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The combination of antenna arrays with optimization algorithms aims to minimize SLL, 

Linear antenna arrays are an extensively used electromagnetic system in modern wireless 

communication. The improvement algorithms are the genetic algorithm GA, the flower 

pollination algorithm FPA, and the grey wolf optimization GWO. This has been 

implemented to reduce SLL and communicate the signal to the right place and the highest 

efficiency with the greatest amount of energy and by reaching the best solution. antenna 

arrays engineering was arranged in linearity and implemented in different numbers of 

elements, i.e.8,16,32,64,128, and 256 elements, Each algorithm has criteria that affect the 

reduction of SLL, In GA when considering the influential parameters represented by 

iteration, population size, and max stall iteration, the best effect is iteration where SLL is 

reduced to -32.9523dB and at 16-element at iteration 50.FPA has many influential 

parameters representing iteration, population size, probability, and flower attraction rate. 

The best of these effects is iteration. SLL reduced to -35.0696dB at iteration 300 and at 64-

element. In GWO the influential parameters are iteration and population size the best effect, 

it was concluded, is iteration as well, which has reduced SLL to -32.8479dB at 8-element 

in iteration 140.  
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1. INTRODUCTION

Over the past few years, Numerous requests have been 

made to develop modern wireless communication engineering 

and a variety of systems, such as the artificial intelligence 

system of the neural network and the swarm intelligence 

optimization system, in order to gain access to optimal 

solutions through the use of various techniques [1, 2].  

Recent research in the field of wireless communications has 

demonstrated a significant interest in the problem of 

enhancing swarm intelligence in general and the effect of 

parameters in particular on the performance of meta-heuristics 

algorithms used to control swarm behavior. The swarm is 

utilized in a variety of applications, including wireless 

communication, drones, wireless sensor networks, and mobile 

robotics, among others [3]. 

The objective of these studies is to enhance the performance 

of population-based meta-heuristics swarms by enhancing the 

collective intelligence of individual swarm members and their 

interaction [4]. The effectiveness of swarms is affected, among 

other things, by the parameters used by algorithms to regulate 

swarm behavior. These parameters include, for instance, the 

population size of the swarms, their rate of movement, their 

rate of refreshment, and the level of communication between 

its individuals [5]. 

Studies analyze the effect of these parameters and evaluate 

them to determine the optimal values that improve swarm 

performance and boost collective intelligence. Multiple 

methods, such as mathematical modeling, simulation, and 

practical experiments, can be used to investigate this issue and 

analyze the results [6]. 

Using these studies and suggestions are used to minimize 

SLL, using a genetic algorithm, flower pollination algorithm, 

and grey wolf optimization when they are combined with 

linear antenna arrays and comparison between them. the 

effectiveness and applications of swarms can be enhanced in 

many areas, contributing to the development of wireless 

communications and their technology where they are used 

with antennas of circular, random, and linear arrays [7]. 

In this paper, will be touched on the effect of a parameter 

for each algorithm and for different numbers of elements of 

linear antenna arrays. The parameters are meant as the 

iteration rate, population size, the likelihood of attracting 

swarms, and others that change to reduce the side lobes and 

each element of the linear antenna arrays. Changing algorithm 

parameters can have different effects depending on the 

specific algorithm and parameters being modified.  

However, modifying algorithm parameters can affect the 

performance, behavior, and output of the algorithm. Here are 

some common effects that variable parameters and others can 

have, all of which when connected to linear matrices aim to 

reduce lateral lobes at any small change in each value of the 

parameters. 

In addition, GA [8], FPA [9], and GWO [10] swarm 

intelligence optimization algorithms and the impact of each 

algorithm's parameters after linking them to linear antenna 

arrays will be analyzed, as it is well-known that in various 

methods of improvement, the parameters have a significant 
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impact on performance. Compatibility and cooperation differ 

between parameters for different types of optimal exploitation 

problems [11]. 

Due to the fact that these parameters are not required to be 

identical, some algorithms have basic parameters that have a 

significant impact when used to improve the solution. 

Although there are difficult criteria for identification, this is an 

important issue. However, the parameters of each algorithm 

must be determined based on the nature of the problem to be 

solved [12]. 

The objectives of this paper are to reach the optimal solution 

by minimizing SLL by using altering the parameters of each 

algorithm at a certain number of antenna elements. 

2. LINEAR ANTENNA ARRAYS

An antenna array is a collection of multiple antennas 

arranged in a particular pattern to accomplish desired 

characteristics such as enhanced gain, directivity, or 

beamforming. Figure 1 depicts a linear antenna array, which 

comprises of antennas arranged in a straight line [13].  

When designing a linear antenna array, it is important to 

consider the spacing between the antennas, as this affects the 

array's performance. The spacing between adjacent antennas 

is typically chosen based on the desired radiation pattern and 

operating frequency [14]. 

Figure 1. Linear antenna array geometry 

In antenna arrays, the array factor, also known as the 

radiation pattern or radiation field, describes how the radiated 

or received electromagnetic waves propagate in different 

directions from an antenna array. It represents the spatial 

distribution of the electromagnetic field strength or power 

radiation pattern in different directions. 

The array factor is calculated by summing the contributions 

from each individual antenna element, taking into account the 

element's position, amplitude weight, and phase weight. The 

array factor is typically expressed as a function of the angle of 

radiation or direction of arrival [15].  

