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In the rapidly evolving automobile industry, the safety and quality of individual vehicle 

components have gained paramount importance. Among these, aluminum wheels are 

particularly critical, given their susceptibility to internal casting defects. This study presents 

a novel approach to identify these defects non-destructively, employing X-ray inspection 

and harnessing the power of YOLO (You Only Look Once) object detection. Images of 

vehicle aluminum wheels were obtained via X-ray inspection, revealing the presence of 

internal defects. Subsequently, a periodic noise e.limination algorithm, underpinned by 

morphological filtering and adaptive image processing weights, was utilized to enhance the 

image clarity. The application of a composite cascade filter further improved the image 

resolution. The enhanced images were then processed using YOLO object detection, a 

cutting-edge technology renowned for its precision in object detection tasks. This study 

explores the efficacy of different YOLO model architectures in detecting and identifying 

internal casting defects in aluminum wheels. Our research contributes to the development 

of a highly accurate system for the detection of internal casting defects in vehicle wheels, 

offering potential improvements in vehicle safety. This methodology, pairing X-ray 

inspection with advanced object detection algorithms, provides a robust approach for defect 

identification in the production process, laying the groundwork for future advancements in 

vehicle component quality control. 
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1. INTRODUCTION

The primary method of vehicle aluminum wheel production 

is casting, favored for its simplicity, cost-effectiveness, and 

suitability for mass production [1]. Aluminum wheels, aside 

from meeting aesthetic requirements, offer significant benefits 

such as lightweight and weight reduction, contributing to 

reduced carbon emissions and material savings. This has led 

to their widespread adoption over traditional steel wheels. 

However, the casting process is prone to internal defects 

during the filling and solidification stages, including casting 

holes, cracks, and sponge casting holes, which compromise the 

quality and functionality of the wheels. 

Non-Destructive Testing (NDT) systems have become 

critically important in the casting production process, 

enhancing manufacturing capability while improving 

inspection accuracy [2-6]. Among various NDT methods, X-

ray inspection, particularly digital radiography (DR), is 

prevalently used in the inspection of vehicle cast aluminum 

wheels due to its cost-effectiveness and efficiency [7-9]. 

Historically, X-ray inspection for defect identification in 

vehicle cast aluminum wheels has been widely researched and 

developed. Numerous computer X-ray inspection defect 

segmentation methodologies have been proposed, such as 

video-tracking-based wheel defect detection [8], wavelet 

technology applications for casting defect automatic detection 

[10], and adaptive threshold and morphological reconstruction 

for aluminum alloy wheel radiographic image defect 

measurement [11]. While these methods have achieved 

satisfactory recognition rates for defects, they are complex and 

time-consuming compared to the YOLO (You Only Look 

Once) object detection methodology used in this study. 

Drawing parallels from the medical field, convolutional 

neural networks and directed gradient Histograms have been 

used to detect and classify diseases from X-ray images [12]. 

Similarly, RYOLO v4-tiny deep learning has been applied for 

detecting and classifying pneumonia in CT scans and X-ray 

images [13]. These methods underscore the applicability of 

YOLO deep learning object detection in X-ray image 

detection across various industrial domains. 

The advent of enhanced hardware computing power has 

significantly accelerated computational speed, rendering the 

feature extraction and data computation of large image 

samples manageable. Artificial neural networks (ANN) [14] 

and convolutional neural networks (CNN) [15-17] are both 

have achieved good results in the computer vision field. This 

has led to the development of artificial intelligence and deep 

learning for identification and practical application in various 

related industries. The common object detection methods are 

the R-CNN series [18, 19], the SSD series [20-22], and the 

YOLO series [23-26]. The YOLO algorithm was proposed by 

Redmon et al. [23] in 2016. It is a neural network-like 

algorithm for object detection. The YOLO algorithm is 

optimized by continuous model improvement.  

In this study, X-ray inspection equipment was employed to 

inspect vehicle aluminum wheels, capturing images of the 

casting defects. These images were then processed using a 

periodic noise elimination algorithm based on weighted 
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adaptive morphology and a composite cascade filter, followed 

by the application of different YOLO target detection 

architectures. The best recognition effect and weight block 

output were obtained and subsequently tested using a 

Raspberry Pi 4 to achieve the desired identification results. 

This study aims to develop a simple, fast, and high-precision 

automatic identification system for internal defects, thereby 

assisting inspectors on the production line and mitigating 

potential customer safety risks and product variations. The 

results indicate that this system, combined with the optimized 

YOLO weight output and the casting defect identification on 

Raspberry Pi 4, can successfully identify and distinguish 

various types of internal defects, providing an audible alert and 

visual signal to prompt quality attention and improvement. 

