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Despite the Bureau of Transportation Statistics affirming the relative safety of air travel, 

with the lowest annual accident rate among various transportation modes, the importance 

of analyzing and mitigating aviation accidents remains paramount for the sustained safety 

and comfort of air travelers. This study leverages data from the Bureau of Aircraft 

Accident Archives (BAAA-acro) website, transformed into a dataset that encapsulates 

commercial airplane accident data spanning the period from 1918 to 2020. The dataset, 

comprising 110 observations across four variables, was subjected to K-means clustering 

to categorize the causes of airplane accidents. The optimal number of clusters for this 

analysis was determined using the Silhouette index. The investigation focused on two 

accident groups within the dataset. The first cluster, consisting of 106 observations, 

demonstrated a considerable degree of heterogeneity, indicative of a broad distribution 

and significant variation. The second cluster, comparatively smaller, comprised only four 

observations. The clustering exercise underscored that technical factors predominantly 

contribute to commercial airplane accidents. The findings of this study thus suggest that 

future efforts by aviation regulatory bodies to decrease aviation accident occurrences 

could benefit significantly from a concerted focus on these technical factors. 
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1. INTRODUCTION

Airplanes, recognized for their efficiency and speed, stand 

as a predominant mode of transportation. Their ability to 

traverse vast distances in significantly truncated time frames 

compared to other modes of transportation underpins their 

importance. In addition to their role in public transportation, 

aircraft are instrumental in freight transport and military 

applications, such as combat aircraft [1]. 

Commercial air transportation is consistently lauded as the 

safest mode of transportation in comparison to others, as 

substantiated by annual statistics from the Bureau of 

Transportation Statistics. These statistics reveal that air 

transportation consistently records the lowest proportion of 

accidents compared to other modes of transportation such as 

buses, cars, motorcycles, trains, and ships [2]. Despite its 

relative safety, it is imperative that any incidents that do occur 

in air transportation are comprehensively investigated. The 

identification of causal factors and the location of accidents is 

crucial to inform strategies aimed at reducing future incidents, 

thereby enhancing the safety and comfort of air transportation 

users. However, notwithstanding the comparatively safe 

nature of air travel, data from the Bureau of Aircraft Accident 

Archives (BAAA) shows that between 1920 and 2021, 595 

aircraft accidents occurred, resulting in a total of 5481 

casualties, with the most devastating incident recorded on June 

23, 1985, claiming 329 lives. 

Statistical analyses reveal a significant reduction in aircraft 

accidents, with an 82% decrease observed between 1982 and 

2019 [3]. This dramatic decline, from 3593 accidents in 1982 

to a mere 640 in 2019, is often attributed to the regulatory 

measures introduced by the International Civil Aviation 

Organization (ICAO) in 1947 to standardize commercial 

aviation [4]. The decrease in accidents accounts for an annual 

rate of 70.9%. However, an intriguing paradox emerges from 

the data: Despite the decrease in commercial aircraft accidents, 

the number of fatalities appears to have increased. This trend 

may be attributed to shifts in the design of commercial 

airplanes that prioritize fuel efficiency and accommodate 

increased passenger capacity [4]. 

Scientific investigations have sought to analyze past aircraft 

accidents in a bid to understand the factors and locations 

contributing to these incidents, with the ultimate goal of 

reducing future occurrences [5]. However, the scope of these 

analyses has been regionally constrained [6], thus limiting 

their effectiveness as flight activities span not only within a 

single region, but also inter-regionally within a single country, 

inter-nationally, and even inter-continentally. A notable 

limitation is the exclusively Euro-centric focus of the study 

conducted by Valdés et al. [6], which analyzed flight data 

within European airspace across 10 countries, utilizing a data-

driven methodology. In contrast to these regionally confined 

analyses, the present study adopts a more globally 

encompassing perspective, analyzing aviation accident data on 

a worldwide scale. 

Historically, the analysis of aircraft accidents has 

predominantly relied on expertise and experiential knowledge. 

Such an approach, however, is susceptible to misinterpretation 

of analysis results [7]. Additionally, it has been observed that 

these traditional methods are incapable of extracting hidden 

knowledge from the utilized data [8]. Consequently, analysis 

results based on expert insights and experiences often neglect 
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to categorize features with similar characteristics. This 

oversight results in a challenge to identify groups of accident 

locations or accident causes with shared attributes. 

