
Application of Ant Colony Optimization for Job Shop Scheduling in the Pharmaceutical

Industry

Nadia Lachtar* , Imen Driss

Department of Industrial Engineering National Higher School of Technology and Engineering, Annaba 23000, Algeria

Corresponding Author Email: n.lachtar@ensti-annaba.dz

https://doi.org/10.18280/jesa.560501 ABSTRACT

Received: 2 September 2023

Revised: 10 October 2023

Accepted: 20 October 2023

Available online: 31 October 2023

Scheduling problems in the industrial sector are among the most studied optimization

problems. Improving resource efficiency and minimizing production costs have become

important concerns for industry managers. Seeking the best way to maximize profit is now

a primary objective for any business. This is the context in which our study is positioned.

It focuses on the resolution of job shop scheduling problems (JSSP). Considering that

production challenges in industries are complex and require the consideration of multiple

factors, we turn to the use of artificial intelligence tools for their resolution. Pharmaceutical

manufacturing often involves a large number of resources, machines, and tasks, leading to

high complexity in the JSSP. Ant colony optimization (ACO) is innovative and excels in

its ability to handle this complexity by seeking optimal solutions while avoiding

computational pitfalls. It can efficiently explore vast search spaces and leverage ant

parallelism to reach the best solution in a short period of time, which is crucial in the

pharmaceutical context where deadlines and quality constraints are paramount. Thus, in

order to address the JSSP, this work suggests and puts into practice a method that involves

the application of an ACO approach with the goal of minimizing the makespan. We

validated our approach by comparing it with various algorithms through benchmarks taken

from the published research. The suggested approach proved to be effective as the

produced solutions were of high quality and showed that it could achieve results that are

closer to the ideal solution for larger-scale issues than other algorithms with an average

percentage relative error of just 0.67%. Furthermore, application of ACO in the context of

BIOCARE's pharmaceutical laboratories’ production led to an improvement of

approximately 3 hours in their weekly planning.

Keywords:

BIOCARE, ant colony optimization, genetic

algorithm, industry, job shop scheduling

problem, OR-TOOLS, particle swarm

optimization, taboo search

1. INTRODUCTION

The JSSP is complex and multifaceted conundrum that has

garnered the attention of researchers and industrialists alike.

The JSSP represents an issue in operations management,

where a multitude of jobs with varying processing

requirements must be allocated to a limited set of machines

while adhering to specific constraints, ultimately seeking to

minimize makespan, which is the total completion time. The

JSSP transcends industrial domains, making its study and

resolution essential across various sectors as manufacturing,

healthcare, transportation, and logistics. It presents a multitude

of real-world scenarios where the allocation of limited

resources, such as machines, personnel, or vehicles, to a set of

tasks with distinct processing sequences. The consequences of

efficient JSSP are far-reaching, with the potential to reduce

operational costs, enhance productivity, improve delivery

times, and maintain high levels of customer satisfaction.

The primary aim of JSSP is to determine an ideal plan that

reduces the makespan, representing the overall time needed to

finish all tasks, to a minimum. The JSSP is widely recognized

as NP-hard, indicating that obtaining an exact optimal solution

within a reasonable time is computationally infeasible for

large problem instances. As such, scholars have turned to

heuristic and metaheuristic techniques to address this complex

scheduling problem. One such powerful metaheuristic

approach is ACO that draws inspiration from ant foraging

behavior. It employs pheromone trails left by simulated ants to

facilitate optimization processes and discover valid solutions

in a graph. During the optimization process, multiple ants

explore the search space represented as a directed graph, and

upon reaching a terminal vertex, the solution is derived from

the path they found. As the process unfolds, these simulated

ants leave pheromones behind, which serve as a guide for other

ants to either replicate the same solution or explore

neighboring areas. ACO has demonstrated significant success

in solving combinatorial optimization problems. It has been

effectively used to solve a variety of scheduling issues and is

especially appropriate for issues with discrete solution areas.

This paper is structured in the following manner: Section 2

provides an overview of the primary contributions relevant to

our research. In Section 3, we delve into the presentation of

the mathematical and graphical modeling of the problem.

Section 4 outlines the suggested approach for addressing JSSP.

Section 5 presents the experiments, results, and discussions,

where we examine the outcomes of the experiments conducted

to assess the effectiveness of the ACO solution we have put

forth. It addresses the various algorithms drawn from the

literature and compares them to our adapted ACO algorithm,

including constraint programming, genetic algorithm (GA),

tabu search (TS), and particle swarm optimization (PSO). The

algorithms are tested on benchmark instances of different sizes

Journal Européen des Systèmes Automatisés
Vol. 56, No. 5, October, 2023, pp. 713-723

Journal homepage: http://iieta.org/journals/jesa

713

https://orcid.org/0009-0009-4410-119X
https://orcid.org/0000-0001-5890-7711
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.560501&domain=pdf

to evaluate their performance and effectiveness. Section 6

details the application of our algorithm to a real-life case

within the pharmaceutical products laboratory (at BIOCARE).

A conclusion and future works are described in section 7.

Finally, it is worth noting that many algorithms are

commonly used to solve small-scale JSSP and provide optimal

solutions. However, it is clearly evident that there is a gap in

solving large-scale JSSP. This gap presents a significant

opportunity for future research in this field. Therefore, this

article focuses on the adaptation and implementation of ACO

to resolve large-scale JSSP, aiming to provide insights into its

effectiveness and potential as a scheduling optimization tool,

In addition to its usage to a real case in the pharmaceutical

industry. This research aims to provide a unique perspective to

the field by addressing this specific aspect of the

pharmaceutical industry.

