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ABSTRACT
Two approaches for formulating a computational Complex Variable Boundary Element Method 
(CVBEM) model are examined. In particular, this paper considers a collocation approach as well 
as a least squares approach. Both techniques are used to fit the CVBEM approximation function to 
given boundary conditions of benchmark boundary value problems (BVPs). Both modeling techniques 
provide satisfactory computational results, when applied to the demonstration problems, but differ in 
specific outcomes depending on the number of nodes used and the type of BVP being examined. His-
torically, the CVBEM has been implemented using the collocation approach. Therefore, the novelty of 
this work is in formulating the least squares approach and applying the least squares formulation to a 
Dirichlet BVP as well as a mixed BVP. This work does not claim that one technique should always be 
used over the other, but rather it seeks to demonstrate the viability of the least squares approach and 
assert that both techniques for determining the coefficients of the CVBEM approximation function 
should be considered during the modeling process.
Keywords: applied complex variables, Complex Variable Boundary Element Method (CVBEM), least 
squares, mesh-reduction methods, potential flow.

1 INTRODUCTION
The Complex Variable Boundary Element Method (CVBEM) is a technique for modeling 
boundary value problems (BVPs) of the Laplace type [1–3]. As part of the CVBEM mode-
ling process, it is necessary to make several implementation decisions, including the 
following: 

1. A scheme for determining the initial locations of candidate nodes and candidate colloca-
tion points (or boundary data, in general). 

2. Determination of the basis functions to comprise the approximation function. 
3. Selection of an algorithm for choosing which subset of the candidate nodes and bound-

ary data should be used in the formulation of the CVBEM model. 
4. Selection of a metric for measuring approximation error. 
5. Selection of a technique for determining the coefficients of the CVBEM approximation 

function (in this case, collocation or least squares). 

Several of these topics have recently been reviewed. For example, a scheme for determin-
ing the initial locations of candidate nodes was proposed in [4]. Discussion regarding the 
selection of basis functions for use with the CVBEM can be found in [5, 6]. Algorithms for 
selecting the computational nodes and collocation points to be used in the CVBEM modeling 
process have been developed in [7, 8]. The fourth implementation decision refers to the selec-
tion of a norm for measuring the error of the CVBEM approximation function. Commonly-used 
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norms for this purpose include the l1, l2, and l∞; however, in principle, any norm of the form 
lp, p ∈N, can be used.

The subject of this paper pertains to the last of the implementation decisions listed above – 
namely, the selection of a technique for determining the coefficients of the CVBEM 
approximation function. In particular, this work investigates a collocation approach and, 
 separately, a least squares approach, for determining the coefficients of the CVBEM approx-
imation function. 

In most of the recent works related to the CVBEM, collocation has been used to determine 
the coefficients of the approximation function [4–11]. Since the collocation approach is 
well-documented in the aforementioned references, the focus of this paper is on developing 
the least squares approach. Figure 1 illustrates the logic of the CVBEM algorithm in the 
context of the least squares approach. 

The difference between the collocation and least squares approaches has to do with how 
the boundary data are used when computing the coefficients of the CVBEM approximation 
function. In particular, in the collocation approach, two collocation points are selected for 
each term in the CVBEM approximation function. Hence, for n terms in the CVBEM approx-
imation function, 2n collocation points are selected at which to apply the boundary conditions. 
Thus, in the collocation approach, only 2n of the available boundary data points are used 
when computing the coefficients of the CVBEM approximation function. This is in contrast 
to the least squares approach in which all of the available boundary data are utilized in each 
iteration of the algorithm when computing the coefficients of the CVBEM approximation 
function.

In the collocation approach, the CVBEM approximation function is guaranteed to satisfy 
the boundary conditions at each of the collocation points. However, in the least squares 
approach, there is no guarantee that the CVBEM approximation function satisfies the bound-
ary conditions at any location on the boundary. Rather, the least squares approach minimizes 
the l2 norm of the difference between the values of the CVBEM approximation function and 
the target boundary conditions along the problem boundary.

