininni G. (1998). [23]

Gestione dei rifiuti ad effetto serra, in Conf. Naz. Energ. e Ambient, ENEA.

NOMENCLATURE

- cost of disposal modality, € С C_a hourly driver cost, €/h unitary travel cost, €/km C_d d distance, km е pollutant emissions, g Ε energy consumption, kWh pollutant emissions factor, g/kg fuel EFunitary fuel consumption, kg fuel/km fс FC fuel consumption, kg fuel LCV low calorific value, kWh/kg total waste mass, t M_{tot} number of trips Ν N_d number of days
- power plant, kW Р t
 - time, h