2. RELATED WORK

The JSSP has garnered significant attention in the realms of

operations research and industrial engineering because of its

practical significance and intricate nature. Several approaches

have been proposed for addressing the JSSP, among them,

exact methods such as the widely used branch-and-bound

approach [1-3]. Another exact method employed for

combinatorial problems is Answer Set Programming (ASP) [4,

5]. ASP has demonstrated successful applications in real-

world scenarios, spanning across industries [6] to fields like

biology and medicine [7]. A recurring challenge with these

precise methods is their efficiency in managing instances of

modest scale, whereas they encounter difficulties when

confronted with larger instances. To address large-scale

metaheuristics, are used like TS [8-11]. In addition, Artificial

intelligence techniques play a crucial role in resolving job shop

scheduling problems [12-14]. Among these techniques, the

GA stands out as one of the most prevalent [15-17], along with

other population-based approaches like PSO [18, 19] and ACO

algorithms [20-22] whether operating on evolutionary or

swarm principles, offer significant flexibility and generate

solutions for scheduling issues that, while not achieving

absolute precision, exhibit satisfactory accuracy within a

reasonable time frame. Furthermore, population algorithms

can be combined in hybrid configurations with deterministic

methodologies [15-17, 23].

To contextualize our choice of ACO in our study, we

provide a brief comparison of job shop problem-solving

methods mentioned in the literature in terms of their strengths

and weaknesses:

• Branch and Bound: Offers guaranteed optimal

solutions for small instances with high precision but has

exponential execution time for larger problems.

• ASP: Offers flexibility in modeling constraints and is

suitable for a variety of planning problems but is less

efficient for larger instances, and the search for optimal

solutions can be time-consuming.

• TS: Effective for exploring local neighborhoods, can

help escape local optima, but can be sensitive to the

quality of the initial solution and requires constant

adjustments to tabu rules.

• GA: Generates high-quality solutions quickly and has

good exploration of the solution space but can get stuck

in local optima and requires careful parameter tuning.

• ACO: Adapts to complex problems, has the capacity to

handle dynamic constraints, and is efficient for medium

and large scheduling problems (such as those in the

pharmaceutical industry). However, it can be sensitive

to parameter settings.

The studies conducted by the studies [20-22] primarily

focused on small to medium-sized instances of the JSSP. In

contrast, our work aims to explore the efficiency of ACO on

large-scale problems.

3. PROBLEM MODELING

Modeling, in general, is a crucial step in solving a

scheduling problem. It involves simplifying the representation

of all problem data to accurately reflect its intricacies and

nuances.

3.1 Notation

In the following, we will provide the notations for the data

used within the scope of our problem: 𝛀: Set of all available

machines, 𝒏: Total number of jobs, 𝒎: Total number of

machines, 𝒊: Index of the 𝒊𝒕𝒉 job, 𝒋: Index of the 𝒋𝒕𝒉 operation

of job 𝒊, 𝑱𝒊𝒐: Total number of operations in job 𝑱𝒊, 𝑶𝒊𝒋: 𝒋𝒕𝒉

Operation of job 𝑱𝒊, 𝜴𝒊𝒋: Set of available machines for operation

𝑶𝒊𝒋, 𝒑𝒊𝒋𝒌: Execution time of operation 𝑶𝒊𝒋 on machine k and

𝑺𝒊𝒋𝒌: Start time of operation 𝑶𝒊𝒋 on machine k.

3.2 Mathematical modeling

The model we provide is based on the formulation

according to the study [24].

Objective function:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒[𝑀𝑎𝑥(𝐶1𝑗1, 𝐶2𝑗2, … 𝐶𝑛𝑗𝑛)] (1)

Subject to:

𝐶𝑖𝑗 − 𝑆𝑖𝑗 − 𝑃𝑖𝑗 = 0 ∀ 𝑖 = 1. . 𝑛 , 𝑗 = 1. . 𝑚 (2)

𝐶𝑖′𝑗′ − 𝐶𝑖𝑗 + 𝐻(1 − 𝑌𝑖𝑗𝑖′𝑗′) ≥

𝑃𝑖′𝑗′ ∀ (𝑖, 𝑗), ∀ (𝑖′, 𝑗′): 𝑂𝑖𝑗 ∈ 𝑁𝑘 , 𝑂𝑖′𝑗′ ∈ 𝑁𝑘
(3)

𝐶𝑖𝑗 − 𝐶𝑖′𝑗′ + 𝐻(𝑌𝑖𝑗𝑖′𝑗′) ≥

𝑃𝑖𝑗 ∀ (𝑖, 𝑗), ∀ (𝑖′, 𝑗′): 𝑂𝑖𝑗 ∈ 𝑁𝑘, 𝑂𝑖′𝑗′ ∈ 𝑁𝑘
(4)

𝑆𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗 (5)

𝑆𝑖𝑗+1 − 𝐶𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗 = 1, … , 𝐽𝑖−1 (6)

𝑌𝑖𝑗𝑖′𝑗′ = {
1, if operation 𝑜𝑖𝑗precedes 𝑜𝑖′𝑗′

0, otherwise
 (7)

In this context, we have Sij and Cij denoting the initiation

and finalization times for job i, where H is a significantly large

positive integer. Additionally, Nk represents the group of

operations {Oij} that can be allocated to machine k, and Yiji'j'

is a decision variable establishing a sequence between

operations Oij and Oi'j'.