A plethora of factors contribute to aircraft accidents, as 

evidenced by the data. To facilitate seamless analysis and 

conclusion drawing, these causative factors need to be 

categorized into clusters. To address these issues, a novel 

method that can analyze aircraft accidents over an extensive 

area and group accidents with similar characteristics into a 

specified number of clusters is required. Furthermore, the 

accuracy level of this method must be superior to that of 

traditional methods. In response to these requirements, an 

artificial intelligence method, specifically the clustering 

method, is adopted. Contrary to supervised learning, clustering 

is an unsupervised method that eliminates the need for 

developing models for training and testing data [9]. This is 

primarily due to the aim of this method, which is to uncover 

hidden insights and knowledge within the used data. In this 

study, K-means clustering is utilized to analyze data by 

grouping data with similar characteristics into one cluster or 

group, and data with distinct features into different clusters or 

groups [10]. The K-means method iteratively clusters the data 

until all data in a specific cluster does not migrate to another 

[11]. Importantly, the data used by the clustering method in 

this study is global, not merely regional, expanding the scope 

and potential impact of the findings. Moreover, the use of the 

K-means method is anticipated to enhance the accuracy of the 

assessment, offering a marked improvement over traditional 

experience-based and intuition-driven methods. 

The K-means algorithm was selected for this study due to 

its compelling advantages, including ease of implementation, 

assurance of convergence, and capability for warm-starting of 

centroids' positions in large datasets. The necessity for a 

clustering algorithm that is straightforward to implement and 

guarantees convergence underpinned the choice of the K-

means algorithm. As the number of distances to the center 

decreases with each iteration, the algorithm's convergence is 

facilitated. This convergence is achieved as a result of the 

method employed for selecting the cluster center in each 

iteration, which is the mean of all nodes within the cluster. 

This process diminishes the number of distances in each 

iteration, culminating in the algorithm's convergence as each 

node is assigned to the nearest center. 

The principal objective of this study is to unearth hidden 

information from the global dataset of commercial airplane 

accidents by employing a simple clustering approach, thereby 

shedding light on the data's clustering and its underlying 

rationale. 

The structure of this study is delineated into four primary 

sections: The introduction briefly elucidates the study's 

objectives. The methodology section delineates the data 

sources and the approach implemented to achieve the study 

objectives, and outlines the technique deployed to validate the 

study's outcomes. The results section presents the analysis of 

the acquired data. Lastly, the conclusions section provides the 

findings and outcomes derived from the study. 

 

 

2. RESEARCH METHOD 

 

The raw aircraft accident data has been obtained from the 

website BAAA-acro. In 1990, the BAAA website was 

launched in Geneva, Switzerland, with the primary goal of 

collecting, organizing, and storing information on aviation 

accidents worldwide from 1918 to the present. A secondary 

goal of this website is to promote aviation safety through 

knowledge, training, and information action plans, allowing 

the BAAA to participate in investigations, publish procedures, 

and send specific recommendations. The third goal is to 

educate the public and professionals about the risks associated 

with aircraft operations and train them in psychological 

preparedness for disasters such as accidents. 

In this study, the BAAA database consisted of 592 rows 

with 14 column variables. The variables were date, operator, 

A/C_type, location, crew_on_board, crew_fatalities, 

PAX_on_board, PAX_fatalities, total_on_board, 

total_fatalities, flight_type, flight_phase, continent, and 

probable_causes. which were then simplified in accordance 

with the research objectives to only 4 variables, namely 

total_on_board, flight_type, total_fatalities, and 

probable_causes. Additionally, the variables for 

total_fatalities and total_on_board are of numeric data type. 

By employing either Spearman's or Pearson's correlation, the 

results showed correlation values of 0.75 and 0.97, 

respectively. These variables possess the highest degree of 

correlation in comparison to other numeric variables, which is 

why they were chosen. 

 

2.1 K-means algorithm 

 

K-means is an unsupervised learning clustering method 

used to analyze data by grouping data with similar 

characteristics into one cluster or group. Data with distinct 

characteristics are classified into different clusters or groups 

[10]. The K-means method requires the user to set three 

parameters: the number of K clusters to be used, cluster 

initialization, and system distance. The K-means method 

determines the number of clusters K to be formed and then 

finds the initial center of the cluster by averaging the data in 

each cluster. Subsequently, the distance between cluster 

members and each centroid is calculated. If all data in a 

particular cluster is not moved to another cluster, then the 

iteration in K-means will end [11]. 

In general, the K-means algorithm begins by determining an 

arbitrary centroid. It calculates the distance of the data points 

from the centroid, assigns the data points to the nearest 

centroid, and updates the centroid based on the new cluster 

assignment. The algorithmic process is described in detail as 

follows [12]. 