The computational outcomes for both the collocation and least squares approaches 
demonstrate the measured error decreasing in the l∞ norm as the number of linearly inde-
pendent terms used in the CVBEM approximation function increases. These terms each 
correspond to a source point (i.e. computational node) located in the exterior of the prob-
lem domain, and the placement of these source points is determined according to the 
node-positioning algorithms (NPAs) discussed in [7, 8]. Furthermore, it is noted that in this 
implementation of the CVBEM, the candidate nodes are located strictly in the exterior of 
the problem domain. This placement scheme is contrary to the usual boundary element 
numerical models in which the model nodes are placed on the problem boundary and are 
also used to describe the problem boundary geometry. In the present CVBEM implemen-
tation, the disconnection between the locations of computational nodes and the problem 
boundary geometry provides a significant increase in degrees of freedom that can be used 
to further improve the modeling success with regard to satisfying the problem boundary 
conditions.

2 THE COLLOCATION APPROACH
The CVBEM approximation function is as follows:
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Figure 1: Flowchart depicting the least squares approach for determining the coefficients of 
the CVBEM approximation function. The key element of the least squares approach 
is that all of the available boundary data are used when computing the coefficients 
of the CVBEM approximation function. On the other hand, only a subset of the 
boundary data are used in the collocation approach. The refinement decision refers 
to the distinction between NPAs 1 and 2, as defined in [8]. When nodal position 
refinement is used, the algorithm is referred to as NPA2. Otherwise, the algorithm 
is referred to as NPA1.
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where (cj = aj + ibj) ∈ C, and gj (z) = lj (x,y) + iμj (x,y) is a complex variable basis function 
that is analytic in the problem domain. The coefficients of eqn (1) are complex numbers of 
the form cj = aj + ibj, where each aj and bj is an unknown value that needs to be determined. 
These values are determined using either collocation or least squares so as to satisfy the given 
boundary conditions as closely as possible in a given norm. 

In the collocation approach, the aj and bj values are determined by solving a square matrix 
equation of the form Ax = b, where A ∈ R2n × 2n, x ∈ R2n × 1, and b ∈ R2ns1. More specifically, 
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where the ith rows of Λ and M, denoted Λi,: and Mi,:, respectively, are as follows: 
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In eqns (2) and (3), (xi, yi) denotes the location of the ith collocation point on the problem 
boundary, and φ (xi, yi) denotes the value of the Dirichlet boundary condition at that colloca-
tion point. The matrix equation for handling mixed boundary conditions is similar and 
described in [6]. 

The advantage of the collocation approach is that the resulting CVBEM approximation 
function will satisfy the given boundary conditions at each of the collocation points. That is, 
theoretically, the error of the CVBEM approximation function is 0 at each of the collocation 
points. However, in practice, the error can technically be nonzero due to numerical consider-
ations such as the effects of truncation and finite precision arithmetic, particularly if the 
matrix, A, in eqn (2) is ill-conditioned. 

Figure 1 depicts a typical situation when evaluating the error along the problem boundary 
of a CVBEM model developed using the collocation approach. Importantly, at the collocation 
points, depicted as black dots, the absolute value of the error function is numerically 0. 
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3 THE LEAST SQUARES ADPPROACH
Using the least squares approach, the CVBEM approximation function has the same form as 
in eqn (1). In particular, there are still 2n coefficients of the CVBEM approximation function 
to determine. The primary difference between the collocation approach and the least squares 
approach has to do with how these coefficients are calculated. In the least squares approach, 
the 2n coefficient values are determined by solving an over-determined matrix equation of 
the form Ax = b, where A ∈ RNB × 2n, x ∈ R2n × 1, and b ∈RNB × 1, where NB > 2n denotes the 
number of known boundary condition data points. Using the least squares approach, the 
objective is to obtain the coefficient vector, x*, that minimizes the following: 
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. (4)

In particular, the matrix equation is as follows: 
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where the ith rows of Λ and M, denoted Λi,: and Mi,:, respectively, are as follows:
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In eqns (5) and (6), (xi, yi) denotes the location of the ith boundary condition data point and 
φ(xi, yi) denotes the value of the Dirichlet boundary condition at that location. The matrix 
equation for handling mixed boundary conditions is similar and may be adapted from the 
matrix equation described in [6]. 