Constraint 2: Intra-job precedence constraint: An operation

within the same job cannot commence until the previous

operation within that job has been completed.

Constraints 3, 4: Resource sharing constraint: Each machine

714

is limited to handling a single operation at any given moment.

Constraint 5: This constraint states that the initiation time

for each operation must be greater than or equal to zero.

Constraint 6: This constraint ensures that the value of the

makespan must be greater than or equal to the completion

times of the last operations for all jobs.

3.2 Graphical modeling

The JSSP is commonly portrayed using a disjunctive graph

G = (V, C ⋃ D) to represent tasks and resources, with V

representing the nodes corresponding to operations, excluding

the initial node (I) and terminal nodes (F) in the graph. C

represents a set of directed edges (→) connecting operations

within the same job (technological sequence), and D denotes a

set of undirected edges (---→) linking operations executed

on the same machine. Furthermore, the processing time of

each operation is indicated at the upper part of the node.

4. ANT COLONY OPTIMIZATION FOR JSSP

4.1 Elitist ACO

To optimize the Makespan, we propose the utilization of an

elitist ACO algorithm, where the problem is modeled as a

disjunctive graph and the transition between vertices is carried

out using Eq. (8)

𝑃𝑖𝑗 =
(𝜏𝑖𝑗)

𝛼
(𝜂𝑖𝑗)

𝛽

∑ (𝜏𝑖𝐿)𝛼(𝜂𝑖𝐿)𝛽
𝐿

 (8)

where, 𝑃𝑖𝑗 represents the transition probability from vertex i to

vertex j, 𝜏𝑖𝑗 denotes the pheromone amount for the arc i to j, α

defines the impact of pheromone, 𝜂𝑖𝑗 indicates the desirability

of i, j edge, β defines the impact of the desirability.

∑ (𝜏𝑖𝐿)𝛼(𝜂𝑖𝐿)𝛽
𝐿 is the summation of the product of

pheromones and distances over all available transitions from

vertex i.

The desirability of an edge is determined by a weighting

function, primarily based on heuristics, which assigns a value

indicating the quality or attractiveness of that edge. The

weighting function 𝜂𝑖𝑗 can be defined as follows:

𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
 (9)

where, dij is the length of the edge i, j, dij = 𝒑𝒊𝒋𝒌, it represents

the processing time of operation j of job i by machine k in the

case of JSSP.

α and β are vital factors guiding the decision-making

process of each ant (k) by shaping their edge selection, taking

into account pheromone levels (τ) and the heuristic data (η)

correspondingly. The objective is to ensure that edges with

higher pheromone levels are more visible, resulting in a higher

transition probability to other nodes within the group of

attainable operations. To seek the parameters α and β, different

methods are considered, such as reviewing the literature and

comparing with reference data, consulting experts, conducting

empirical testing, using parameter tuning techniques, and

employing automatic parameter adaptation. In our paper, we

use literature review and benchmarking methods. So, from the

literature, we find that the usual way to specify the parameters

α and β is as numerical values, and the following relationship

is established: β = 1 - α, with α  [0, 1].

The equation 10 defines the quantity of pheromone 𝜏𝑖𝑗

found on each edge of the pathway in the generation t.

𝜏𝑖𝑗 = ∑ Δ𝜏𝑖𝑗
𝑘𝑛

𝑘=1 + 𝜌 ∗ 𝜏𝑖𝑗(𝑡 − 1) (10)

The term 𝜏𝑖𝑗
𝑘 symbolizes the ant's part in the current

generation t overall pheromone. The amount of evaporation is

represented by ρ. To make sure that previous pheromone

levels do not considerably affect the ants' future judgments,

the amount of evaporation must be included. Eq. (11) defines

the inverse relationship between the value of the solution and

the pheromone production provided by every ant, which is

based on the standard of the response it finds.

Δ𝜏𝑖𝑗
𝑘 =

𝑄

𝐿𝑘
 (11)

In this context, Q represents a fixed value. Lk denotes the

makespan duration corresponding to the result that k ant has

discovered. In order to accelerate the approach's convergence,

all elitist ants' (e) knowledge is used to improve the pheromone

trail's transparency on the best path's vertices. Therefore, Eq.

(12) is used instead of Eq. (11) to determine the optimal route

established for each period.

Δ𝜏𝑖𝑗
𝑘 =

𝑄

𝐿𝑘
 (e) (12)

4.2 JSSP elitist ACO

The approach's fast convergence may lead to a reduction in

exploration capacity, as the ants quickly converge to one path,

that has the potential to produce a local optimum. In order to

counterbalance the issue, the algorithm allows the inclusion of

operations in the set of feasible choices that may delay or

pause machine execution for a certain amount of time if that

specific task remains running on another device. But these

actions can only be chosen if there is enough pheromone

present on the edge that connects to the node, making the

probability of selection higher than operations with

immediately available jobs. This preference for delaying

operations requires a large amount of pheromone, with the

attribute of unused devices are undesirable and penalize the

process by making it less visible.