 

 

2. VEHICLE ALUMINUM WHEEL PRODUCTION, X-

RAY INSPECTION AND IDENTIFICATION SYSTEM 

 

To achieve lighter vehicle weight, reduce energy cost and 

fuel consumption, aluminum alloy wheels have become the 

mainstream choice. Automotive aluminum wheel 

manufacturing technology can be divided into two 

technologies: “casting” and “forging”. Casting technology can 

be divided into gravity casting, low-pressure casting, high-

pressure casting, etc. according to the production pressure. The 

vehicle aluminum wheels used in this study were made using 

the low-pressure casting method [27]. The vehicle aluminum 

wheel production process is shown in Figure 1 [28]. Before the 

qualified wheels are sold, they are subjected to relevant safety 

tests in accordance with regulations. Structural strength tests 

and external environmental tests are conducted to ensure the 

wheel does not have structural strength problems and 

appearance corrosion problems. To ensure that there are no 

internal organizational problems and to guarantee the wheel 

structural strength integrity, it is necessary to use X-ray NDT 

for vehicle aluminum wheel quality inspection. 

X-ray non-destructive testing (DR) equipment was used in 

this study to collect casting defect samples. As shown in 

Figures 2 and 3, the X-ray inspection process is as follows: X-

ray NDT is performed by X-ray tubes with high voltage 

electricity and a controller to emit X-rays. Then the X-rays 

penetrate and irradiate the aluminum wheel casting. Different 

aluminum wheel casting thicknesses were X-rayed and sent to 

a digital image plate receiver, and image processing was 

performed real time on an industrial monitor. The image was 

then converted into a pixel image on the inspection screen. 

This pixel image shows the quality organization of each part 

inside the aluminum wheel casting. Finally, the image can be 

clearly seen by a professional X-ray inspector to directly detect 

and determine the casting defects. This study also captured 

three types and samples of casting defects that appear most 

frequently in the production line for follow-up training and 

verification. These routine defects are casting holes (ch), 

cracks (cr), and sponge casting holes (sch). The X-ray 

inspection technology provides accurate test results without 

causing any damage to the inspection object. 

 

 
 

Figure 1. Vehicle aluminum wheel production flow chart 
 

 
 

Figure 2. X-ray inspection process and equipment diagram 
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Figure 3. X-ray inspection flow chart 

 

The aluminum wheel undergoes X-ray non-destructive 

inspection. During the image capture process, due to the 

mutual computer and camera frequency interference, 

interference ripples will be generated. The shapes include 

horizontal lines, straight lines and amplitude shapes. These 

interference ripples are called “Moore fringes” “(Moiré 

Pattern)”. There are interference removal methods used in the 

past [29], but this study used adaptive weight morphological 

filtering. The periodic noise removal algorithm based on the 

“Composite Cascade Filter” is used for image denoising and 

optimization [30]. The defect sample image with moiré fringes 

was selected first, imported into the image sample, and 

denoised using a composite cascade filter. The results show 

that after denoising the defect sample image, the moiré fringe 

can be removed to optimize the image. The YOLO v4 training 

and testing results show that the defective sample denoised 

image can significantly help and improve its recognition rate. 

The defective sample images collected in the future will use 

this “composite-level series-parallel filter” method for 

denoising and optimization to achieve the optimized YOLO 

training and recognition rate. The relevant principles are as 

follows. The input image is (𝑥) and the cascade filtering result 

through the structural elements of a certain shape is fi(x), i=1, 

2, ...., n. The output image is F(x). Among them, the structural 

elements determine the weights through the adaptive 

algorithm shown in the formula α1, α2, ...... αn, shown as Eq. (1): 

 

𝐹(𝑥) = ∑ 𝛼𝑖
n
i=0 𝑓𝑖(𝑥)  (1) 

 

When the digital image is denoised using mathematical type 

filtering, it is possible to use structural elements with 

dimensions from small to large for processing. Therefore, 

selecting a series filter for image filtering shape-filters the 

image by structuring elements of the same shape in ascending 

order of dimension. This is similar to the series circuit design 

process, as shown in Figure 4 (a). In addition, the series filters 

formed by the above structural elements from different shapes 

can also be connected in parallel and combined with an 

adaptive weight algorithm to construct a series-parallel 

composite filter, as shown in Figure 4 (b). The image 

optimization and denoised process and results are shown in 

Figure 5. 

The neural network is a neural network formed by 

simulating biological nerve conduction and interconnected by 

multiple layers of neurons. In the artificial neural network, the 

neurons in each layer have input and output, and the activation 

function [31] is when the data is input from the neuron and the 

output is sent through a linear activation function transmitted 

to the next neuron up to the final output layer. The activation 

function allows the neural network to have sufficient ability to 

capture complex features, thereby improving the model 

efficiency and the artificial neural network composition. When 

we input a picture of size 512*512, the input layer of the first 

layer has 262,144 neurons. The input passes through multiple 

hidden layers, according to the number of categories to be 

identified and how many are output in the output layer. 

Neurons, where the depth of the model is determined by the 

number of hidden layers. It can be seen from the above that the 

artificial neural network has two main shortcomings. The first 

is that it requires a lot of memory. The second is that it is 

difficult to obtain the characteristics of each part of the object 

in the image because the input is judged by a single pixel. In 

the image interpretation, the artificial neural network accuracy 

is not outstanding. 