For an LAA, the array factor can be represented 

mathematically as [16]: 

𝐴𝐹𝐿𝐴𝐴(𝐼
𝐿 , ∅) = ∑ 𝐼𝑛

𝐿

𝑁𝐿𝐴𝐴

𝑛=−𝑁𝐿𝐴𝐴

𝑐𝑜𝑠(𝑘𝑑𝑛
𝐿  𝑐𝑜𝑠(∅)) + 𝜑𝑛

𝐿 (1) 

where 𝜑𝑛 ,𝐼𝑛 ,𝑘 , and 𝑥𝑛  are the phase, excitation amplitude,

wavenumber, and location of the 𝑛𝑡ℎ element respectively. If

we additionally assume that there is uniform amplitude and 

phase excitation 𝜑𝑛 = 0 𝑎𝑛𝑑 𝐼𝑛 = 0, It is possible to express

the array factor as: 

𝐴𝐹(∅) = 2 ∑ 𝑐𝑜𝑠[𝑘𝑥𝑛 𝑐𝑜𝑠(∅)]

𝑁

𝑛=1

(2) 

The array factor equation considers the position of each 

antenna element and applies the appropriate phase shift based 

on the desired direction. The amplitude weights account for 

the relative strength or contribution of each antenna element 

to the overall radiation pattern. 

By adjusting the amplitude weights and phase shifts of the 

individual antenna elements, it is possible to shape the 

radiation pattern of the linear antenna array. This allows for 

various applications such as steering the main beam in a 

specific direction, creating nulls or voids in certain directions 

to reduce interference, or achieving beamforming to focus the 

energy in a desired direction, the array factor provides 

valuable insights into the overall behavior of the linear antenna 

array and is an essential tool in antenna array design and 

analysis [17]. By minimizing the side lobes, a linear antenna 

array with Metaheuristics algorithms was used to achieve the 

best results [18]. This is accomplished by adjusting the 

parameters of each algorithm to specific values and preparing 

various antenna elements; the goal is to reduce the side lobes 

by varying the parameter values. 

The SLL is a measure of the power or field strength in the 

sidelobes of the antenna's radiation pattern. sidelobes are lobes 

or peaks in the radiation pattern that occur in directions other 

than the main lobe (the primary direction of radiation). SLL 

quantifies the level of radiation in these sidelobes relative to 

the main lobe and is usually expressed in decibels (dB). 

The objective of using an LAA is to enhance the beam 

pattern and decrease SLL. This is accomplished by identifying 

the optimal set of exciting currents for LAA elements, which 

is impossible without calculating the fitness function given by 

the following equation: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (20 × 𝑙𝑜𝑔10)|𝐴𝐹(∅)|) (3) 

In the context of optimization algorithms, a fitness function 

is a mathematical function shown in Eq. (3). The performance 

of a linear antenna array is often evaluated based on its ability 

to focus or direct radiation in a specific direction (main lobe) 

while minimizing radiation in unwanted directions sidelobes. 

High-performance antenna arrays are designed to have low 

SLL, meaning that they minimize the power radiated in the 

sidelobes. The lower the SLL, the more focused and 

directional the antenna becomes, which is generally desirable 

for applications like radar, wireless communication, and 

beamforming [15]. 

The SLL is directly related to the characteristics of the array 

factor. Specifically, the SLL is a measure of the level of 

radiation in the sidelobes of the array factor. A low SLL 

indicates that the sidelobes of the array factor are suppressed, 

resulting in a more focused and directional main lobe. 

In summary, the array factor, SLL, and the performance of 

a linear antenna array are interconnected. The design of the 

array, including element spacing and excitation, directly 

affects the radiation pattern and, consequently, the SLL. 

Minimizing SLL is essential for applications where precise 

beamforming and radiation control are critical [18]. 

Minimizing side lobes in the radiation pattern of an antenna 

is important for several reasons, and it provides several 

benefits, particularly in communication, radar, and other 

applications where precise radiation control is essential. 

3. OPTIMIZATION TECHNIQUES

There are many algorithms that are used in different 
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applications and in this paper the effect of the parameters of 

GA, FPA, and GWO algorithms will be recognized and the 

parameters changed when different numbers of antenna 

elements to minimize SLL. 

 

3.1 Genetic algorithm 

 

The genetic algorithm is an artificial evolution-based 

research algorithm [19]. Adopted research mechanisms 

frequently depend on the formulation and seek for adaptations 

involving alterations made to the initial algorithm, the 

effectiveness of this algorithm is dependent on these 

formulations. 

Its operational mechanism comprises a collection of 

classified symbols and a token in the form of chromosomes, 

which collectively ascertain optimal solutions for groups in a 

more efficient manner than employing each symbol in 

isolation [20]. John Holland, a physicist, devised and proposed 

this evolutionary technology. The stages delineated are as 

follows: reconstruction initiation, evaluation, and selection. 

The principal phases comprise the last three. The initial stage 

involves the stochastic selection of chromosomes to ascertain 

the population size. Subsequently, an evaluation is conducted, 

during which the distinct fitness of each individual is 

ascertained and reassembled. This reassembling process 

identifies the progenitors and, based on the fitness of the 

progeny, the new chromosome. While mutation and crossover 

are considered crucial aspects in genetic algorithms, further 

clarification on these concepts can be provided at a later stage. 