The approach seeks to produce a wide range of solution by

thoroughly exploring the search space, generating a diverse set

of solutions, some of which may surpass the local optima

initially discovered during the early iterations. These superior

solutions act as limits, guiding the search and preventing it

from stopping too close to the global optimum, ensuring that

the algorithm continues searching for solutions that are distant

from the global optimum by up to 5%. The initial diversity of

the algorithm is crucial in directing the ants towards the

exploration of the solution space, where the path leading to the

total best solution can be identified. The pseudocode used to

solve the JSSP is as follows:

Algorithm

(1) Initialization of parameters: 𝛼, 𝛽, 𝜌, 𝑒 Ants and C cycles

(2) For each edge 𝑎𝑖𝑗 do:

𝜏0𝑖𝑗 = 𝑐 where c is a constant

Δ𝜏𝑖𝑗 = 0 actual pheromone accumulator

(3) For every cycle C do:

715

 3.1. Random assignment of the first operation

 3.2. Define the decidability rule for each ant k

 3.3. While 𝑡𝑎𝑏𝑢 𝑘 is not full do:

 For every ant k do:

 Determine the set of operation

 achievable from the current node

 Select the next operation to be visited

 according to Eq. (8)

 Move the ant to the selected operation

 Save the selected operation in 𝑡𝑎𝑏𝑢 𝑘

 3.4. For every ant k do:

 Determine the makespan 𝐿𝑘 makspan of the

 constructed plan

 Store the plan with the lowest makespan

 from cycle C

 For every edge 𝑎𝑖𝑗 do:

 Calculate Δ𝜏𝑖𝑗 according to equation 11 or 12

 3.5. For every edge 𝑎𝑖𝑗 do:

 Update pheromone 𝜏𝑖𝑗 according to

 equation 10

 Δ𝜏𝑖𝑗 = 0

 3.6. Display the shortest plan from cycle C

 3.7. 𝑡𝑎𝑏𝑢 𝑘 = 𝜙 Clear the list of visited

 elements

(4) Display the plan with the shortest makespan

Gantt diagram is built and displayed.

Algorithm description

According to the literature, the parameter values are defined

as follows: α=0.2, β=0.8, and ρ=0.7, Cycles C = 1000, and the

jobs n determines ants e, which is computed as 𝑒 =
𝑛

2
.

Pheromone values are initialized to small positive values.

The stochastic building stage of solutions starts with e ants.

Within the limitations of the task, a random selection is made

from the nodes that are first visited for the initial operation. By

equivalent chance, the decision strategy that takes the least

computation time or the greatest execution time of the

operations is chosen at random. Ants continue to traverse the

graph until the tabuk memory is fully populated. There are

n×m+2 operations in total. To avoid revisiting, the Tabuk list

limits the options for operations. Operations with delays of

five-time units or fewer are included. After every ant builds a

solution, pheromones are revised according to equation 10.

Pheromones are released at visited edges. Following each

algorithmic cycle, this global update is carried out, and the

pheromone accumulator is then reset. Finally, the algorithm

presents the shortest makespan and generates the Gantt

diagram.

Implementation of elitist ACO for JSSP

We implemented the system as a Windows application. For

this, we used IntelliJ IDEA (version 2023.1.1, released on

April 28, 2023). It is an integrated development environment

(IDE) for Java technology used in software development. It is

developed by JetBrains, available as open source under the

Apache 2 license, and supports the Java programming

language. We also utilized the following tools: JDK 9 (Java

Development Kit).

Below are the steps and the screenshot of the program's

execution using the FT06 job shop instance data.

First, we input n (jobs), m (machines) and the parameters.

Afterward, clicking "Generate" creates a matrix with rows

representing jobs and columns representing machines. Each

row i fits with job i containing m operations. Each operation j

is modeled by a cell containing two fields. The first field

corresponds to machine k that processes operation j. The

duration of the execution of operation j of task i by machine k

is denoted by the second field (see Figure 1). The matrix is

being filled according to the data.

Finally, we click the "Calculate" button, which displays the

makespan and generates the Gantt diagram (see Figure 2).

Figure 1. The data for the job shop instance FT06

716

Figure 2. Makespan and Gantt diagram of FT06

5. EVALUATION OF THE APPROACH

To validate our approach, we utilized the following

benchmark instances: FT: Fisher and Thompson [25], LA:

Lawrence [26], Applegate and Cook [27], YN: Li et al. [28],

TA: Taillard [29] and ABZ: Adams et al. [30]. We used the

following database.

Table 1 displays, the authors’ names, the instance name, its

dimension and the optimal solution taken from the studies [25-

28, 30].

We also utilized the following algorithms:

(1) Constraint Programming (OR-Tools): Google created

OR-Tools, a freely accessible suite of tools and algorithms for

solving optimization problems, such as constraint

programming. The code is available at the following link:

https://developers.google.com/optimization/scheduling/job_s

hop.

(2) GA: The genetic algorithm's code is available at the

following link: https://github.com/aalitor/Job-Shop-

Scheduling-Genetic-Algorithm.

(3) TS: The TS approach’s source code is available at the

following link: https://github.com/jakubBienczyk/Tabu-

Search-Job-Shop-Problem.

(4) PSO: The PSO algorithm's source code can be

accessed via this link:

https://github.com/KelianB/BioInspiredAI-Project3.

Table 2 compares the outcomes of the suggested ACO

compared to various other approaches (OR-Tools, GA, TS,

PSO) running on the selected databases. Each cell indicates the

best makespan and the execution time in seconds in

parenthesis. It shows also the percentage relative error by

instances sizes and approaches and the percentage relative

error average by approach. The last row of Table 2 displays

the t-test results and the corresponding p-values obtained using

the t-test statistic to compare the optimal solution with the

solutions produced by the algorithms

By setting a significance threshold (confidence level) at

0.05, it becomes evident that all calculated p-values for the

algorithms are higher than this threshold. This observation

implies that we lack sufficient evidence to assert that the

differences between the optimal solutions and the solutions

generated by the algorithms are statistically significant.