 
Algorithm 1 K-means clustering 

1: Initialize Cluster Centers 

2: for each iteration l do 

3:    Compute 𝑟𝑛𝑘: 

4:       for each data point 𝑥𝑛 do 

5:          Assign each data point to a cluster: 

6:          for each cluster k do 

7:             if k = argmin‖𝑥𝑛 − 𝜇𝑘
𝑙−1‖ then 

8:                𝑟𝑛𝑘 = 1 

9:             else 

10:                𝑟𝑛𝑘 = 0 

11:             end if 

12:          end for 

13:       end for 

14:       for each cluster k do 

15:          Update cluster centers as the mean for each cluster: 

16:          𝜇𝑘
𝑙 =

∑𝑟𝑛𝑘𝑥𝑛

∑𝑟𝑛𝑘
 

17:    end for 

18: end for 
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2.2 Cluster testing 

 

The goal of the clustering process is to determine the 

number of clusters. The primary goal of cluster validation is to 

ensure that the clusters are high quality. Cluster validation is 

one of the most important issues and requirements for 

successful clustering implementation, as it evaluates the 

quality of clustering findings. Two metrics are presented to 

evaluate and select the best clustering algorithm [13]. 

After testing the data for clustering, the Silhouette index and 

elbow methods can be used to determine how accurate they 

are. Sum Square Error (SSE) is a statistical method for 

calculating the total difference between the achieved and 

actual values [10]. 

 

𝑆𝑆𝐸 =∑ (𝑑)2
𝑛

𝑖=1
 (1) 

 

In Eq. (1), “d” represents the distance between the data and 

the cluster center. The SSE formula calculates the difference 

between the obtained data and the previous prediction model. 

SSE is frequently used as a research reference when deciding 

on the best cluster. 

In this study, the elbow method is used to determine the 

optimum amount of K, where the optimum location of the K 

value is at the "elbow" [14]. The elbow method is a popular 

approach to ascertain the best number of clusters. It computes 

the within-cluster sum of squared errors (WSS) for various K 

values and selects the K at which WSS initially decreases. The 

WSS versus. K plot outlines the process in detail, where each 

point's squared error equates to: Its distance from its predicted 

cluster center. Secondly, the WSS score is calculated as the 

sum of squared errors for all points. Thirdly, any distance 

metric, such as the Euclidean Distance or the Manhattan 

Distance, can be utilized. 

In addition to the elbow method, the second method for 

determining the K value is using the Silhouette index [5]. 

Silhouette analysis is a means of interpreting and validating 

the consistency of data clusters. The silhouette value measures 

a data point's similarity to its own cluster (its cohesion) relative 

to other clusters (its separation). The process of calculating the 

Silhouette index involves determining the average distance 

between a data point and all other data points in the nearest 

cluster, which is referred to as its nearest cluster distance. Next, 

compute the silhouette score for each data point by dividing 

the difference between its nearest cluster distance and its intra-

cluster distance by the maximum value of this difference. 

 

 

3. RESULT AND DISCUSSION 
 

3.1 Data preprocessing 

 

Preparing raw data for use is an integral part of the 

preprocessing stage because the quality of the input data 

greatly influences the quality of the output data produced [10]. 

Several stages are conducted at this point, including data 

cleaning, integration, and reduction. Subsequently, the data 

cleaning process is run on the eight existing variables, and the 

ones to be used are chosen. The data with null or empty values 

are cleaned after determining the variables used. 

The next stage is data integration, which is performed if 

there is more than one data source at this stage to make it easier 

to process the data in one place using the .csv extension.  

Furthermore, at this stage, data reduction will include a 

StandardScaler process to standardize the value of the total 

passenger and total victim columns, and a PCA process will 

be implemented to reduce the data dimensions of the total 

passenger and total victim variable columns. Finally, flight 

types other than the previously described commercial flight 

were deleted.  

 

3.1.1 Data cleaning 

The first step is to eliminate variables that are no longer in 

use or will not be required in the future. There are 14 variables 

in the initial data, but only the total on board, flight type, 

fatalities, and probable cause variables are used. 

The second process deleted missing data values in the 

variable columns used, namely total on board, flight type, total 

fatalities, and probable cause, and then filtered from 592 based 

on flight type, where only commercial flights are used, and 

other types of flights are not. The total data is 110, as identified 

after filtering by flight type. Finally, the data is double-

checked to identify null values. The cleaned data frame data is 

then displayed again, as shown in Figure 1. 

 

 
 

Figure 1. After-cleaning data frame display example 

 

3.1.2 Data reduction 

Principal Component Analysis (PCA) is the technique used 

for this data reduction, which predicts data with a high 

dimension to a low dimension, intending to reduce the data 

dimensions. 