The Three values characterize 𝜃  venom, ∅ longitude, and 

radial distance, R (equivalent to the Earth's radius of 

approximately 6378100 meters), Utilized to ascertain the 

Coordinates in a sphere of a given point. Applying the 

following formula [21]: 

 

𝑋 = 𝑅 × 𝑠𝑖𝑛 𝜃 ×  𝑐𝑜𝑠 ∅ (4) 

 

𝑌 = 𝑅 × 𝑠𝑖𝑛 𝜃 × 𝑠𝑖𝑛 ∅ (5) 

 

𝑍 = 𝑅 × 𝑐𝑜𝑠 𝜃 (6) 

 

X, Y, and Z are distinct chromosomal parameters that, when 

converted to 2D Fourier, generate images. For the purpose of 

enhancing the array composition, reference [22] utilized u-v 

with n(n-1) antennas by further enhancing frequency and 

decreasing SLL for the evolutionary algorithm. The first stage 

of the genetic algorithm consists of arbitrarily constructing 

chromosomes between longer and shorter at-length points to 

ensure appropriate annexation. After that, the process of 

evaluating the necessary level of physical fitness begins. The 

likelihood of crossover and mutation occurring in the 

subsequent generation is considered, and the identification and 

reconstruction procedure are subsequently determined using a 

subset of the chromosomes between them. 

• Crossover: A new chromosome is produced through the 

arbitrary severance of chromosomes at one or more 

positions (X, Y, or Z) by the crossover operator. At one 

or more points, the intersection may materialize. There 

is no new material production as a consequence of the 

intersection. It augments the mean fitness of 

subsequent generations within the population through 

the fusion of two pre-existing chromosomes, thus 

producing new chromosomes. 

• Mutation: The mutation that the evolutionary algorithm 

arbitrarily induces in the chromosome gene may affect 

X, Y, Z, or multiple ones. By introducing additional 

chromosomes into the population, the mutation 

expands the solution space. Randomly modifying genes 

on chromosomes [20]. 

This algorithm features a range of strengths and weaknesses. 

the strengths are: Wide Application, Global Search, 

Population Diversity, and Crossover and Mutation. 

Weaknesses are Computational Intensity, Parameter 

Sensitivity, and Convergence Speed. 

GA with LAAs was used to reduce the side lobes and reach 

the optimal solution in regard to a variant sum of antenna 

elements by changing the values of the parameters of GA 

which include Generation, Maximum Stall Generation, and 

Population Size as they affect the decrease of SLL and will be 

given a simple glimpse of each. 

 

3.1.1 Generation 

In a GA, generations, also known as iterations or epochs, 

play a crucial role in the evolutionary process. Each iteration 

represents a cycle of selection, reproduction, and genetic 

operators that simulate the natural process of evolution to find 

an optimal solution to a problem.  

The number of iterations affects the balance between 

exploration and exploitation in a GA. In the early iterations, 

the algorithm focuses more on exploration. As iterations 

progress, the algorithm gradually shifts towards exploitation, 

refining, and improving solutions within the promising regions 

already discovered [23].  

It also affected the convergence with each iteration, the 

initial population contains a diverse set of individuals, and 

through the selection and reproduction process, the algorithm 

gradually narrows down the search space to the fittest 

individuals. As iterations proceed, the population typically 

converges towards a region of the solution space that contains 

optimal or near-optimal solutions. If the algorithm is allowed 

to run for too few iterations, it may not reach an optimal 

solution and may terminate prematurely. 

The quality of solutions found by a GA generally improves 

with more iterations creating new offspring with potentially 

better fitness values. Through genetic operators like crossover 

and mutation, the algorithm introduces diversity and helps in 

exploring new regions of the solution space [23].  

The number of iterations directly impacts depends on the 

complexity of the problem, computational resources, and the 

desired trade-off between solution quality and time constraints. 

 

3.1.2 Population size 

The population size is a critical parameter in a genetic 

algorithm, representing the number of individuals (candidate 

solutions) present in each generation. The population size has 

a significant effect on the performance and behavior of a 

genetic algorithm, the effects are Convergence Speed, 

Generally, a larger population size increases the convergence 

speed of a genetic algorithm. The algorithm can exploit more 

promising regions of the search space, leading to faster 

convergence toward optimal or near-optimal solutions. 

However, increasing the population size also incurs a higher 

computational cost per generation [14]. 

Exploration and exploitation are influential factors in GA, 

larger population size increases the diversity of the solutions 

explored in the search space. It allows for a broader 

exploration of the solution landscape. On the other hand, a 

smaller population size promotes exploitation by focusing on 
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the fitter individuals and converging towards local optima. In 

addition. The population size directly affects the 

computational resources required to execute the genetic 

algorithm. As the fitness evaluation and genetic operators need 

to be applied to a larger number of individuals [24]. 

The population size influences the genetic diversity within 

the population. A larger population tends to maintain higher 

diversity since there are more individuals and a wider range of 

genetic information. This diversity can be advantageous, 

especially in complex optimization problems where 

maintaining diverse solutions can help avoid premature 

convergence and find better solutions. It is often recommended 

to start with a moderate population size and then adjust it based 

on performance analysis and convergence behavior [25]. 