Therefore, it suggests that the algorithms are statistically

equivalent to the optimal solution, producing results

comparable to the optimal outcome. Consequently, one can

conclude that the algorithms are effective in the resolution of

the JSSP.

Table 1. Database

Authors Instances Sizes Optimal

Solution

Fisher and Thompson FT06 6×6 55

FT10 10×10 930

FT20 20×5 1165

Adams, Balas and

Zawack

ABZ5 10×10 1234

Lawrence

LA01 10×5 666

LA06 15×5 926

LA12 20×5 1039

LA16 10×10 945

LA22 15×10 927

LA26 20×10 1218

Applegate and Cook ORB01 10×10 1059

Tailland

TA21 20×20 1642

TA31 30×15 1734

TA51 50×15 2760

TA61 50×20 2868

Yamada, Nakano YN01 20×20 884

Table 2. Experimental results

Instance Size OR-

TOOLS

R. E

(%)

GA R. E

(%)

TS R. E

(%)

PSO R. E

(%)

Proposed

ACO

R. E

(%)

FT06 6×6 55

(0)

0 55

(41.49)

0 55

(52.2)

0 55

(5)

0 55

(3.25)

0

FT10 10×10 930

 (5)

0 982

(49.43)

5.59 957

(91)

2.90 957

(65)

2.9 930

(14.5)

0

717

FT20 20×5 1165

(5)

0 1230

(189)

5.58 1197

(71)

2.75 1217

(49)

4.46 1165

(25)

0

ABZ5 10×10 1234

(1.8)

0 1256

(58.59)

1.78 1238

(21.3)

0.32 1252

(31)

1.46 1234

(11.2)

0

LA01 10×5 666

(0.049)

0 666

(2.43)

0 870

(93)

30.63 666

(3)

0 666

(1.45)

0

LA06 15×5 926

(0.15)

0 926

(1.527)

0 926

(6)

0 926

(4)

0 926

(1.1)

0

LA12 20×5 1043

(0.38)

038 1084

(206.8)

4.33 1050

(41)

1.06 1084

(23.12)

4.33 1043

(2.24)

0.38

LA16 10×10 945

(0.6)

0 979

(23.58)

3.6 957

(49)

1.27 982

(19)

3.92 947

(2.4)

0

LA22 15×10 927

(3.28)

0 1024

(56.76)

10.46 959

(71)

3.45 963

(30)

3.88 927

(5.98)

0

LA26 20×10 1218

(79.8)

0 1334

(369.17)

9.52 1244

(480)

2.13 1260

(71)

3.45 1218

(104.5)

0

ORB01 10×10 1059

(1.2)

0 1100

(162.83)

3.87 1105

(174)

4.34 1282

(492)

21.06 1059

(3.05)

0

TA21 20×20 1666

(177.52)

1.46 1822

(1222.8)

10.96 1790

(503)

9.01 1876

(74)

14.25 1667

(68.65)

1.52

TA31 30×15 1784

(258.16)

2.88 1962

(1471.7)

13.15 1946

(1205)

12.23 2041

(92)

17.70 1785

(87.24)

2.94

TA51 50×15 2804

(678.94)

1.59 3041

(1543.4)

10.18 3131

(3213)

13.44 3392

(387)

22.90 2804

(305.14)

1.59

TA61 50×20 2905

(1412.57)

1.29 3361

(1523.1)

17.19 3858

(2061.3)

34.52 3633

(293)

26.67 2907

(247.12)

1.36

YN01 20×20 910

(923.12)

2.94 993

(875.75)

12.33 943

(848)

6.67 1121

(33)

26.81 910

(29.14)

2.94

 0.66 6.78 7.80 9.61 0.67

t-test t =

p-value =

-0.045252

 0.9642

-0.40047

0.6917

-0.46399

0.6462

-0.56543

0.5763

-0.046709

 0.9631

Figure 3. Results of ACO vs algorithms (OR-Tools, GA, TS, PSO) and optimal solution running on the selected databases

When examining the results from Table 2, we cane notice

that certain algorithms performed better or worse on specific

instances. This is primarily due to the specific performance

characteristics of each algorithm, the complexity of the

problem, and sensitivity to instance characteristics. Therefore,

by taking into account instance sizes, types, and problem

complexity and analyzing Table 2 and Figure 3 below, the

following interpretations can be made: The OR-Tools

algorithm has proven to be competitive, especially for small-

sized problems. It produced identical or near-optimal

makespans in many cases with an acceptable execution time.

However, for some larger problems, it did not reach the

optimum. Overall, the GA and PSO achieved good results for

most problems, often approaching the optimal makespan.

These algorithms seem well-suited for solving problems of

moderate complexity. The TS provided variable results,

achieving good solutions at times but delivering less

competitive results at other times. Its performance strongly

depends on the specific details of the problem being solved.

Our adapted ACO approach outperformed other algorithms,

often producing identical or near-optimal makespans in many

0

500

1000

1500

2000

2500

3000

3500

4000

4500

va
le

u
r

M
ak

es
p

an

Instances

Optimal solution OR-tools GA TS PSO Proposed ACO

718

cases. However, for certain larger problems, the ACO

algorithm surpassed other algorithms, achieving results closer

to the optimal makespan.