The StandardScaler process is used to standardize the value 

in the variable column of the total passengers on the aircraft 

and the total number of victims in the first stage of this data 

reduction. Furthermore, non-commercial flight types are 

deleted, so only commercial flight types are used in this study.  

 

3.2 Test number of cluster  

 

We must determine the optimal number of clusters based on 

the used data using the elbow method (Figure 2) and the 

Silhouette index method before analyzing the distribution 

results of each cluster. According to the results of the 

validation test of the number of clusters using the elbow, the 

“elbow” gives the representative number of K as 2. To validate 

this number of K, the Silhouette index method with a value 

range from 2 to 10, as shown in Figure 3, the closer the value 

is to 1, the better the data grouping will be. Therefore, cluster 

2 has the optimal number of clusters for use in this study, with 

a value of 0.86, which is closest to the value of 1 compared to 

the value of other clusters. 

 

3.3 K-means clustering 

 

After cleaning and reducing the data, testing the number of 

clusters, and beginning the clustering process, the K-means 

cluster was used in this study, as explained in the previous 
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chapter. The K-means method determines the number of 

clusters to be formed and then finds the initial center of the 

cluster by averaging the data in each cluster. The distance 

between cluster members and each centroid is then calculated. 

When all data in a particular cluster does not move to another 

cluster, iteration in K-means ends [8]. 

 

 
 

Figure 2. Test the number of clusters using the elbow 

method 

 

 
 

Figure 3. Test the number of clusters using the Silhouette 

index 

 

 
 

Figure 4. Visualization of K-means clusters 

 

Table 1. The number of data points in each K-means cluster 

 
Cluster Total Data 

1 106 

2 4 

 

Figure 4 shows two clusters-denoted by blue circles for data 

in cluster 1, red circles for data distribution in cluster 2, and 

yellow circles for the centroid in each cluster. Table 1 shows 

the amount of data in each cluster. 

 

3.3.1 Data analysis on cluster 1 

The results of the data distribution form points that are 

scattered to form a pattern in Figure 5, which depicts a 

visualization of the distribution of data in cluster 1. The blue 

dot in the image represents the data distribution in this cluster 

1, and the yellow dot represents the centroid. The centroid is 

the cluster’s initial center point, determined by the randomly 

chosen K value. Table 2 details the number of each cause in 

cluster 1. With 39 data points, it is clear that technical factors 

are the most common causes. 

 

 
 

Figure 5. Data visualization of cluster 1 

 

Table 2. Number of each cause of accident in cluster 1 

 
Probable Cause Total Data 

Technical factors 39 

Unknown reason 19 

Disappeared without a trace 18 

Poor weather 12 

Conflict factors 10 

Human factors 7 

Crashing the other objects 1 

 

3.3.2 Data analysis on cluster 2 

The results of the data distribution form points that are 

scattered to form a pattern in Figure 6, which depicts a 

visualization of the distribution of data in cluster 2. The red 

dot in the image represents the data distribution in this cluster 

2, and the yellow dot represents the centroid. The centroid is 

the cluster’s initial center point, determined by the randomly 

chosen K value. Table 3 shows that there are only four causal 

factors in cluster 2. 

 

 
Figure 6. Data visualization of cluster 2 
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Table 3. Number of each cause of accident in cluster 2 

 

Probable Cause Total Data 

Technical factors 1 

Human factors 1 

Disappeared without a trace 1 

Crashing the other objects 1 

 

As an overview, the data grouping obtained the following 

information: In cluster 1, it was found that in 1985, the Air 

India Boeing 747-200 aircraft crashed on the European 

continent, precisely in the Atlantic Ocean, by crashing into an 

object. This flight carried a total onboard of 329 passengers 

with total fatalities of 329 passengers, while in cluster 2 data 

found in 1940, a Handley Page H.P.42 type aircraft operated 

by Imperial Airways crashed the other object in Asia precisely 

in the Gulf of Oman, carrying a total onboard of 8 passengers 

and as many as 8 passengers with total fatalities. Based on the 

overview of the data details of these two clusters, it can be seen 

that a large number of total fatalities and totals on board tend 

to be in cluster 1, while the opposite will be included in cluster 

2. 

While in the distribution of clustering results data points 

when viewed from the accident location variables, for cluster 

1, most occurred in the Mediterranean Sea, followed by the 

Atlantic Ocean. As for cluster 2, the location of the incident 

caused as many as two events in the Pacific Ocean, while the 

Atlantic Ocean and the Gulf of Oman each had one event. The 

visualization of the data distribution for each cluster is 

depicted in Figure 7. 