The advantage of the least squares approach is that it incorporates all of the boundary data 
when determining the coefficients of the CVBEM approximation function. The least squares 
approach would be beneficial in a situation in which using only 2n collocation points would 
be insufficient with regard to describing possibly extreme variations in the target potential 
function on the problem boundary. 

Another aspect of the least squares approach is regularization, such as Tikhonov regulari-
zation [12, 13]. Regularization is used to address potential computational issues such as 
overfitting to the given boundary conditions. When Tikhonov regularization is applied, the 
objective is to find the coefficient vector, xREG

 , minimizing the following: 
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In eqn (7), a ∈ R is known as the regularization parameter. The difference between eqn (4) 
and eqn (7) is that eqn (7) employs a penalty on the norm of the coefficient vector, x, such that 
solution vectors with large norms are not preferred. Additionally, Tikhonov regularization 
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can improve the condition of the matrix A, which may lead to more numerically stable solu-
tions for the coefficients. The improved conditioning is a consequence of pre-pending a scalar 
multiple of the identity matrix on top of the standard least squares matrix, as indicated in eqn 
(8). That is, the lower NB rows of the matrix equation in eqn (8) are exactly the same as in eqn 
(5), but the first 2n rows are a scalar multiple of the identity matrix. Since Tikhonov regular-
ization can be used to improve the condition number of a matrix, it may be an appropriate tool 
to remedy ill-conditioned CVBEM models of BVPs. When Tikhonov regularization is 
employed, the matrix equation is as follows:
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where the ith rows of Λ and M are as described in eqn (6). 

4 DEMONSTRATION PROBLEMS AND NUMERICAL RESULTS

4.1 Basis functions

Let Ω ⊂ C denote a simply-connected problem domain. The basis functions used to develop 
the CVBEM models in this work are of the form z z z zj jj

�� � �ln� ( ) , and the resulting 
CVBEM approximation function is as follows: 
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where zj ∈ C \ Ω, and aj ∈ R denotes the angle of the rotated branch cut of the complex log-
arithm function. Typically, the branch cuts are rotated radially away from a point in the 
interior of the problem domain, such as the centroid of the problem domain. 

The basis functions in eqn (9) are derived from the Cauchy integral equation, as described 
in [2, 3, 14]. The points zj in eqn (9) are singularities of the basis functions and are the locations 
of the computational nodes that are evaluated by the NPA. The points zj are referred to as com-
putational nodes because they do not have a physical meaning in the context of the CVBEM 
solution within the problem domain. Instead, they are consequences of the particular choice of 
basis functions, which have singularities. However, the existence of these singularities is com-
putationally important because determining suitable locations for them introduces new degrees 
of freedom that can be optimized using a NPA, such as the ones described in [7, 8]. 

4.2 Brief summary of NPAs

The NPAs used in this work are referred to as NPA1 (developed in [7]) and NPA2 (developed 
in [8]). These algorithms are heuristics for determining subsets of the candidate nodes to use 
in the CVBEM model. In both NPAs, the nodes are selected one-at-a-time. Specifically, the 
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CVBEM model begins with 0 nodes. To select the first node for incorporation in the CVBEM 
model, each candidate node is assessed as a 1-node CVBEM model. Then, the node that can 
be used to satisfy the given boundary conditions most accurately is added to the CVBEM 
model. To determine the second node, all of the candidate nodes are assessed as 2-node mod-
els when added to the already-selected first node. The new node that results in a 2-node model 
that can be used to satisfy the given boundary conditions most accurately is added to the 
CVBEM model. This process repeats until n nodes have been selected. In general, when 
selecting the kth node, the previous (k – 1)-selected nodes are considered fixed and all of the 
remaining candidate nodes are assessed with regard to their performance in a k-node CVBEM 
model when added to the already-selected (k – 1) nodes. 

The difference between NPA1 and NPA2 is that in NPA1, once a node is selected, it is 
permanently added to the CVBEM model. In NPA2, a nodal position refinement procedure is 
implemented, which allows for previously-selected nodes to be re-evaluated based on the 
subsequent selection of nodes to determine if a different node could be used in the model to 
more accurately satisfy the given boundary conditions. More details pertaining to the nodal 
position refinement procedure may be found in [8]. 