 

3.1.3 Maximum stall generations 

In a genetic algorithm, the maximum stall iterations (also 

known as stagnation iterations) refer to the maximum number 

of consecutive generations in which there is no improvement 

in the fitness of the population. It is used as a termination 

criterion to stop the algorithm if it is unable to make progress. 

the effect of the maximum stall iterations parameter in a 

genetic algorithm can vary depending on the specific problem 

and the characteristics of the population [26]. 

One of the important influences is termination, when the 

maximum stall iterations limit is reached, the algorithm 

terminates, considering that further iterations are unlikely to 

yield better results. This helps in stopping the algorithm from 

running indefinitely and saves computational resources. 

Performance can be an influential factor in Setting the 

maximum stall iterations too low can lead to premature 

termination, preventing the algorithm from finding good 

solutions. Conversely, setting it too high can result in 

unnecessary computational effort if the population has truly 

stagnated. It is important to strike a balance between 

exploration and exploitation based on the problem at hand [27]. 

To determine the appropriate value for the maximum stall 

iterations, it is often helpful to consider the characteristics of 

the problem domain, the expected convergence rate, and the 

computational resources available. 

 

3.2 Flower pollination algorithm 

 

Yang [28], introduced this algorithm as one of the 

metaheuristics methods that incorporates the propagation of 

blossoming plants as a determining factor. It has been widely 

implemented and is founded upon four foundational principles: 

Local inoculation utilizes subjective and biological pollination 

as opposed to bioavailability and cross-vaccination, which are 

global vaccination strategies, probability  𝑝 , that signifies a 

proportion of localized immunization substituted for 

immunization global. 

FPA comprises core parameters of Levy-flights based step 

size 𝐿(𝛽), population size (𝑁), scaling factor 𝛾 , Switching 

Probability 𝑝 , and 𝜀 ∈ [0,1], and a uniform distribution is 

commonly employed in local inoculation [9]. 

Random number selection determines global and local 

inoculation. If the switching probability 𝑝  is low, a global 

inoculation is administered; otherwise, an administration of a 

local inoculation occurs. 

The subsequent equations provide a mathematical 

illustration of flower uniformity and global pollination: 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡) (7) 

where, 𝑥𝑖
𝑡 is the solution vector 𝑥𝑖 at iteration 𝑡, 𝛾 is a scaling 

factor to control step size, and 𝑔𝑏𝑒𝑠𝑡  is the current best solution. 

𝐿 This number represents the Levy flights-based step size; it is 

an estimate of the pollination intensity. The following 

mathematical expression represents local pollination: 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝜀(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡) (8) 

 

where 𝑥𝑘
𝑡   and 𝑥𝑗

𝑡 are pollen from several blooms belonging to 

the same kind of plant. If 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  are chosen from the same 

population, this is comparable to a local random walk as 

𝜀 comes from a uniform distribution in [0,1]. 

This algorithm features a range of strengths and weaknesses. 

the strengths are: Global Exploration, Parallelism, and ease of 

Implementation. Weaknesses are: Limited Local Search, 

Convergence Speed, and Sensitivity to Parameters. 

There are many ways used to minimize side lobes, FPA with 

LAA is used to reduce SLL and energy concentration on the 

main lobe. A range of parameters can be changed for more 

than one value and for different antenna elements, namely, the 

number of iterations, population size, probability of switch for 

FPA, and flower attraction rate. 
 

3.2.1 Iterations 

Iterations, in the FPA, refer to the number of times the 

algorithm goes through the main steps of the optimization 

process. Each iteration involves the evaluation of the fitness of 

the flowers, pollen dissemination among the flowers, and 

updating the flower population based on the obtained fitness 

values. 

The number of iterations influences the balance between 

exploration (diversification) and exploitation (intensification) 

of the search process. Initially, a higher number of iterations 

tend to favor exploration, allowing the algorithm to search a 

broader space. As the iterations progress, the focus gradually 

shifts towards exploitation, refining the solutions in promising 

regions. The proper balance depends on the problem and 

should be determined through experimentation [29]. 

The number of iterations can be used as a stopping criterion 

in the FPA. For instance, the algorithm may be terminated 

after reaching a predefined number of iterations or when a 

certain convergence criterion is met. The stopping criteria can 

be based on the improvement in the objective function value. 

Increasing the number of iterations directly affects the 

computational time required for the optimization process.  

While more iterations may lead to better solutions. In 

practice, in an FPA, it is often necessary to experiment with 

different iteration counts to find an optimal balance between 

exploration and exploitation. 

 

3.2.2 Population size 

The population size in an FPA, refers to the number of 

flowers or potential solutions that exist in each generation of 

the algorithm. The population size is a crucial parameter in the 

FPA, and it has a significant impact on the algorithm's 

performance and convergence behavior. Here are some effects 

of population size in a flower pollination algorithm. 

The population size directly affects the computational 

resources required by the algorithm. With a larger population, 

the algorithm needs to evaluate fitness values for more 

solutions and perform additional operations such as pollen 

dissemination and flower updating. This can result in 

increased computational time and memory requirements. 