 

 
 

Figure 7. The visualization of the data distribution for each 

 

3.4 Visualization of the severity of an aircraft crash based 

on causal factors 

 

The data used in this study range from 1918 to 2020 and 

includes 593 accidents. However, after preprocessing the data 

with commercial aircraft flight data variables, only 110 data 

points with different accident causes have been identified. 

Figure 8 shows the data visualization results of the accident 

cause variable or probable cause. 

According to Figure 8 of the visualization results of the 

distribution of the number of causes of accidents, the factor 

caused by technical factors is 40 accidents, followed by 

unknown causes, and each of these factors is lost without a 

trace 19 times.  

Table 4 shows the data distribution results based on severity. 

cluster 1 has each severity level, and this cluster is formed with 

data with the highest number of accident victims. On the other 

hand, cluster 2 has the least number of victims, and the severity 

of cluster 2 is only at the severe level. No accidents have been 

identified for moderate and mild severity. 

According to Figure 8, the dominant factor in this data is 

technical factors, which total 40 in the two clusters of technical 

factors, with details of 15 entering the severe category, 6 

entering the moderate category, and 18 entering the mild 

category for cluster 1 and cluster 2 technical factors. 

Figure 9 shows the visualization results of the causes of 

accidents based on severity. cluster 1 dominates the 

distribution of these two variables. On the other hand, cluster 

2 is very small and has a very large data difference from cluster 

1, implying that the distribution of each cluster is based on the 

number of victims. 

 

 
 

Figure 8. Visualization of the distribution of the number of 

causes of accidents 

 

Table 4. The results of cluster 1 and cluster 2 based on accident severity and causal factors 

 

Probable Cause 

Level of Severity 

Cluster 1 Cluster 2 

Severity Moderate Mild Severity Moderate Mild 

Unknown reason 16 1 2 0 0 0 

Technical factors 15 6 18 1 0 0 

Disappeared without a trace 18 0 0 1 0 0 

Poor weather 11 0 1 0 0 0 

Human errors 3 0 4 1 0 0 

Conflict factors 10 0 0 0 0 0 

Crashing the other objects 1 0 0 1 0 0 
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Figure 9. Distribution of point cluster data by severity 

category with causal factors 

 

Based on the results of research and discussion, it is found 

that the most clustering of data occurs in cluster 1, and one of 

the most common causes is technical factor problems; this is 

also reported by Passarella and Nurmaini [2], Herkert et al. 

[15], apart from human error. This shows that the clustering 

data has the same conclusion. 

To note, the current findings reflect a fundamental analysis 

utilizing the widely adopted K-means clustering method. 

However, alternative unsupervised clustering techniques, such 

as hierarchical clustering or density-based clustering, should 

be explored to attain optimal insights from the data. This topic 

warrants discussion as K-means suffers from drawbacks 

including the assumption that clusters are spherical with 

similar variance, making it unviable for complex or irregular 

clusters. Furthermore, it is sensitive to outliers, skewed 

features, and correlated variables that necessitate data 

preprocessing or normalization. 

 

 

4. CONCLUSION  

 

The K-means clustering method was used in this study, and 

the number of clusters was determined using the Silhouette 

index method and the distortion score elbow method. The 

Silhouette index using two clusters yielded an optimal value 

of 0.86, and the distortion score elbow method yielded an 

optimal value of k=2 with WSS score of 68.081. The data 

distribution in cluster 1 obtained 106. This cluster contains 

heterogeneous data, which means that the data varies greatly 

and has a wide distribution.  

Upon further analysis, it was discovered that cluster 1 

experienced more severe accidents, primarily due to technical 

factors, with a total of 39 data points. In contrast, cluster 2 had 

only 4 data points and exhibited less severe accidents based on 

accident severity. Based on the location of accident variables 

for cluster 1, the analysis revealed that the majority of 

accidents occurred in the Mediterranean Sea with the Atlantic 

Ocean following behind. For cluster 2, the location of the 

accident caused two events in the Pacific Ocean and one event 

each in the Atlantic Ocean and the Gulf of Oman. 

The results of this research on clustering commercial 

aircraft accident history data using the K-means machine 

learning algorithm can be useful information for commercial 

aviation observers, airlines, and aviation authorities, so that the 

results of this analysis can prevent severe accidents by 

addressing technical issues in flight operations. 

For further investigation, it is imperative to incorporate 

weather data and pilot records into the analysis to enhance the 

cluster model and obtain more profound cluster insights. 

Additionally, the implementation of the DBSCAN algorithm 

can be considered to detect clusters with arbitrary shapes. 
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