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Scheduling problems in the industrial sector are among the most studied optimization 

problems. Improving resource efficiency and minimizing production costs have become 

important concerns for industry managers. Seeking the best way to maximize profit is now 

a primary objective for any business. This is the context in which our study is positioned. 

It focuses on the resolution of job shop scheduling problems (JSSP). Considering that 

production challenges in industries are complex and require the consideration of multiple 

factors, we turn to the use of artificial intelligence tools for their resolution. Pharmaceutical 

manufacturing often involves a large number of resources, machines, and tasks, leading to 

high complexity in the JSSP. Ant colony optimization (ACO) is innovative and excels in 

its ability to handle this complexity by seeking optimal solutions while avoiding 

computational pitfalls. It can efficiently explore vast search spaces and leverage ant 

parallelism to reach the best solution in a short period of time, which is crucial in the 

pharmaceutical context where deadlines and quality constraints are paramount. Thus, in 

order to address the JSSP, this work suggests and puts into practice a method that involves 

the application of an ACO approach with the goal of minimizing the makespan. We 

validated our approach by comparing it with various algorithms through benchmarks taken 

from the published research. The suggested approach proved to be effective as the 

produced solutions were of high quality and showed that it could achieve results that are 

closer to the ideal solution for larger-scale issues than other algorithms with an average 

percentage relative error of just 0.67%. Furthermore, application of ACO in the context of 

BIOCARE's pharmaceutical laboratories’ production led to an improvement of 

approximately 3 hours in their weekly planning. 
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1. INTRODUCTION

The JSSP is complex and multifaceted conundrum that has 

garnered the attention of researchers and industrialists alike. 

The JSSP represents an issue in operations management, 

where a multitude of jobs with varying processing 

requirements must be allocated to a limited set of machines 

while adhering to specific constraints, ultimately seeking to 

minimize makespan, which is the total completion time. The 

JSSP transcends industrial domains, making its study and 

resolution essential across various sectors as manufacturing, 

healthcare, transportation, and logistics. It presents a multitude 

of real-world scenarios where the allocation of limited 

resources, such as machines, personnel, or vehicles, to a set of 

tasks with distinct processing sequences. The consequences of 

efficient JSSP are far-reaching, with the potential to reduce 

operational costs, enhance productivity, improve delivery 

times, and maintain high levels of customer satisfaction. 

The primary aim of JSSP is to determine an ideal plan that 

reduces the makespan, representing the overall time needed to 

finish all tasks, to a minimum. The JSSP is widely recognized 

as NP-hard, indicating that obtaining an exact optimal solution 

within a reasonable time is computationally infeasible for 

large problem instances. As such, scholars have turned to 

heuristic and metaheuristic techniques to address this complex 

scheduling problem. One such powerful metaheuristic 

approach is ACO that draws inspiration from ant foraging 

behavior. It employs pheromone trails left by simulated ants to 

facilitate optimization processes and discover valid solutions 

in a graph. During the optimization process, multiple ants 

explore the search space represented as a directed graph, and 

upon reaching a terminal vertex, the solution is derived from 

the path they found. As the process unfolds, these simulated 

ants leave pheromones behind, which serve as a guide for other 

ants to either replicate the same solution or explore 

neighboring areas. ACO has demonstrated significant success 

in solving combinatorial optimization problems. It has been 

effectively used to solve a variety of scheduling issues and is 

especially appropriate for issues with discrete solution areas. 

This paper is structured in the following manner: Section 2 

provides an overview of the primary contributions relevant to 

our research. In Section 3, we delve into the presentation of 

the mathematical and graphical modeling of the problem. 

Section 4 outlines the suggested approach for addressing JSSP. 

Section 5 presents the experiments, results, and discussions, 

where we examine the outcomes of the experiments conducted 

to assess the effectiveness of the ACO solution we have put 

forth. It addresses the various algorithms drawn from the 

literature and compares them to our adapted ACO algorithm, 

including constraint programming, genetic algorithm (GA), 

tabu search (TS), and particle swarm optimization (PSO). The 

algorithms are tested on benchmark instances of different sizes 
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to evaluate their performance and effectiveness. Section 6 

details the application of our algorithm to a real-life case 

within the pharmaceutical products laboratory (at BIOCARE). 

A conclusion and future works are described in section 7.  