 

  
(a) (b) 

 

Figure 4. Series filter (a) and composite cascade filter (b) 

flow chart 

 

The convolutional neural network (CNN) is one of the 

feedforward neural networks, which is often used in the image 

recognition field. The biggest rolling machine neural network 

feature is that it can use color, texture, light source, and image 

size as the neural network input features [32, 33]. In recent 

years, it has been practically applied to safety detection and 

epidemic prevention reminders in daily life [34]. When an 

image is input, the data contains three-dimensional 

information such as color, horizontal and vertical position. The 

traditional deep learning network input image is one-

dimensional data, in which the traditional artificial neural 

network easily ignores the image shape during training. The 

recognition effect is therefore reduced and the convolutional 

neural network is not like the traditional artificial neural 

network, which simply extracts data for operation. The 

convolutional neural network has two more convolutional 

layers and pooling layers than the traditional artificial neural 

network. The convolutional neural network includes the first 

layer-the convolutional layer and the second layer-the pooling 

layer and a third layer-the fully connected layer (traditional 

artificial neural network), through feature extraction and 

system operation output classification results. 
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Figure 5. Image denoising optimization process 

 

The convolutional layer function extracts the features in the 

image. The image features are extracted through a matrix of 

size N*N. The matrix of size N*N is used to read the input 

image from top to bottom and produce the inner product. The 

matrix then calculates and obtains each local feature in the 

image as the input for the next layer. A 3*3 matrix reads input 

image sequentially from top to bottom. If the step size is set to 

1, the input image features will be obtained. The convolutional 

layer is characterized by preserving the structure of the photo 

and extracting features from it. 

The pooling layer function reduces the input image size to 

reduce the feature map of each image and retain the important 

features. There are three pooling layer advantages. First, it 

reduces the parameters required for the subsequent layers and 

speeds up the system efficiency. Second, when some pixels in 

the image have small offsets or differences in neighboring 

regions, it has little effect on the pooling layer output. Third, 

the pooling layer can reduce overfitting occurrence. Like the 

convolutional layer, the pooling layer also inputs a matrix of 

size N*N into the image and reads the input image sequentially 

from top to bottom to extract the values of each area and 

perform operations. There are three methods used by the 

pooling layer to reduce the image size, namely maximize, 

average and random. Taking maximization as an example, a 

2*2 matrix is used to set the step size to 2, and read the image 

from top to bottom and take out the maximum value for each 

area. In the end, in addition to getting a reduced size image, all 

of the important feature information is retained. 

Object Detection technology is composed of three different 

algorithms: Object Localization, Feature Extraction, and 

Image Classification. In the YOLO object detection algorithm 

series, with the improved version update, the network 

architecture is also optimized. YOLOv1 was first proposed by 

Redom et al. in the United States in 2015 [23]. The 

disadvantage of YOLOv1 is that the recall rate is very low and 

many small targets are easily missed. In 2016 YOLOv2 was 

launched. After strengthening, YOLO v2 was able to detect 

more than 9000 categories, so YOLO v2 can also be called 

YOLO 9000 [24]. In 2018 YOLOv3 was launched [25]. 

YOLOv3 features a pyramid network that improves small 

object detection ability, and the output uses NMS to select the 

most suitable one among multiple bounding box results as the 

output. YOLOv4 was jointly developed in 2020 by Liao 

Hongyuan Distinguished Researcher, Postdoctoral Researcher 

Wang Jianyao and Russian developer A. Bochkovskiy of the 

Institute of Information Science, Taiwan Academia Sinica 

[35]. The YOLOv4 network architecture has a skeleton 

divided into four parts: CSP Darknet-53, SPP, PANet, and 

Detection Head. CSPDarknet-53 consists of two architectures, 

Darknet-53 and Cross-Stage Partial Network (CSPNet), which 

are used as the base network architecture. This study uses 

YOLOv5. The network architecture diagram is shown in 

Figure 6. YOLOv5 is the latest YOLO detection method, 

proposed by Nepal et al. [36, 37]. The YOLOv5 uses 

CSPdarknet53 as the backbone and the Focus structure, which 

consists of modules such as Conv, C3, and Spatial Pyramid 

Pooling (SPP). The difference between YOLOv5 and previous 

versions is that it uses PyTorch instead of the YOLOv4 and 

YOLOv3 Darknet. The neck network also uses Feature 

Pyramid Network (FPN) and Pixel Aggregation Network 

(PAN) [36, 37]. In the YOLOv5 model architecture there are 

four different parameter structures, namely s, m, l, and x, 

which represent the sizes Small, Medium, Large, and Extra-

large. Each of its model architectures has different parameters 

applied to control the depth and width of the network [38]. As 

shown in Figure 7, the Focus layer was first introduced in 

YOLOv5, and the Focus layer replaced the first three layers in 

the YOLOv3 algorithm. The advantage of using the Focus 

layer is that it reduces the required CUDA memory, reduces 

the number of layers and increases forward propagation and 

backpropagation. The focus module divides the input data into 

four parts, each of which is equivalent to two down samplings 

[39]. Furthermore, the head in YOLOv5 is the same as in 

YOLOv4 and YOLOv3, generating three different feature map 

outputs for multi-scale prediction. It also helps to effectively 

enhance predictions for small to large objects in the model. 
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Figure 6. Network architecture diagram of YOLOv5 

 

 
 

Figure 7. Focus slice operation diagram 

 

YOLOv4 and YOLOv5 used four output coordinates in the 

grid unit which are tx, ty, tw, and th of the frame. Eqs. (2) to (5) 

calculate the offset value of the corresponding grid from the 

upper left corner of the bounding box relative to the center 

point, Cx and Cy are relative to the upper left corner. When tx 

and ty are calculated, the offset between 0 and 1 will be output. 