A small population size increases the risk of premature 
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convergence. If the population size is too small, there may be 

limited diversity among the solutions, leading to convergence 

to local optima and hindering the algorithm's ability to explore 

the search space effectively. It is important to choose a 

population size that allows for sufficient exploration to avoid 

premature convergence [9]. The population size influences the 

balance between exploration and exploitation. A larger 

population size allows for more diverse solutions, promoting 

exploration of the search space. On the other hand, a smaller 

population size favors exploitation by focusing on refining and 

intensifying the search around promising solutions. 

Determining the optimal population size for a flower 

pollination algorithm involves considering the necessity to 

experiment with different population sizes and assess their 

impact on convergence speed, solution quality, and 

computational efficiency to find the most suitable value [28]. 

 

3.2.3 Probability of switch for FPA 

In an FPA, the probability parameter determines the 

likelihood of a flower undergoing pollination or interaction 

with other flowers. This probability, often referred to as the 

pollen transfer probability or pollination rate, here are some 

effects of the probability parameter in an FPA [9]. 

The probability parameter influences the balance between 

exploration and exploitation. A higher probability promotes 

more extensive exploration by increasing the chances of pollen 

transfer between flowers. This allows for a wider search of the 

solution space. On the other hand, a lower probability favors 

exploitation by focusing on intensifying the search around 

promising solutions, potentially leading to convergence to 

better optima. 

The probability parameter influences the diversity of the 

population. A higher probability enhances diversity by 

promoting frequent interactions between flowers, which can 

prevent premature convergence and improve solution quality. 

Lower probabilities, however, may limit the diversity and 

increase the risk of convergence to suboptimal solutions. 

While the probability parameter indirectly affects the 

computational resources required by the algorithm [10]. 

The probability parameter affects the convergence speed of 

the algorithm. Higher probabilities facilitate faster 

convergence as they encourage more interactions and 

information exchange between flowers. This can lead to faster 

convergence towards better solutions. while the probability 

parameter is a tunable parameter that needs to be calibrated for 

specific optimization problems. In summary, the optimal 

choice of probability depends on the problem at hand, and 

finding the right value often requires empirical analysis and 

experimentation. 

 

3.2.4 Flower attraction rate  

In an FPA, the flowers' attraction rate is a parameter that 

determines the strength of attraction between flowers during 

the pollination process. This parameter influences how flowers 

exchange information and move towards potentially better 

solutions. Here are some effects of the flowers' attraction rate 

in an FPA. The rate of attraction impacts the convergence 

speed of the algorithm. A greater attraction rate facilitates a 

quicker convergence, as flowers are powerfully attracted to 

superior solutions. This can expedite the algorithm's 

convergence to optimal solutions, particularly when the search 

landscape contains steep gradients. 

The attraction rate plays a role in achieving a proper balance 

between exploitation and exploration. Higher attraction rates 

tend to prioritize exploitation, which can be beneficial in 

problems where local optima are common. Lower attraction 

rates emphasize exploration, which can help in problems with 

complex landscapes and multiple global optima. In addition, 

the attraction rate is a tunable parameter that requires careful 

calibration for each specific problem. It is crucial to 

experiment with different values of the attraction rate to find 

the optimal setting that suits the problem's characteristics [10]. 

In summary, the optimal choice of the attraction rate 

depends on the problem's characteristics and the desired search 

behavior. It is important to experiment and fine-tune this 

parameter to achieve the best performance for a particular 

optimization problem. 

 

3.3 Grey wolf optimizer  

 

GWO is a metaheuristic algorithm that simulates the social 

hierarchy and hunting mechanisms of grey wolves. The order 

of grey wolf species is as follows: The male and female leaders 

are known as alphas ( 𝛼 ). The second level of the wolf 

hierarchy consists of beta (𝛽) wolves, followed by delta (𝛿) 

wolves, and the lowest-ranking grey wolves are omega (𝜔). 

Mathematically, the hierarchy of grey wolves is modeled by 

considering 𝛼  to be the optimal solution, the second in 

sequence 𝛽, followed by 𝛿, respectively. It is supposed that the 

candidate solutions are 𝜔. 

Consist of the primary phases of grey wolf hunts [29], 

Tracking, pursuing, and moving on the prey, and then pursuing, 

surrounding, and harassing the target until it ceases to move. 

finally, the predator attacks the prey. The behavior of 

encircling is mathematically represented by Eq. (10) [30]: 

 

𝐷⃗⃗ = |𝐶 ⃗⃗  ⃗.  𝑋𝑝(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |  (9) 

 

𝑋 ⃗⃗  ⃗(𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) −  𝐴 ⃗⃗  ⃗ . (𝐷⃗⃗ ), (10) 

 

where, 𝐴  and 𝐶  are vectors of coefficients, 𝑋  represents the 

vector position of a grey wolf, 𝑡 denotes the current iterations, 

and 𝑋𝑝 ⃗⃗ ⃗⃗  ⃗  is the vector representing the position of the prey. 