Analyzing Table 2, we can observe that: The OR-Tools

algorithm presents relatively short execution times for most

problems, especially for small-sized problems like FT06 and

LA01. The GA and PSO generally have moderate execution

times, which can vary depending on the problem's size and

complexity. They managed to find quality solutions within

reasonable timeframes, although they are longer compared to

OR-Tools and ACO. The TS algorithm shows variable

execution times and can be slower than other algorithms for

certain larger problems. The ACO exhibits relatively short

execution times for most problems, especially for small-sized

problems, but longer execution times for larger problems. This

may be attributed to the iterative and stochastic nature of the

algorithm. The ACO and OR-Tools algorithms stand out for

their short execution times, making them attractive options for

small to medium-sized problems. ACO excels for larger

problems. The GA and PSO also perform well in terms of

execution time and have achieved quality solutions. The TS

offers an interesting alternative, although its performance may

vary across different problems.

The percentage relative error average for the suggested

ACO, OR-Tools, GA, TS, and PSO is displayed in Figure 4.

The suggested ACO's percentage relative error average is just

0.67%, indicating an excellent estimation to the JSSP optimum.

Figure 4. Relative error average by approaches

6. A JSSP IN THE REAL WORLD

Our proposed ACO is applied to address a JSSP in the

pharmaceutical industry at the BIOCARE.

6.1 Company presentation

Pharmaceutical Industry BIOCARE the parent company of

the BIOCARE Group, a dynamic Algerian conglomerate with

a strong corporate culture, structured into several subsidiaries

operating in the pharmaceutical domain.

The industrial zone comprises various dedicated structures,

designed with a layout that facilitates the flow of raw materials

and finished products. Notably, there is an administrative

building, two production zones, Alpha (non-Betalactam) and

Beta (Betalactam), a quality control laboratory, and a storage

hangar for products.

Emphasis is placed on the pharmaceutical quality of raw

materials, with a stringent selection of suppliers and multiple

checks (physicochemical and microbiological) from reception

to finished products.

All operators undergo regular training on manufacturing

processes and associated risks, enabling them to master all

procedures and parameters during various phases (production,

control, cleaning, maintenance, etc.).

At BIOCARE, the two major industrial stages in the

production of a medication are the manufacturing process and

the packaging process.

6.2 Manufacturing process

Figure 5 shows the steps of the manufacturing process at

BIOCARE.

6.3 Packaging process

Figure 6 shows the steps of the packaging process at

BIOCARE.

6.4 Product flow in the pharmaceutical industry

BIOCARE

In the pharmaceutical industry at BIOCARE, a multitude of

products exists. The one-week schedule proposed by the

company involves the production of 4 different types of

medications, with each type having a set of batches

manufactured. Table 3 lists the medications considered in the

schedule, representing the jobs.

719

Figure 5. The steps of the manufacturing process

Figure 6. The steps of the packaging process

Table 3. The jobs

Job J1 J2 J3 J4

Products Trimebutine Diaglinide 2

mg

Antage 20

mg

Biovex

6.5 Machine at the manufacturing line in the

pharmaceutical industry BIOCARE

The manufacturing workshop at BIOCARE consists of 9

machines (M1, M2, ..., M9), representing the production chain

required to carry out the previously mentioned 4 jobs. Table 4

illustrates the breakdown of machines in the workshop. This

data is provided by the company.

6.6 Product flow at the machines in the manufacturing

workshop in the pharmaceutical industry BIOCARE

The production of a medication (job) involves the use of

multiple machines, necessitating the division of each job into

a set of operations equal to the number of machines required

in its manufacturing process, and the assignment of each

operation to a machine. Each operation is processed by a

predetermined machine for a predetermined duration. Table 5

illustrates the allocation of operations on the machines. In

Table 5, Pij indicates the processing times of each operation j

of job i on machine k, including the cleaning time. Indeed, at

the end of each operation, it is necessary to clean the machine

and the premises before they are used again for another type

of medication. These data are provided by the company.

Table 4. Machine allocation in the workshop

Workshop Machine Symbol Machine Description

Manufacturing

M1 Weighing

M2 Granulator 250℃

M3 Tablet Press

M4 Coating Machine

M5 Blister Packaging

M6 Boxing

M7 Mixing

M8 Encapsulation

M9 Bagging

Table 5. Job flow on the machine

Job Workshop Operation Machine Symbol Machine Description 𝑷𝒊𝒋 (hours)

J1 Manufacturing

O11 M1 Weighing 4

O12 M2 Granulator 250°C 7

O13 M3 Tablet Press 15

O14 M4 Coating Machine 5

O15 M5 Blister Packaging 12

O16 M6 Boxing 16

J2 Manufacturing

O21 M1 Weighing 6

O22 M7 Mixing 3

O23 M3 Tablet Press 48

O24 M5 Blister Packaging 32

O25 M6 Boxing 20

J3 Manufacturing O31 M8 Encapsulation 72

O32 M5 Blister Packaging 80

J4 Manufacturing

O41 M1 Weighing 5

O42 M2 Granulator 250°C 8

O43 M9 Bagging 40

O44 M6 Boxing 16

Delivery of
raw materials

Weighing Mixing Compression Packiging Encapsulation Coating

Primary packaging
Secondary
packaging

Quality Control Storage

720

Figure 7. The data for the job shop BIOCARE

Figure 8. Makespan and Gantt diagram BIOCARE

6.7 Application of the suggested ACO to address the

BIOCARE JSSP

We executed the pharmaceutical scheduling problem using

our proposed ACO algorithm. The planning period considered

by BIOCARE corresponds to one week. Production operates 6

days out of 7, with two alternating teams to ensure production.