After adding the output offset to Cx and Cy, the center point 

border position will be obtained. The pw and ph of the dashed 

box are called the width and height of the preset box. After 

calculating with tw, th, pw, and ph, the predicted width and 

height will be called bw and bh. 

 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 (2) 

 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 (3) 

 

𝑏𝑤 = 𝑝𝑤𝑒
𝑡𝑤  (4) 

 

𝑏ℎ = 𝑝ℎ𝑒
𝑡ℎ (5) 

 

Intersection over union (IoU) is a criterion for detection 

accuracy. Many object detections use this standard as a 

reference for accuracy. In order for IoU to detect objects of 

any size and shape, a ground-truth bounding box and a 

predicted bounding box are required. In the IoU calculation 

method the solid line is the real bounding box and the dashed 

line is the predicted bounding box. The real bounding box and 

predicted bounding box intersection are divided by the real 

bounding box and predicted bounding box union, called IoU. 

When the IoU value is close to 1, it means that the predicted 

situation conforms more to a real situation. 

The confusion matrix method is used as an important 

quality benchmark for evaluating model training and flaw 

identification. This method is called a binary confusion matrix, 

which contains four elements: TP (True Positive), TN (True 

Negative), FP (False Positive), FN (False Negative). First, TP 

is the system correctly predicting a successful positive sample. 

For example, in an image classifier that predicts whether it is 

a casting defect ch, the image label that successfully classifies 

the casting defect ch as ch is called TP. Second, TN is the 

negative sample for which the system correctly predicts 

success. In the example above, a picture of casting flaw ch is 

successfully marked as not ch, called TN. Third, FP is when 

the system misjudges that it is a positive sample, but it is 

actually a negative sample. For example, a picture with a 

casting defect ch is incorrectly labeled and classified as a 

casting defect cr. Ultimately, FN is a negative sample in which 

the system misjudges (or a positive sample that the system 

cannot predict), e.g., the system incorrectly marks a picture 

with a casting defect ch as not a casting defect ch. According 

to the above explanation, the system model training and defect 

identification results are better if the TP and TN values are 

large. The Confusion matrix is shown in Table 1. If you want 

to look at these values directly, it is difficult to see at a glance 

whether a defect classification model is good or bad. This 

study also used recall (RR), precision (PR), F1-score and mAP 

to evaluate the model quality. After the program calculation, 

TP, TN, FP, FN can get a variety of different indicators. 

PR(Precision) represents the ratio of the number of correct 
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recognizers detected by the system to the number of all 

recognizers detected by the system. RR(Recall) is the ratio of 

the number of correct recognizers detected by the system to 

the actual number of recognizers. The F1-score is the Average 

of weighted and reconciled PR and RR, mAP is calculated by 

taking the average precision (AP) of all classes. The formulas 

for PR, RR, F1-score and mAP calculation methods are shown 

in Eqs. (6)-(9). 

 

𝑃𝑅(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (6) 

 

𝑅𝑅(𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (7) 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2⋅𝑃𝑅⋅𝑅𝑅

𝑃𝑅+𝑅𝑅
  (8) 

 

𝑚𝐴𝑃 = ∑
𝐴𝑣𝑒𝑃(𝑞)

𝑄

𝑄
𝑞=1   (9) 

 

Table 1. Illustration of confusion matrix 

 

 
True Condition 

Positive Negative 

Predicted Condition 
Positive TP FP 
Negative FN TN 

 

 

3. THE DEVELOPMENT ENVIRONMENT AND 

EXPERIMENTAL ARCHITECTURE FOR 

ALUMINUM WHEEL INTERNAL CASTING DEFECT 

DETECTION 

 

The development environment used in this study, as shown 

in Table 2, is the X-ray non-destructive inspection equipment 

used to capture the image samples for aluminum wheel 

internal casting defects. As shown in Table 3, during YOLO 

training, GTX 1060 is used as the training system operation 

cire, which improves the system operation speed during 

training, trains and calculates six YOLO models with different 

architectures, and creates the final training database at the 

same time. However, in the external system test, since this 

research is expected to be applied to the actual casting 

production process, the small and light Raspberry pi 4 

microprocessor will be the first choice for this experimental 

research system and will be used the Raspberry pi NoIR 

Camera v2. The original Raspberry pi factory night vision 

camera was also used to capture X-ray inspection images for 

internal casting defects. 