Calculating the vectors 𝐴 ⃗⃗  ⃗  and 𝐶 ⃗⃗  ⃗ using: 

 

𝐴 ⃗⃗  ⃗ = 2 𝑎  . 𝑟1⃗⃗⃗  − 𝑎 ,  (11) 

 

𝐶 ⃗⃗  ⃗ = 2 . 𝑟2⃗⃗  ⃗ ,  (12) 

 

where, component of  𝑟1⃗⃗⃗   , 𝑟2⃗⃗  ⃗ are random vectors in [0, 1] and 𝑎  

iteratively decrease linearly from 2 to 0. In the GWO algorithm, 

𝛼, 𝛽, and 𝛿 guide the hunting (optimization). The canines 𝜔 

are following these three wolves. The 𝛼, 𝛽, and 𝛿 wolves are 

believed to have a greater understanding of the prospective 

locations of prey. Therefore, the first three best solutions are 

preserved, and the other search agents update their positions 

based on the best search agent's position. For this purpose, the 

following equations are utilized [30]: 

 

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶1 ⃗⃗⃗⃗  ⃗.  𝑋𝛼

⃗⃗ ⃗⃗  − 𝑋 |, 

𝐷𝛽
⃗⃗ ⃗⃗  = |𝐶2 ⃗⃗⃗⃗  ⃗.  𝑋𝛽

⃗⃗ ⃗⃗  − 𝑋 |, 

𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3 ⃗⃗⃗⃗  ⃗.  𝑋𝛿

⃗⃗ ⃗⃗  − 𝑋 |, 

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗  −  𝐴1 
⃗⃗⃗⃗  ⃗ . (𝐷𝛼  ⃗⃗⃗⃗⃗⃗ ), 

𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗  −  𝐴2 
⃗⃗ ⃗⃗  ⃗ . (𝐷𝛽  ⃗⃗⃗⃗⃗⃗ ),  

𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗  −  𝐴3 
⃗⃗ ⃗⃗  ⃗ . (𝐷𝛿  ⃗⃗ ⃗⃗  ⃗), 

(13) 

1181



 

𝑋 ⃗⃗  ⃗(𝑡 + 1) =
𝑋1
⃗⃗⃗⃗ + 𝑋2

⃗⃗⃗⃗ + 𝑋3
⃗⃗⃗⃗ 

3
, 

 

Using Eq. (13), a search agent adjusts its position according 

to 𝛼, 𝛽 , and 𝛿 in the n-dimensional search space as depicted 

in Figure 2. In addition, the final position would be at a random 

location within the search space defined by the coordinates of 

𝛼 , 𝛽 , and 𝛿. Consequently, estimate the position of the prey, 

whereas other wolves update their coordinates arbitrarily 

around the prey [30]. 

 

 
 

Figure 2. Position update in GWO 

 

This algorithm features a range of strengths and weaknesses. 

the strengths are: Effective Exploration, Fewer Parameters, 

and Fast Convergence. Weaknesses are: Limited Research, 

Lack of Diversity, and Limited Application. 

This algorithm has been used with LAA which is used to 

reduce the side lobes and make the largest amount of energy 

be in the main lobe as well as the role of fitness objective 

function the effect of parameters plays an important role in the 

decrease of SLL. 

 

3.3.1 Iterations 

The number of iterations in the GWO algorithm, also known 

as the maximum number of generations, is a crucial parameter 

that affects the algorithm's performance. Generally, increasing 

the number of iterations allows the algorithm to explore the 

search space more extensively, potentially leading to better 

solutions [10]. 

The optimal number of iterations can vary depending on the 

complexity of the problem being solved. Simple problems may 

converge quickly, requiring fewer iterations, while highly 

complex problems may need a larger number of iterations to 

reach satisfactory solutions. 

The GWO algorithm aims to strike a balance between 

exploration (searching the solution space for promising 

regions) and exploitation (refining the solutions around the 

identified regions). Increasing the number of iterations allows 

for more exploration, but there's a risk of spending excessive 

time searching unfruitful areas without sufficient exploitation 

[31]. 

Typically, the GWO algorithm exhibits convergence 

behavior, meaning that the quality of solutions improves with 

iterations initially and then reaches a relatively stable state. 

Once the algorithm converges, further iterations may not 

significantly improve the solutions. 

In summary, the number of iterations in the GWO algorithm 

plays a significant role in the algorithm's performance. Finding 

the optimal number of iterations often involves 

experimentation, considering the problem's complexity and 

available computational resources. 

 

3.3.2 Population size  

The population size is a critical parameter in the GWO 

algorithm, as it determines the number of candidate solutions 

or "wolves" in each generation. The population size can have 

a significant impact on the algorithm's performance and 

convergence characteristics. 

The population size directly affects the memory 

consumption of the GWO algorithm. As the population size 

increases, the memory requirement to store the candidate 

solutions also increases. On the other hand, a very large 

population size can lead to premature convergence, where the 

algorithm settles around a suboptimal solution too early in the 

optimization process. This occurs when the wolves in the 

population converge too quickly and do not explore the search 

space effectively [32]. 

Increasing the population size in the GWO algorithm 

directly affects the computational time required for each 

generation. With more wolves, the fitness evaluation of the 

candidate solutions and the update process becomes 

computationally more expensive.  

Determining an appropriate population size for the GWO 

algorithm involves considering experiments with different 

population sizes and analyzing the convergence behavior and 

solution quality to find the optimal value for a particular 

problem. 

In conclusion, the choice between GA, FPA, GWO, 

depends on the specific characteristics of the optimization 

problem at hand. GAs is versatile and widely applicable but 

require careful parameter tuning. FPA is simple and efficient 

for global exploration but may lack precision in local search. 