In the following demonstration problems, note the difference between the candidate nodes 
and boundary data, as depicted in Figs. 2 and 9 for problems 1 and 2, respectively. In particu-
lar, the black dots are the candidate nodes, whose locations correspond to the singularities of 
the basis functions defined in eqn (9), which are optimized using the NPA. The blue dots are 
the boundary data at which the boundary conditions are known. In the least squares approach, 
all of the boundary data are used when computing the coefficients of the CVBEM approxi-
mation function. In the collocation approach, only a subset of 2n boundary data points, whose 

Figure 2: Example plot of the error of the CVBEM approximation function formulated using 
the collocation approach. In this example, the CVBEM model includes n = 3 terms 
and 2n = 6 collocation points. The boundary of the problem geometry is mapped to 
the interval [0, 1] such that the points x = 0 and x = 1 correspond to the same point 
of the boundary. The locations of the collocation points are denoted by black dots. 
When the collocation approach is used, the absolute error of the CVBEM 
approximation function is numerically 0 at the location of each collocation point.
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locations are also determined by the NPA, are used when computing the coefficients of the 
CVBEM approximation function.

4.3 Error analysis

A convenience of modeling with the CVBEM is that complex variable theory provides a 
simple technique for determining the maximum error of the CVBEM approximation function 
in the l∞ norm. Let φ ∈ R2 denote a harmonic function that is the target solution of the BVP 
of interest, and let ˆ ˆ� �� � ��� �� �R z R2  denote the CVBEM approximation of φ. Error estima-
tion is based on the following two key observations: 

1. The target solution, φ, satisfies Laplace’s equation and is, therefore, harmonic in Ω.
2. The CVBEM approximation function, denoted ω̂ , is an analytic complex variable func-

tion. Consequently, ˆ ˆ� �� � �R , which is the CVBEM approximation of the target func-
tion φ, is also harmonic in Ω. 

The error function used in this work is |e(x,y)|, where e(x,y) is defined as follows: 

 � � �x y x y x y, , , .� � � � � � � �ˆ
 (10)

Since e(x,y) is the difference between two harmonic functions, e(x,y) is itself harmonic in 
Ω. Consequently, by the maximum modulus principle for harmonic functions, |e(x,y)| attains 
its maximum on ∂Ω. Hence, the maximum error of the CVBEM approximation function 
occurs on ∂Ω: 
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�  can be obtained by computing the value 

of |e(x,y)| at many locations along the problem boundary. Generally, as |e(x,y)| is computed at 

more locations along the boundary, the estimation of max ,
�

� �
�

� x y  will improve provided 

that the error evaluation points are reasonably spaced. 

4.4 Motivation for the given demonstration problems

The following demonstration problems contain stagnation points as features of their solu-
tions. The stagnation points are among the most difficult areas of the target flow situations to 
model because of the relatively extreme curvature of the solutions in those areas. Given the 
computational difficulty of modeling these areas, it is of interest to compare the computa-
tional outcomes obtained using the collocation and least squares approaches specifically in 
these areas. Consequently, particular focus is given to the flownets developed by the CVBEM 
models at the stagnation points in Fig. 3c for problem 1 and Figs. 11 and 12 for problem 2. 

4.5 Problem 1: Potential flow over a half-cylindrical obstacle (Dirichlet boundary 
conditions)

The two methodologies are applied to modeling potential flow over a half-cylindrical obsta-
cle. This demonstration problem leverages the difficult flow characteristics observed at the 
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upstream and downstream stagnation points of the obstacle where, in the limiting situation, 
streamlines adjacent to the solid surface form a right angle. Additionally, the ‘north pole’ of 
the cylinder presents a difficult flow situation to model computationally because of the rela-
tively extreme curvature of the solution in that area. 