 

Table 2. The environment of the X-ray  

inspection equipment 

 

Inspection Cabinet 
Lead Made Inspection Cabinet 

(Avoid Radiation Leakage) 

High frequency high 

voltage generator 
BOSELLO XRG 160 

X-ray controller BOSELLO XRC 600 

Maximum power 640W 

Maximum voltage 160kV 

Maximum current 10mA 

Focal spot 2×0.4×0.4mm 

X-ray video chain 
image intensifier+ccd camera+coax 

cable+b/w monitor 

Control console 
industrial personal computer 

(Microsoft Windows® 2000) 

 

Table 3. The environment of the training computer  

and Raspberry pi 4 

 

Training 

computer 

OS Windows 10 

CPU AMD R5 2600 Six-Core 3.4GHz 

GPU GeForce GTX1060 6G 

Raspberry 

pi 4 

OS Ubuntu 20.04 LTS 

CPU Quard-Core Cortex-A72 processor 

memory 4GB 128-bit LPDDR4 

Camera Raspberry pi NoIR Camera V2 

LED IR LED 900nm 

Buzzer HMB 1206-05 

 

This study identifies vehicle aluminum wheel internal 

casting defects. The experimental structure is shown in Figure 

8, to use the X-ray non-destructive inspection equipment to 

inspect aluminum wheel internal casting defects. The photo 

images are shown on an X-ray inspection screen. When the X-

ray ray irradiates the vehicle's aluminum wheel-casting blank, 

the casting defect hole will be transparent and white. A non-

casting defect hole will not be transparent and white. As shown 

by the blue arrow in Figure 8, the night vision lens Raspberry 

pi NoIR Camera v2 can take pictures of the aluminum wheel 

internal casting defects, and was used to obtain casting defects 

inside three different casting blanks, as shown by the pink 

arrow in Figure 8. Finally, the YOLO weight file that has been 

trained is combined with in Raspberry pi 4 to identify and 

distinguish the aluminum wheel internal casting defects. 

The system architecture in this study is divided into three 

steps. As shown in Figure 9, the first step is to collect internal 

casting defect samples: use the X-ray non-destructive 

inspection equipment to capture a sample photo of the 

aluminum wheel internal casting defects. The second step is 

casting defect training: The X-ray inspection screen uses 

photographic tools to capture the aluminum wheel internal 

casting defects for self-adaptive image denoising and image 

processing. After image processing, the database content 

includes the position coordinates and the name of the casting 

defect bounding box category inside the aluminum wheel 

casting blank in the picture. After YOLO training the casting 

flaw bounding box position data inside the casting blank can 

be obtained. The object category confidence level is shown in 

the rectangular box. The position data for the casting defect 

bounding box inside the aluminum wheel-casting blank and 

the type of objects in the rectangular frame has confidence. 

This information will become the YOLO weight file needed 

for testing. As shown in Figure 10, the third part is the test part: 

when the system is turned on, the pre-trained weight file will 

be imported. When the aluminum wheel-casting blank is 

inspected by X-ray. The casting blank inspection image is 

displayed in the designated inspection screen photography 

area. The system will turn on the camera to take pictures of the 

aluminum wheel-casting blank. The picture will then enter the 

identification stage. If the photo has no casting defects the 

result identified by the identification system will not be 

included in the database. The system will turn the red LED 

light off and the buzzer will not produce a defect warning 

sound. This means that the system does not recognize a casting 

defect and it is an OK product with good quality that can be 

transferred to the next step. If the photo has casting defects the 

result identified by the identification system will be entered 

into the database. The system will light up the red LED light 

and make the buzzer defect warning sound to remind the X-

ray inspector, which means that the system has identified 

casting defects. If the photo has casting defects, the results 
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identified by the identification system are not in the database. 

If there are internal casting defects in the aluminum wheel-

casting blank, the casting blank photos to be identified have 

been wrong more than three times, the system will judge that 

the casting defect is not in the database, and it will display 

“Error” and enter the next step. A discriminative phase is the 

last part in the system. As shown in the pink box in Figure 10, 

this casting defect sample is a new casting defect type or a new 

casting defect image, in which case the retraining process must 

be entered. 

 

 
 

Figure 8. System architecture diagram 

 

 
 

Figure 9. System architecture of training part 

 
 

Figure 10. System architecture of test part 

 

 

4. EXPERIMENTAL Work AND RESULTS 

DISCUSSION 

 

Through the X-ray non-destructive inspection equipment 

that to inspect the internal casting defects of the vehicle's 

aluminum wheel is carried out, and the image is imaged on the 

X-ray inspection display screen. Three kinds of aluminum 

wheel internal casting defects are captured, as shown in Figure 

11. After optimization through adaptive image de-noise image 

processing, the open-source frame selection program 

labelimage is used to draw a rectangular or square frame 

around the internal casting defects in the image for bad defects. 

At the same time the casting defects are framed, the labelimage 

program will output it as a text file (TXT.), which contains the 

X-RAY Equipment

Take a picture

Image

Pre-process

YOLO Training

Create a final database

Start

YOLO 

Weights

Raspberry Pi

Program

External test 

Input

Process

Output

YOLO

Weights

Take a picture

Image process

Detect 

defect
Error

Error 

<3

F

F

T T

LED onBuzzer on LED off Buzzer off

End

Start

Retraining 

NG OK

1915



 

casting defect type name, the center coordinates of the object 

frame selection, and the length and width of the object frame 

selection, as shown in Figure 12. A total of 5,700 photo 

samples were used in this study to create a database of 

aluminum wheel internal casting defects. Each type has 1,900 

internal casting defect photo samples for YOLO training. After 

the training an additional 100 photo samples of each type will 

be used, for a total of 300 casting defect photo samples 

externally tested. 