GWO offers fast convergence but may not perform well in all 

problem domains. Successful application often depends on the 

problem's nature, available computational resources, and the 

need for global or local optimization. 
 

 

4. RESULTS AND DISCUSSION  

 

Each algorithm is influenced by a set of parameters that in 

turn affect the performance of the algorithm. Each parameter 

was tested separately and for a different number of antenna 

elements (N = 8,16,32,64,128,256) to see its impact on the 

performance of the algorithm, how much SLL attrition and the 

concentration of the greatest amount of energy on the main 

lobe, using the simulation software MATLAB version 2020. 

One of the most important influential parameters in GA is 

the generation shown in Figure 3(a), where it has been tested 

for a range of different values and found at N = 8 The effect of 

the iteration is very little on the decrease of SLL so that it is 

best valued at iteration 240 and SLL is reduced by -20.4335dB. 

At N = 16 starts, the effect is very small at generation 35, but 

after this generation, there is a fluctuation of SLL to the 

maximum at iteration 50 and a value of -32. 9533dB.  

When (N = 32,64,128,256) the effect of iteration is very low, 

there is a slight, negligible oscillation so that it is the best SLL 

at iterations 900,680,1000 and with values of -27.8764dB, -

28.0044dB, -28.5568dB, -28.6204dB respectively. 

Another effect is the population size Figure 3(b), which 

influences the SLL values and is found at N = 8, A slight 

fluctuation occurs when the population size is 120 and beyond, 

that is when the population size is 140, there is the greatest 

decrease of SLL to -21.8781dB. At N = 16 the effect of 
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population size 280 is the best because it has a decrease of -

27.1949dB and before that the effect is minimal.  

At (N = 32,64,128,256) the effect is negligible and the 

largest decrease has been SLL at 200 population size and at -

27.8764dB, -28.0044dB, -28.5568dB and-28.6204dB 

respectively. They are the same values when generation 1000.  

Maximum stall generation is an influencer in GA as shown 

in Figure 3(c) in N = 8,32 found to be the best diminishing 

SLL when Max stall generation is 13 and valued at -

20.4335dB, -27.8756dB respectively.  

At N = 16 SLL decreases to a maximum of -28. 5039dB at 

Max stall generation is 7. At N = 64,256 the best SLL values 

are -28.0044dB and-28.6204dB respectively and at Max stall 

generation 50. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 3. (a). Iteration, (b). Population size, (c). Maximum 

stall iterations 
 

Table 1. Shows the best results of SLL reduction by GA 

 
Max Peak 

SLL  

Number of 

Elements 
Parameter Effects 

-32.9523 dB 16 Generation 50 

-28.6204 dB 256 Population size 200 

-28.6204 dB 256 
Max stall generation 

50 

Table 1 shows the impact of parameters on the reduction of 

SLL to the maximum extent possible. This effect has proven 

that the signal will be highly efficient and with the greatest 

amount of signal-to-noise ratio. 

In FPA, many tests were conducted to determine the impact 

of the parameters on each. iteration is an important effect. It 

was tested on more than one value and for a different number 

of antenna elements. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4. (a) Iteration, (b) Population size, (c) Probability, 

(d) flower attraction rate 
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Figure 4(a) shows At N = 8, the best iteration was found at 

550, where he reduced SLL to -23.2012dB. At N = 16,32, SLL 

was found to have decreased to the greatest amount, at 950 and 

100 in the values of -32.5694dB and -29.0334 dB, respectively. 

At N = 64,128,256, the best values for SLL were at iterations 

of 300,700,100, reducing it to -35.0696dB, -26.4663dB, and -

23.0646dB, respectively. 

The population size of the parameters tested with a set of 

values is found at N = 8,16 SLL decreased to the maximum at 

the population size of 80 and 160 at -23.3463dB and -

34.5790dB respectively. For other population sizes, it has a 

slight effect. At N = 32,64, the best test for population size was 

at 100 and 200, where SLL was reduced to -28.5110dB and -

28.0148dB respectively. At N = 128,256, SLL decreased to the 

best amount at a population size of 200,280 and -26.4663dB 

and -25.4162dB respectively. As see in Figure 4(b). 

The probability is one of the parameters on which the tests 

were performed and the use of more than infinite as shown in 

Figure 4(c) at N = 8,16 at first, the probability effect is very 

small, but at probability 1 and 0.7 the SLL is the best value at 

-34.9451dB and-31.6000dB respectively. either at N = 32,64, 

the amount of change is very little and the best values of SLL 

are at probability 0.8 and at values -28.3071dB and -

28.0148dB respectively.   

At N = 128,256 the probability has a very slight effect and 

is negligible except when the probability is 0 .1 and 0.2 the 

SLL has decreased to -27.8910dB and-25.1216dB respectively.  

In Figure 4(d) the flower attraction rate is well influenced 

in N = 8,16,32. The effect is found to be good and its best value 

at 3,0.5,0.5 and SLL decreased to -26,9941dB -33.2830dB 

and-28.8755dB respectively.  

When N = 64,128,256 flower attraction effect is wobbly, 

find that the best values of SLL are -28.0148dB, -26.4663dB, 

-24.0355dB and at the rate of attracting flowers 1, 1.5 and 1.5 

respectively . 