The analytic representation of the velocity potential for this problem is given in [15] as 

 
� z z z z z� � � � � � � �1 0 0/ , , .I  (12)

For this demonstration, it is possible to take advantage of the symmetry of the target flow 
situation. In particular, the target potential flow is symmetric about the real axis. Therefore, 
the presented results are of the CVBEM approximation in the upper half-plane because the 
solution in the lower half-plane can be obtained by reflection. Of note, the target potential 
flow is also symmetric about the imaginary axis. However, this symmetry is not taken advan-
tage of in this work due to the desire to model both the upstream and downstream stagnation 
points because of the computational difficulty of obtaining an accurate approximation of the 
potential flow in their vicinity. 

A formal description of the test problem follows in Table 1. Since the exact solution is 
analytic everywhere except at z = 0, the real and imaginary parts of w are harmonic functions 
in C \ {0} and thus harmonic throughout Ω ⊂ C \ {0}. 

Figure 3 depicts the locations of the candidate nodes and 5% of the boundary data used in 
the formulation of the CVBEM models in this work. Recall, the least squares approach uses 
all of the available boundary data during the computation of the coefficients for the CVBEM 
approximation function, while in the collocation approach, only a subset of 2n points, as 
determined by the NPA, are used to compute the coefficients. 

Figure 4 depicts various flownet outcomes from the CVBEM model. In these figures, par-
ticular emphasis is given to the north pole of the half-cylinder, as well as to the stagnation 
points because these are the regions of the flow situation in which the curvature of the target 
solution is most extreme. Figure 3b depicts the left side of the obstacle, and Fig. 3c depicts a 
magnified version of the stagnation point at the left edge of the obstacle, (–1,0). The stagna-
tion points at (–1,0) and (–1,0) are difficult to model due to the extreme curvature of the target 
potential function in these areas. For this reason, it is of interest to ensure the CVBEM mod-
els yield high-fidelity approximations of these areas.

Figure 5 depicts the locations of the NPA2-selected nodes for the least-squares-based 
CVBEM model of the potential flow problem described in Table 1. Figure 5 depicts the loca-
tions of the NPA2-selected collocation points and NPA2-selected nodes for the 
collocation-based CVBEM model of the potential flow problem described in Table 1. 

Table 1: Example problem 1 (Dirichlet boundary conditions) – problem description

Problem domain Ω = {(x,y): –3 ≤ x ≤ 3, 0 ≤ y ≤ 3, and x2 + y2 ≥ 1
Governing PDE —2 φ = 0

Boundary conditions φ (x,y) = R[z + 1/z] = x + x/(x2 + y2), (x,y) ∈ ∂Ω
Number of candidate computational 
nodes

428 

Number of candidate collocation points 2,000
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Using NPA2, 428 candidate nodes, 2,000 boundary data points, and n = 40 terms in the 
CVBEM approximation function, the collocation and least squares approaches yield CVBEM 
models with maximum errors on the order of 10–7 and 10–8, respectively, as indicated in Table 
2. Since these models are highly accurate, superimposing their respective flownet outcomes 
would not help to compare the outcomes because they would be visually indistinguishable. 
Consequently, this work examines the accuracy of the CVBEM models with regard to approx-
imating five specific potential lines of interest located near the left stagnation point, (–1,0). 
The five potential lines of interest are depicted in Fig. 6. Each of the five potential lines of 
interest are defined by the value of their level curve. For this problem, potential lines can be 
defined for values c ∈ [–10/3, 10/3] as the set of points (x,y) satisfying: 

 

x
x

x y
c�

�
�

2 2
.  (13)

The five potential lines that are considered in this demonstration correspond specifically to 
the values c ∈{–2.000000, –1.999999, –1.999996, –1.999991, –1.999984}.

Figure 8 shows the computational error for the collocation and least squares outcomes 
when approximating these five potential lines of interest. The collocation outcomes for each 
of the potential line approximations demonstrate the absolute error decreasing below 10–10.5. 
This occurs because of the presence of collocation points near the stagnation point, which 
locally shrink the computational error to 0. Meanwhile, the least squares outcomes show that 
the error for each of the potential line approximations is consistently on the order of 10–10.5. 