 

Defect 1: ch Defect 2: cr Defect 3: sch 

   
 

Figure 11. Internal defect images of three castings 

 

 
 

Figure12. Frame the casting defect with labelimage 

 

The casting defect samples were tested in two different 

ways. The first is the most original image was taken by X-ray 

and inspected. The second was a periodic noise removal image 

processing method based on weighted adaptive morphology 

combined with a composite cascade filter. Comparing the two 

methods, the aperiodic noise removal image processing 

method based on weighted adaptive morphology produces a 

composite cascade filter relatively clear to the human eye. The 

YOLO deep learning network is different from the visual eye. 

Therefore, the above two methods were used to identify the 

internal casting defects from three different vehicle aluminum 

wheels. The results are shown in Table 4. The PR and mAP 

testing result values for the casting defect identification rates 

were determined. The image processing method combined 

with a periodic noise removal image processing method based 

on weighted adaptive morphology and a composite cascade 

filter used in this research was better than the original image. 

 

Table 4. Accuracy PR mAP of different filter on YOLOv4 

model 

 
 PR (%) mAP(%) 

Defect 

Filter 
ch cr sch  

Original 73.3 76.1 65.1 71.4 

Composite Cascade Filter 96.7 93.4 100 96.8 

Table 5. Accuracy(ch) of different sample sizes on different 

YOLO models 

 

 
Yolo 

v3 

Yolov3-

tiny 

Yolo 

v4 

Yolov4-

tiny 

Yolo 

v5s 

Yolo 

v5m 

Samples PR (%)_ch-Test sample:100p 

150 84.2 64.3 96.1 83.5 92.4 96.8 

400 89.9 82.1 97.7 88.6 94.8 97.4 

650 98.2 87.7 97.3 89.3 96.7 96.1 

900 92.5 75.0 97.7 88.6 91.5 92.5 

1150 93.8 88.5 94.9 91.5 98.0 96.3 

1400 95.4 71.5 97.6 89.2 97.0 98.0 

1650 97.8 84.0 94.7 83.3 96.3 94.9 

1900 94.0 88.0 96.7 88.6 97.5 92.2 

 

Table 6. Accuracy(cr) of different sample sizes on  

different YOLO models 

 

 
Yolo 

v3 

Yolov3-

tiny 

Yolo 

v4 

Yolov4-

tiny 

Yolo 

v5s 

Yolo 

v5m 

Samples PR (%)_cr-Test sample:100p 

150 63.8 40.7 81.0 40.8 87.1 84.9 

400 84.9 63.3 92.3 64.8 85.8 86.6 

650 78.9 62.6 90.8 55.2 89.7 89.1 

900 87.2 65.6 92.3 68.5 90.7 91.9 

1150 85.0 61.4 95.8 57.5 93.6 94.8 

1400 58.0 59.1 95.3 57.7 90.0 90.0 

1650 65.4 33.5 93.9 81.8 92.6 90.3 

1900 86.5 51.4 93.4 87.4 91.3 92.5 

 

Table 7. Accuracy(sch) of different sample sizes on  

different YOLO models 

 

 
Yolo 

v3 

Yolov3-

tiny 

Yolo 

v4 

Yolov4-

tiny 

Yolo 

v5s 

Yolo 

v5m 

Samples PR (%)_sch-Test sample:100p 

150 100 87.7 100 92.5 99.9 99.9 

400 100 95.1 100 89.7 99.5 99.7 

650 98.9 65.1 100 91.3 99.8 100 

900 100 64.1 100 92.7 99.5 99.5 

1150 98.2 82.9 100 85.3 99.7 99.7 

1400 100 40.2 100 94.4 99.8 99.8 

1650 85.6 22.1 100 95.8 99.8 99.6 

1900 90.2 60.8 100 93.2 99.9 99.5 

 

The number of iterations was set to classes*2,000 as 

suggested by the original author of YOLOv4.0. This was the 

optimal number of iterations. In order to obtain the optimized 

parameter conditions and the most appropriate training time 

for YOLO training, this study used two training parameter 

conditions. The first parameter is that the number of iterations 

is from 1,000 to 30,000 times. The second is the training angle 

from 0° to 330°. The YOLOv4 tiny model compares the test 

result value for PR, the average mAP, and IoU. Considering 

the final training time and identification results, the overall 

result is better when the training parameters are overlapped 

6000 times and the rotation angle is 0°. The training time is 

also shorter. In this analysis the optimized parameter 

conditions and the most appropriate training time for YOLO 

training were obtained as a follow-up study. 