 

Table 2. Shows the best results of SLL reduction by FPA 

 
Max Peak 

SLL 

Number of 

Elements 
Parameter Effects 

-35.0696 dB 64 Iteration 300 

-34.5790 dB 16 Population size 160 

-34.9451 dB 8 Probability 1 

-33.2830 dB 16 
Attraction flower rate 

0.5 

 

Table 2 shows the impact of parameters on the reduction of 

SLL to the maximum extent possible. This effect has proven 

that the signal will be highly efficient and with the greatest 

amount of signal to noise ratio 

In GWO several tests were conducted to see the impact of 

parameters on the performance of the algorithm. In the 

iteration effect a number of values were tested and for a 

different of antenna elements in N = 8,16 was found to have a 

varying effect up to 100 iterations either at repeat 140 SLL 

dropped to a maximum amount of -32.8479dB, -30.4126dB 

respectively. At N = 32.64 the effect of repetition is oscillating 

as SLL is reduced to -27.3854dB, and -27.8503dB at repeat 

1000 and 660 respectively. At N = 128,256, SLL has been 

minimized at 20, 850dB to -30.0366dB and -28.3399dB 

respectively.as shown in Figure 5(a). 

The size of the population as shown in Figure 5(b) at N = 8 

has a varying effect at the size of the population 60 reduced 

SLL to -20.6427dB. At N = 16,32 the effect of population size 

at 160 and 280 is oscillating, reducing SLL to -26.9255dB and 

-27.3898 respectively. At N = 64,128,256, SLL was 

maximized at values -27.7516dB, -28.3581dB, and -

28.4846dB at population sizes 300,300,180 respectively. 

 

 
(a) 

 
(b) 

Figure 5. (a). Iteration, (b). Population size 

 

Table 3. Shows the best results of SLL reduction by GWO 

 

Max Peak SLL Number of Elements Parameter Effects 

-32.8479 dB 8 Iteration 140 

-28.4846 dB 256 Population size 180 

 

Table 3 shows the impact of parameters on the reduction of 

SLL to the maximum extent possible. This effect has proven 

that the signal will be highly efficient and with the greatest 

amount of signal-to-noise ratio. 

Achieving lower SLL values is essential in various 

applications where precise control of signal directionality, 

reduced interference, improved signal quality, and compliance 

with regulatory standards are important. Lower SLL values 

can enhance the overall performance and reliability of 

communication, radar, and other systems that rely on antenna 

radiation patterns. 

Table 4 shows the difference between the results presented 

in this paper and the results of previous literature and shows 

that the results of this paper are best caused by the difference 

of objective function or the different order of arrays as well as 

the different number of antenna elements and different values 

of parameters for each algorithm, so this research is continuing 

because it didn't limit changing parameters to a certain number, 

but it is compared between them to get to the best solution by 

reducing SLL to the maximum amount. 
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Table 4. Illustrates the results of previous literature 

 

Ref. Algorithms Effects Parameters Number of Elements Best Reduction SLL 

[32] GA Iteration 200 N=20 -9.9776 dB 

[33] 
GA 

GWO 

Iteration 10 

Iteration 10 

N=52 

N=24 

-29.0200 dB 

-48.9600 dB 

[34] FPA 

Iteration 500 

Population size 40 

Probability 0.5 

N=16 -35.2100 dB 

 

 

5. CONCLUSIONS 

 

By implementing the three algorithms GA, FPA, and GWO 

on an antenna array comprising varying numbers of elements, 

it is feasible to deduce that energy can be concentrated in the 

main lobe, thereby preventing misdirection of energy into the 

side lobes. 

The best value when using GA and when repeat is the effect 

is at 16-element SLL decreases to -32.9523dB and at 50 

iterations. When using the FPA and the parameter itself is the 

influencer, 64-element is the best as SLL reduced to -

35.0696dB at iteration 300. When using GWO and iteration is 

the effect the best iteration is 140 where SLL is reduced to -

32.8479dB and at 8-element. 

When the population size is taken as an influential 

parameter and using GA, the best value is at 256-element 

where SLL is reduced to -28.6204dB and at the size of the 

population of 200. When using FPA, the best values are at 16-

element -34.5790dB and a population size of 160. In GWO the 

best values are at 256-element at 180 population size where 

SLL is reduced to -28.4846dB. 

When it is the max stall iteration of an influencer, then GA 

has the best values at 256-element -28.6204dB and at max stall 

iteration 50. The probability is an influential parameter in FPA. 

It was concluded that the best values are at probability 1 at 8-

element, where SLL reduced to -34.9451dB. As for the effect 

of the flower attraction rate, the best values at the rate of 0.5 

and the reduction of SLL to 33.2830dB at 16-element 

Studies continue to this day to see the impact of parameters 

and the possibility of changing their values as well as the 

changing function of fitness on the performance of algorithms. 

 

 

6. SUGGESTIONS FOR WORKS FOR THE FUTURE 

 

• Use other algorithms to know the impact of their 

parameters on SLL reduction. 

• Using the objective function is different because its 

difference affects the reduction of SLL and therefore 

changes the impact of parametrizes on them. 
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NOMENCLATURE 

𝐴𝐹 Array factor 

𝛾 Scaling factor 

𝐿 Levy Figurehts 

𝑔𝑏𝑒𝑠𝑡 current best solution 
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