Figure 3: Depiction of the problem geometry for example problem 1, the locations of the 
candidate computational nodes, and the locations of 5% (for visual clarity) of the 
boundary data. In the least squares approach, all of the boundary data are used to 
determine the coefficients of the CVBEM approximation function.
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Figure 4: (a) Flownet depicting potential flow over a half-cylindrical obstacle created using a 
CVBEM model with coefficients determined using the least squares approach. (b) 
Flownet in the vicinity of the left stagnation point (–1,0) using a CVBEM model 
with coefficients determined using the least squares approach. (c) Magnified 
flownet in the vicinity of the left stagnation point, (–1,0), obtained using a CVBEM 
model with coefficients determined using the least squares approach. The left 
stagnation point is an area of extreme curvature in the target potential function, 
which makes it difficult to model with high precision.
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Figure 8 highlights one of the primary differences between the two approaches. Namely, 
in the collocation approach, the approximation error is numerically 0 at each of the colloca-
tion points (a subset of only 2n points from the set of available boundary data points). On the 
other hand, the least squares approach seeks to minimize the approximation error at all of the 
boundary data points, which results in the approximation error usually never being exactly 0 
anywhere, but tending to be small everywhere. 

Although the computational results, given in Table 2, demonstrate consistent error reduc-
tion with increasing computational effort and model complexity (i.e. the number of 

Figure 5: Locations of NPA2-selected nodes for a least-squares-based CVBEM model with 
n = 40 terms. In the least squares approach, all of the boundary data are used when 
determining the coefficients of the CVBEM approximation function.

Table 2: Results for the computational time and maximum error for the examined CVBEM 
models. The simulations were conducted as single-threaded tasks on a 2018 Mac-
Book Pro with a 2.9-GHz Intel Core i9 8950K processor and 32 GB of system 
memory. Each model used n = 40 terms in the CVBEM approximation function.

Method for 
determining  
coefficients 

Number of 
boundary 
data 

NPA1 NPA2

Maximum error 
Time 
elapsed (sec) Maximum error 

Time elapsed 
(sec)

Collocation 
least squares 

1000 
1000 

7.671595e-05 
1.481381e-04 

8.504443 
9.327037 

2.120311e-07 
9.729918e-07 

79.528384
127.168965

Collocation 
least squares 

1500 
1500 

1.593233e-04 
1.009763e-04 

10.660891 
14.789025 

4.203467e-07 
1.300983e-08 

91.516374
182.862258

Collocation 
least squares 

2000 
2000 

2.134113e-05 
4.680979e-05 

12.689565 
19.686454 

1.485129e-07 
4.174735e-08 

101.205162
251.984192
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Figure 6. Locations of NPA2-selected nodes for a collocation-based CVBEM model with  
n = 40 terms. In the collocation approach, 2n collocation points are selected using 
NPA2 at which the boundary conditions are applied when determining the 
coefficients ofthe CVBEM approximation function.

Figure 7. Potential lines used for CVBEM model comparison with contour levels specified by 
the c value in the legend. These potential lines are located in the vicinity of the left 
stagnation point at (–1,0), see Fig. 3c for reference. The color scheme used in this 
figure corresponds to the colors used in Fig. 8 for the collocation results.
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linearly-independent terms in the CVBEM approximation function), the problem geometry 
itself is anticipated to have a direct influence on the level of accuracy that is achievable for 
the examined CVBEM models. For example, the prior paper [5] showed that simpler geom-
etries are associated with further error reduction of the CVBEM model with comparable 
computational effort. Furthermore, as demonstrated in the second example problem of this 
paper, which has a more complicated geometry and more complicated boundary conditions, 
it is necessary to use considerably more terms in the CVBEM approximation function to 
achieve error levels comparable to the ones achieved while modeling this problem. 

Figure 9 illustrates how the maximum error of each of the CVBEM models examined 
tended to decrease as the number of terms used in the CVBEM approximation function 
increased. This figure depicts the maximum error results as each new node is added to the 
CVBEM model using the collocation approach as well as the least squares approach. Results 
using NPAs 1 and 2 are shown for both of the approaches. 

4.6 Problem 2: Potential flow in a corner and over two successive half-cylindrical obstacles 
(mixed boundary conditions)

In this problem, two methodologies are applied to modeling potential flow in a corner and over 
two successive half-cylindrical obstacles. This demonstration problem has a more complicated 
geometry and more complicated boundary conditions than the previous example problem. 