Since these teams have a one-hour break, the total production

time per day is 2×(8−1) =2×7=14 hours. It is considered that a

working day is equivalent to 14 hours, and thus, the proposed

schedule lasts for 14×6 hours, which is 84 hours.

The JSSP involving instances (4×9) for the 4 jobs and 9

machines that constitute the manufacturing workshop is

solved using the suggested ACO (see Figure 7). The makespan

obtained is 181 hours, as illustrated in Figure 8. The goal has

been achieved. In fact, compared to the schedule proposed by

the company, approximately 3 hours have been saved. While

this saved time may seem relatively short, it's important to

consider that the planning period is quite brief (one week).

Furthermore, in addition to saving time in completing all the

scheduled jobs, our schedule also appears to provide more

available time slots for tasks beyond the original plan. This

improvement encompasses not only the total duration but also

machine availability.

7. CONCLUSION

The goal of this work is to solve a JSSP using ACO, a

bioinspired intelligence technique and its application to a real-

life case within the pharmaceutical products laboratory

(BIOCARE). The adapted ACO was compared to other

721

approaches for solving JSSP to demonstrate its effectiveness.

The competitiveness of the developed algorithm ACO has

been demonstrated by its ability to discover excellent solutions

for JSSP in a short time. During the experiments, the adapted

ACO and the other approaches succeeded to find the makespan

for several benchmark examples. However, the performance

was limited for large-scale problems. The adapted ACO turned

out to be better at addressing large JSSP with an execution

time that increases with the number of jobs. turned out to be

better at addressing big JSSP. It achieved this with an average

percentage relative error of only 0.67%, although its execution

time increased with the execution time increasing as the

number of tasks and the number of ants increase, which

represents a challenge and drawback of the ACO.

Notably, when we applied the implemented ACO to the

pharmaceutical company BIOCARE, an important rise in

planning efficiency in contrast to the company's existing

techniques, resulting in an approximate 3-hour improvement

in their weekly planning.

In general, we conclude that ACO could be successfully

applied to real-world industrial problems.

As perspective, we plan to apply the proposed ACO to

identify the best solutions for the large-scale instances in other

industries.
Also, to harness high-performance computing technologies

and parallelism. By employing hybrid metaheuristics, which

combine ACO with other optimization techniques to search for

optimal solutions in complex search spaces while reducing

computation time.

REFERENCES

[1] Brucker, P., Jurisch, B. (1993). A new lower bound for

the job-shop scheduling problem. European Journal of

Operational Research, 64(2): 156-167.

https://doi.org/10.1016/0377-2217(93)90174-L

[2] Brucker, P., Urisch, B., Sievers, B.A (1994). Branch and

bound algorithm for job shop scheduling problem.

Discret. Appl. Math., 49: 107-127.

[3] Baptiste, P., Flamini, M., Sourd, F. (2008). Lagrangian

bounds for just-in-time job shop scheduling. Computers

& Operations Research, 35(3): 906-915.

https://doi.org/10.1016/j.cor.2006.05.009

[4] Dovier, A., Formisano, A., Pontelli, E. (2005). A

comparison of CLP (FD) and ASP solutions to NP-

complete problems. In: Gabbrielli, M., Gupta, G. (eds)

Logic Programming. ICLP 2005. Lecture Notes in

Computer Science, vol 3668. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/11562931_8

[5] Brewka, G., Eiter, T., Truszczyński, M. (2011). Answer

set programming at a glance. Communications of the

ACM, 54(12): 92-103.

https://doi.org/10.1145/2043174.2043195

[6] Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R.,

Teppan, E.C. (2018). Industrial applications of answer

set programming. KI-Künstliche Intelligenz, 32(2-3):

165-176. https://doi.org/10.1007/s13218-018-0548-6

[7] Dal Palù, A., Dovier, A., Formisano, A., Pontelli, E.

(2018). Exploring life: Answer set programming in

bioinformatics. Declarative Logic Programming: Theory,

Systems, and Applications, pp. 359-412.

https://doi.org/10.1145/3191315.3191323

[8] Nowicki, E., Smutnicki, C. (1996). A fast taboo search

algorithm for the job shop problem. Management

Science, 42(6): 797-813.

https://doi.org/10.1287/mnsc.42.6.797

[9] Taillard, E.D. (1994). Parallel taboo search techniques

for the job shop scheduling problem ORSA Journal on

Computing, 6(2): 108-117.

https://doi.org/10.1287/ijoc.6.2.108

[10] Dell’Amico, M., Trubian, M. (1993). Applying tabu

search to the job-shop scheduling problem. Annals of

Operations Research, 41(3): 231-252.

https://doi.org/10.1007/BF02023076

[11] Nowicki, E., Smutnicki, C. (2005). An advanced tabu

search algorithm for the job shop problem. Journal of

Scheduling, 8(2): 145-159.

https://doi.org/10.1007/s10951-005-6364-5

[12] Leusin, M.E, Frazzon, E.M., Uriona Maldonado, M.,

Kück, M., Freitag, M. (2018). Solving the job-shop

scheduling problem in the industry 4.0 era. Technologies,

6(4): 107. https://doi.org/10.3390/technologies6040107

[13] Çaliş, B., Bulkan, S. (2015). A research survey: Review

of AI solution strategies of job shop scheduling problem.