In order to find the correlation between the number of 

samples and the accuracy rate, this study conducted a test 

analysis of each number of samples. The number of photo 

samples was from 150 photo samples to 1900 photo samples, 

and the number of samples was incremented using 250 photo 

samples each time. Six different model architectures were used 

for training and identification, respectively the YOLOv3, 

YOLOv3-tiny, YOLOv4, YOLOv4-tiny, YOLOv5s and 

YOLOv5m model architectures. As shown in Tables 5 to 8, 
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according to the final results, when adding the samples and the 

PR and mAP accuracy rates for related defect types will also 

crease accordingly for each YOLO module. The recognition 

performance comparison for each YOLO module can be seen 

in the mAP values for the final samples for 1900p, as shown 

in Table 9. The YOLOv3 and YOLOv4 are modules with more 

convolution layers. The recognition rate performance is good 

with the mAP value respectively 90.2% and 96.8%, but the 

disadvantage is that it takes a lot of time to perform research 

training. YOLOv3-tiny and YOLOv4-tiny are lightweight 

modules of YOLOv3 and YOLOv4, which use fewer 

convolutional layers for training. The purpose is to reduce the 

research and training time, and the relative recognition rate can 

be maintained. However, due to the use of fewer convolutional 

layers, the YOLO system can intercept fewer features, it can 

be seen from the results that the recognition rate is relatively 

low, with the mAP value respectively 66.7% and 89.7%. The 

YOLOv5s and YOLOv5m modules combine the advantages 

of YOLOv4-tiny and YOLOv4. They can not only shorten the 

system training time like YOLOv4-tiny but also maintain a 

good recognition rate like YOLOv4. Therefore, the mAP 

values for YOLOv5s and YOLOv5m respectively were 97.5% 

and 97.6%, as shown in Figures 13 to 14. Finally, in this study, 

after the results were compared, the YOLOv5 module has a 

very good recognition rate and better than the others. 

In addition, in order to find the correlation between the 

number of training and the accuracy rate, test and analyze each 

training number, the YOLO module selected this time was the 

latest YOLOv5s and YOLOv5m. The number of training 

(Epoch) is from 1 to 40, depending on the training times 

incremented every 5 times. A total of 9 training parameters 

were used for training and identification. As shown in Tables 

10 and 11, according to the final results, when the number of 

training times is added, the accuracy rates PR and mAP of 

related defect types will also crease accordingly. According to 

the final average mAP value, the result from one training 

session is the worst, the PR range of casting defect recognition 

rate is 14.9% to 44.9%, and the average mAP value range is 

31.3% to 58.8%. Taking 40 training times as the best result, 

the PR range of each casting defect recognition rate is 93.1% 

to 99.8%, and the average mAP value range is 97.9% to 98.1%. 

At the same time, it was also found that when the number of 

training times was more than 5 times, whether it is YOLOv5s 

or YOLOv5m module, the PR of casting defect precision rate 

can reach 88.0% to 99.7%, and the average mAP value can 

reach 95.2% to 95.4%. The research data results show that the 

YOLOv5 system can achieve a good precision rate even when 

the number of training times for casting defects is small, which 

can be a reference for shortening the research training time. 

External casting defect identification system, combined 

with optimized YOLO weight and Raspberry Pi 4 to run the 

execute identification, and the identification test results can 

successfully identify and classify each casting defect type, 

then according to the inspection result can inform the 

production line to improve the casting defects and to achieve 

stable production, as shown in Figure 15. The stability and 

precision of the identification system are extremely important, 

which will be one of the indicators of whether it can be 

imported into production. This study is based on the five core 

tools of IATF 16949, among which are the Reproducibility 

and Repeatability of MSA (Measurement Systems Analysis)-

confirming the stability and accuracy of the identification 

system. 

 

Table 8. Accuracy(mAP) of different sample sizes on 

different YOLO models 

 

 
Yolo 

v3 

Yolov3-

tiny 

Yolo 

v4 

Yolov4-

tiny 

Yolo 

v5s 

Yolo 

v5m 

Samples mAP (%)_Test sample:100p 

150 82.7  64.2  92.3  72.3  95.5  95.1  

400 91.6  77.5  96.7  81.1  96.8  97.1  

650 92.0  71.8  96.0  78.6  97.0  97.0  

900 93.2  68.2  96.7  83.3  96.4  97.1  

1150 92.3  77.6  96.9  78.1  97.8  97.8  

1400 84.5  56.9  97.6  80.5  97.0  97.5  

1650 82.9  46.5  96.2  87.0  97.6  97.7  

1900 90.2  66.7  96.8  89.7  97.5  97.6  

 

Table 9. Accuracy PR and mAP on different YOLO models 

Total samples: 2000p per each defects  

(Training:1900p/Test: 100p) 

 
Defects 

YOLO Models 

PR (%) mAP (%) 

ch cr sch  

Yolov3 94.0 86.5 90.2 90.2 

Yolov3-tiny 88.0 51.4 60.8 66.7 

Yolov4 96.7 93.4 100.0 96.8 

Yolov4-tiny 88.6 87.4 93.2 89.7 

Yolov5s 97.5 91.3 99.9 97.5 

Yolov5m 92.2 92.5 99.5 97.6 

 

Table 10. Accuracy PR and mAP of different epoch times on 

YOLOv5s model 

 
Defects 

Epoch Times 

PR (%) mAP (%) 

ch cr sch  

1 22.4 29.1 40.5 31.3 

5 91.0 88.2 99.7 95.2 

10 92.1 91.3 99.6 95.7 

15 97.8 91.6 99.8 97.3 

20 99.0 90.3 99.7 97.9 

25 96.0 92.8 100.0 97.4 

30 97.5 91.3 99.9 97.5 

35 98.0 91.7 100.0 97.7 

40 98.1 93.1 99.8 97.9 

 

 
 