Figure 8: Computational error results for the collocation and least squares approaches with 
regard to modeling the target potential lines indicated in Fig. 7. The collocation 
outcomes are shown in color. The least squares outcomes are shown in black. The 
collocation outcomes tended to achieve smaller minimum errors, while the least 
squares outcomes tended to achieve smaller maximum errors. The CVBEM models 
used 428 candidate nodes and 2,000 boundary data points.
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As discussed in the previous problem, the greatest computational difficulty when modeling 
these example problems has to do with modeling the curvature of the flow situation in the 
stagnation points. The previous example illustrated the CVBEM solution to a potential flow 
problem with two stagnation points. This example will illustrate the CVBEM solution to a 
potential flow problem with five stagnation points. Given the increased difficulty of this 
example problem, as indicated by the increased number of stagnation points to model, obtain-
ing highly accurate CVBEM models will require using CVBEM models with more linearly 
independent terms in the approximation function. A formal description of the test problem 
follows in Table 3. 

Figure 10 depicts the locations of the candidate nodes and 2.5% of the boundary data used 
in the formulation of the CVBEM models in this work. Recall, the least squares approach 
uses all of the available boundary data during the computation of the coefficients for the 
CVBEM approximation function, while in the collocation approach, only a subset of 2n 
points, as determined by the NPA, are used to compute the coefficients. Figures 11–13 depict 
the flownet outcomes from modeling this problem with the CVBEM using the least squares 
approach. Special emphasis is given to the flownets developed in the five stagnation points of 
this flow situation. 

Figure 14 depicts the locations of the NPA2-selected nodes for the least-squares-based 
CVBEM model of the potential flow problem described in Table 3. Figure 15 depicts the 
locations of the NPA2-selected collocation points and NPA2-selected nodes for the colloca-
tion-based CVBEM model of the potential flow problem described in Table 3. 

Figure 12 shows the flownets obtained from the CVBEM models in the vicinity of each of 
the four stagnation points associated with the two half-cylindrical obstacles. Specifically, 

Figure 9: Maximum error comparisons for four CVBEM models using 428 candidate nodes 
and 2,000 boundary data points.



252 B. D. Wilkins & T. V. Hromadka, Int. J. Comp. Meth. and Exp. Meas., Vol. 10, No. 3 (2022)

Table 3: Example problem 2 (mixed boundary conditions) – problem description.

Problem domain  Ω = {(x,y): 0 ≤ x ≤ 11, 0 ≤ y ≤ 6, and (x – 3)2 + y2 ≥ 1,  
and (x – 8)2 + y2 ≥ 1

Governing PDE: —2 φ = 0 

Boundary conditions: �
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Number of candidate  
computational nodes 

357

Number of candidate collocation 
points

4,000

Figure 10:  Depiction of the problem geometry for example problem 2, the locations of the 
candidate computational nodes, and the locations of 2.5% (for visual clarity) of 
the boundary data. In the least squares approach, all of the boundary data are used 
to determine the coefficients of the CVBEM approximation function.
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Figure 11.  (a) Flownet depicting potential flow in a corner followed by two successive half-
cylindrical obstacles obtained using a CVBEM model with coefficients determined 
using the least squares approach. (b) CVBEM model of the flownet near the first 
half-cylindrical obstacle. (c) CVBEM model of the flownet near the second half-
cylindrical obstacle.
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there are upstream and downstream stagnation points at the edge of each obstacle where the 
obstacle intersects the horizontal axis. Special attention is paid to these points because of the 
relatively extreme curvature of the target potential function in these areas. This curvature 
makes the target potential function difficult to model with high accuracy.