Journal of Intelligent Manufacturing, 26: 961-973.

https://doi.org/10.1007/s10845-013-0837-8

[14] Matrenin, P.V., Manusov, V.Z. (2022) The cyclic job-

shop scheduling problem: The new subclass of the job-

shop problem and applying the simulated annealing to

solve it. In Proceedings of the IEEE 2nd International

Conference on Industrial Engineering, Applications and

Manufacturing (ICIEAM), Chelyabinsk, Russia, pp. 1-5.

https;//doi.org/10.1109/ICIEAM.2016.7911676

[15] Asadzadeh, L. (2015). A local search genetic algorithm

for the job shop scheduling problem with intelligent

agents. Computers & Industrial Engineering, 85: 376-

383. https://doi.org/10.1016/j.cie.2015.04.006

[16] Kundakcı, N., Kulak, O. (2016). Hybrid genetic

algorithms for minimizing makespan in dynamic job

shop scheduling problem. Computers & Industrial

Engineering, 96: 31-51.

https://doi.org/10.1016/j.cie.2016.03.011

[17] Gao, J., Gen, M., Sun, L.Y., Zhao, X. (2007). Hybrid of

genetic algorithm and bottleneck shifting for

multiobjective flexible job shop scheduling problems.

Computers & Industrial Engineering, 53: 149-162.

https://doi.org/10.1016/j.cie.2007.04.010

[18] Matrenin, P.V., Sekaev, V.G. (2015). Particle Swarm

optimization with velocity restriction and evolutionary

parameters selection for scheduling problem. In

Proceedings of the IEEE International Siberian

Conference on Control and Communications (SIBCON),

Omsk, Russia, pp. 1-5.

https://doi.org/10.1109/SIBCON.2015.7147143

[19] Liu, B., Wang, L., Jin, Y.H. (2008). An effective hybrid

PSO-based algorithm for flow shop scheduling with

limited buffers. Computers & Operations Research,

35(9): 2791-2806.

https://doi.org/10.1016/j.cor.2006.12.013

[20] Xiang, W., Lee, H.P. (2008). Ant colony intelligence in

multi-agent dynamic manufacturing scheduling.

Engineering Applications of Artificial Intelligence, 21(1):

73-85. https://doi.org/10.1016/j.engappai.2007.03.008

[21] Wang, L., Cai, J., Li, M., Liu, Z. (2017). Flexible job

shop scheduling problem using an improved ant colony

optimization. Scientific Programming, 2017: 9016303.

https://doi.org/10.1155/2017/9016303

722

[22] Liao, C.J., Huang, K.L. (2008). Ant colony optimization

combined with taboo search for the job shop scheduling

problem. Computers and Operations Research, 35(4):

1030-1046. https;//doi.org/10.1016/j.cor.2006.07.003

[23] Matrenin, P., Myasnichenko, V., Sdobnyakov, N.,

Sokolov, S., Fidanova, S., Kirillov, L., Mikhov, R.

(2021). Generalized swarm intelligence algorithms with

domain-specific heuristics. IAES International Journal of

Artificial Intelligence (IJ-AI), 10(1): 157-165.

http://doi.org/10.11591/ijai.v10.i1.pp157-165

[24] Ponnambalam, S.G., Jawahar, N., Girish, B.S. (2009).

Giffler and Thompson procedure based genetic

algorithms for scheduling job shops. In: Chakraborty,

U.K. (eds) Computational Intelligence in Flow Shop and

Job Shop Scheduling. Studies in Computational

Intelligence, vol 230. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-02836-6_8

[25] Fisher, H., Thompson, G.L. (1963). Probabilistic

learning combinations of local job shop scheduling rules.

In: Industrial Scheduling. Sous la dir. de J.F. Muth et G.L.

Thompson. Prentice Hall, pp. 225-251.

[26] Lawrence, S. (1984). Resource constrained project

scheduling: An experimental investigation of heuristic

scheduling techniques (supplement). Graduate School of

Industrial Administration, Carnegie-Mellon University.

[27] Applegate, D., Cook, W. (1991). A computational study

of job-shop scheduling. ORSA Journal of Computing,

3(2): 149-156. https://doi.org/10.1287/ijoc.3.2.149

[28] Li, Y.T., Manner, R., Manderick, B. (1992). A genetic

algorithm applicable to large-scale job-shop instances. In

Parallel Problem Solving from Nature, pp. 281-290.

North-Holland.

[29] Taillard, E.D. (1993). Benchmarks for basic scheduling

problems. European Journal of Operational Research,

64(2): 278-285. https://doi.org/10.1016/0377-

2217(93)90182-M

[30] Adams, J., Balas, E., Zawack, D. (1988). The shifting

bottleneck procedure for job shop scheduling.

Management Science, 34(3): 391-401.

https://doi.org/10.1287/mnsc.34.3.391

NOMENCLATURE

JSSP Job Shop Scheduling Problem

ACO Ant Colony Optimization

ASP Answer Set Programming

TS Tabu Search

GA Genetic Algorithm

PSO Particle Swarm Optimization

Greek symbols

 Impact of pheromone

 Impact of desirability

𝜌 Rate of evaporation of the pheromone

𝜏 Pheromone amount

𝜂 Desirability

723