Figure 13. The mAP@0.5 chart of three casting defects for 

YOLOv5s
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Figure 14. The mAP@0.5 chart of three casting defects for 

YOLOv5m 

 

Table 11. Accuracy PR and mAP of different epoch times on 

YOLOv5m model 

 

Defects 

Epoch Times 

PR (%) mAP (%) 

ch cr sch  

1 14.9 25.1 44.9 58.8 

5 88.0 89.1 99.6 95.4 

10 92.0 92.0 100.0 96.7 

15 92.5 92.9 100.0 96.9 

20 94.1 90.0 99.5 97.2 

25 97.2 90.0 99.6 97.8 

30 92.2 92.5 99.5 97.6 

35 95.4 90.0 99.6 97.9 

40 94.6 93.5 99.7 98.1 

 

Reproducibility: Under different conditions, such as 

different inspectors, the same program settings, photos of 

inspected flaws, and environmental conditions, repeat the 

measurement of the same object under test to ensure the 

accuracy of the system. In the external experimental test, this 

study selected casting defect photos, 10 samples of different 

types of defective products (with defects), 5 photos of different 

good samples (without defects), and photos of each casting 

defect A total of 15 samples, 45 samples in total, and was 

tested by 3 different inspectors for the precision of the system. 

The judgment is based on whether the system can correctly 

distinguish defective products from good products, and clearly 

distinguish and identify them. The test results show that the 

system can successfully identify and inspect various types of 

NG and OK products 100%. The system can successfully 

complete the identification when testing is performed by three 

different testers, which means that in addition to the 

identification system accuracy, the reliability degree is OK and 

the system program will not produce abnormal recognition due 

to different variations, which will indirectly affect the 

identification result. 

Repeatability: Under the same conditions, such as the same 

inspector, in the same program setting, defect photos and 

environmental conditions, repeatable measurement of the 

same object was conducted to ensure system stability. In the 

external experimental test, this study selected casting defect 

photos, 10 photo samples of the same defect, and a total of 30 

samples to conduct a systematic stability test. The judgment 

basis is based on whether the system can clearly and correctly 

identify and detect the same defective product location, and 

will not produce identification variation. The test results show 

that the system can successfully identify and detect defective 

products and defective positions 100%, and there was no 

abnormal position identification, which indicates the stability 

and reliability of the identification system. In the beginning of 

this research, we focused on the source quality of the training 

samples, and after multiple tests and verifications, defined the 

correct parameters of the training samples that managed and 

implemented them accordingly. Rigorous research and 

training process can finally achieve optimal and credible 

research identification results. 

 

Defect 1: ch Defect 2: cr Defect 3: sch 

   
 

Figure 15. The results of the three casting defects detection 

 

 

5. CONCLUSION 

 

An identification system for automotive aluminum rim 

internal casting defects was established. The target is to find a 

method that can improve the training speed, and actually help 

the casting manufacturing process. We trained six different 

models that are YOLOv3, YOLOv3-tiny, YOLOv4, 

YOLOv4-tiny, YOLOv5s, and YOLOv5m. The final 

experimental test results show that of these six different model 

architectures, the YOLOv4 and YOLOv5 model architectures 

performed better in all aspects. In terms of the recognition rate 

for each casting defect type, the YOLOv4 model architecture 

was the best, with more than 90%, and its range was 

93.4%~100%; The average mAP was also above 96.8%. In 

terms of the average mAP recognition rate, the YOLOv5s and 

YOLOv5m model architectures were the best, with 97.5% and 

97.6%, both of which were above 97.0%. If the main goal of 

this research is to maintain a high defect recognition rate and 

a good training time, the YOLOv5s model architecture is the 

best. The recognition rate for each casting defect type was over 

91.0%, and its range was 91.3%~99.9%. The average mAP 

was 97.5% and the average mAP was better than the YOLOv4 

model architecture. The training time is a quarter for YOLOv4, 

showing that the YOLOv5s model architecture is very suitable 

for vehicle aluminum wheel technological developments in the 

detection of internal casting defects. Finally, previous studies 

on the identification of internal defects in cast aluminum alloys 

only focused on the differences in the recognition rate of each 

deep learning module and found the optimal module. In this 

study, followed the previous model and retained Yolov3 and 

Yolov4. In addition to the module, the newly developed 

Yolov5 module is added to compare the identification results, 

and after obtaining the optimized weight, it is output to the 

external Raspberry pi 4 for simulating the actual casting 

production to detect internal casting defects, and finally 

obtains satisfactory application identification, and  that created 

an internal casting defect identification system for aluminum 

wheels follow the result, combined with the optimized YOLO 

weight output and the casting defect identification on 

Raspberry Pi 4. This system has the reproducibility method in 

the MSA measurement analysis verification. The results show 

that the identification system created by it can have good 
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stability and accuracy. It can accurately identify and 

distinguish numerous types of defects with high reliability. 

This system will eliminate human variability leading to 

affecting the final product identification results. The system 

devised in this study achieved satisfactory results in the 

detection of internal aluminum wheel casting defects. The 

quality inspection and evaluation technology for internal 

casting defects are expected to develop further, increasing 

practical use in automotive aluminum wheel and related 

casting production industries in the future. 
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