Figure 16 illustrates how the maximum error of each of the CVBEM models examined 
tended to decrease as the number of terms used in the CVBEM approximation function 
increased. This figure depicts the maximum error results as each new node is added to the 

Figure 12:  (a) CVBEM model of the flownet near the left stagnation point of the first 
cylindrical obstacle. (b) CVBEM model of the flownet near the right stagnation 
point of the first cylindrical obstacle. (c) CVBEM model of the flownet near the 
left stagnation point of the second cylindrical obstacle. (d) CVBEM model of the 
flownet near the right stagnation point of the second cylindrical obstacle.
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Figure 13:  CVBEM model of the flownet near the bottom-left corner of the problem domain 
at (0,0). The flow regime in this area is potential flow in a 90-degree bend.

Figure 14:  Locations of NPA2-selected nodes for a least squares-based CVBEM model with 
n = 150 terms. In the least squares approach, all of the boundary data are used 
when determining the coefficients of the CVBEM approximation function.
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CVBEM model using the collocation approach as well as the least squares approach. Results 
using NPAs 1 and 2 are shown for both of the approaches. Interestingly, for this example 
problem, the use of NPA2 did not seem to result in much of an improvement over NPA1 for 
either the collocation or least squares approaches. This may be due to the general difficulty 

Table 4: Results for the computational time and maximum error for the examined CVBEM 
models. The simulations were conducted as single-threaded tasks on a 2018 Mac-
Book Pro with a 2.9-GHz Intel Core i9 8950K processor and 32 GB of system 
memory. Each model used n = 150 terms in the CVBEM approximation function.

Method for 
determining 
coefficients 

Number of 
boundary 
data 

NPA1: NPA2:

Maximum 
error 

Time elapsed 
(sec) 

Maximum  
error 

Time elapsed 
(sec)

Collocation 
least squares 

2000 
2000 

6.737638e-08 
3.654825e-08 

70.683926 
314.067327 

2.088766e-08 
2.270650e-08 

1032.527589
4482.651908

Collocation 
least squares 

3000 
3000 

2.690375e-08 
3.515201e-08 

110.614553 
460.867467 

2.479682e-08 
2.451251e-08 

1478.593459
6284.974878

Collocation 
least squares 

4000 
4000 

9.338354e-08 
8.259562e-08 

130.004550 
633.744244 

5.529339e-08 
5.117079e-08 

1709.166521
8438.592256

Figure 15:  Locations of NPA2-selected nodes for a collocation-based CVBEM model with  
n = 150 terms. In the collocation approach, 2n collocation points are selected 
using NPA2 at which the boundary conditions are applied when determining the 
coefficients of the CVBEM approximation function.
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of modeling this problem given that the target flow situation incorporates five stagnation 
points. 

5 CONCLUSIONS
Historically, the collocation approach has been the predominant technique for determining 
the coefficients of a CVBEM approximation function. This paper treats the technique for 
determining the CVBEM coefficients as an opportunity for customization within the CVBEM 
methodology and demonstrates the use of an alternative method – namely, the least squares 
approach. These two approaches are demonstrated and compared when applied to two bench-
mark problems in ideal fluid flow. 

A primary advantage of the collocation approach is that it guarantees the resulting 
CVBEM approximation function will satisfy the given boundary conditions at no less than 
2n locations on the problem boundary, where n is the number of linearly independent terms 
used in the CVBEM approximation function. On the other hand, a benefit of the least squares 
approach is that it incorporates all of the available boundary data when determining the 
coefficients of the CVBEM approximation function. This feature of the least squares 
approach should be considered for applications of the CVBEM in higher spatial dimensions 
in which there may be a lot of boundary data available, especially if the surface area of the 
problem domain is large. The collocation approach could suffer in this setting if the target 
potential function cannot be adequately described by the values of the boundary conditions 
at just 2n locations. 

Figure 16:  Maximum error comparisons for four CVBEM models using 357 candidate nodes 
and 4,000 boundary data points.
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The collocation approach has been used as the standard approach in CVBEM implemen-
tations since its initial description in [2]. However, this work demonstrates that the least 
squares approach can also be used to obtain highly-accurate CVBEM models of the bench-
mark problems of potential flow over a half-cylindrical obstacle (a Dirichlet BVP) and 
potential flow in a corner followed by two successive half-cylindrical obstacles (a mixed 
BVP). The success of the least squares approach in modeling these problems suggests the 
approach may be viable in other computational settings and should be considered during the 
formulation of CVBEM models. 
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