Finally, it is worth noting that many algorithms are 

commonly used to solve small-scale JSSP and provide optimal 

solutions. However, it is clearly evident that there is a gap in 

solving large-scale JSSP. This gap presents a significant 

opportunity for future research in this field. Therefore, this 

article focuses on the adaptation and implementation of ACO 

to resolve large-scale JSSP, aiming to provide insights into its 

effectiveness and potential as a scheduling optimization tool, 

In addition to its usage to a real case in the pharmaceutical 

industry. This research aims to provide a unique perspective to 

the field by addressing this specific aspect of the 

pharmaceutical industry. 

 

 

2. RELATED WORK 

 

The JSSP has garnered significant attention in the realms of 

operations research and industrial engineering because of its 

practical significance and intricate nature. Several approaches 

have been proposed for addressing the JSSP, among them, 

exact methods such as the widely used branch-and-bound 

approach [1-3]. Another exact method employed for 

combinatorial problems is Answer Set Programming (ASP) [4, 

5]. ASP has demonstrated successful applications in real-

world scenarios, spanning across industries [6] to fields like 

biology and medicine [7]. A recurring challenge with these 

precise methods is their efficiency in managing instances of 

modest scale, whereas they encounter difficulties when 

confronted with larger instances. To address large-scale 

metaheuristics, are used like TS [8-11]. In addition, Artificial 

intelligence techniques play a crucial role in resolving job shop 

scheduling problems [12-14]. Among these techniques, the 

GA stands out as one of the most prevalent [15-17], along with 

other population-based approaches like PSO [18, 19] and ACO 

algorithms [20-22] whether operating on evolutionary or 

swarm principles, offer significant flexibility and generate 

solutions for scheduling issues that, while not achieving 

absolute precision, exhibit satisfactory accuracy within a 

reasonable time frame. Furthermore, population algorithms 

can be combined in hybrid configurations with deterministic 

methodologies [15-17, 23].  

To contextualize our choice of ACO in our study, we 

provide a brief comparison of job shop problem-solving 

methods mentioned in the literature in terms of their strengths 

and weaknesses: 

• Branch and Bound: Offers guaranteed optimal 

solutions for small instances with high precision but has 

exponential execution time for larger problems. 

• ASP: Offers flexibility in modeling constraints and is 

suitable for a variety of planning problems but is less 

efficient for larger instances, and the search for optimal 

solutions can be time-consuming. 

• TS: Effective for exploring local neighborhoods, can 

help escape local optima, but can be sensitive to the 

quality of the initial solution and requires constant 

adjustments to tabu rules. 

• GA: Generates high-quality solutions quickly and has 

good exploration of the solution space but can get stuck 

in local optima and requires careful parameter tuning. 

• ACO: Adapts to complex problems, has the capacity to 

handle dynamic constraints, and is efficient for medium 

and large scheduling problems (such as those in the 

pharmaceutical industry). However, it can be sensitive 

to parameter settings. 

The studies conducted by the studies [20-22] primarily 

focused on small to medium-sized instances of the JSSP. In 

contrast, our work aims to explore the efficiency of ACO on 

large-scale problems. 

 

 

3. PROBLEM MODELING 

 

Modeling, in general, is a crucial step in solving a 

scheduling problem. It involves simplifying the representation 

of all problem data to accurately reflect its intricacies and 

nuances. 

 

3.1 Notation 

 

In the following, we will provide the notations for the data 

used within the scope of our problem: 𝛀: Set of all available 

machines, 𝒏: Total number of jobs, 𝒎: Total number of 

machines, 𝒊: Index of the 𝒊𝒕𝒉 job, 𝒋: Index of the 𝒋𝒕𝒉 operation 

of job 𝒊, 𝑱𝒊𝒐: Total number of operations in job 𝑱𝒊, 𝑶𝒊𝒋: 𝒋𝒕𝒉 

Operation of job 𝑱𝒊, 𝜴𝒊𝒋: Set of available machines for operation 

𝑶𝒊𝒋, 𝒑𝒊𝒋𝒌: Execution time of operation 𝑶𝒊𝒋 on machine k and 

𝑺𝒊𝒋𝒌: Start time of operation 𝑶𝒊𝒋 on machine k. 

 

3.2 Mathematical modeling 

 

The model we provide is based on the formulation 

according to the study [24]. 

Objective function:  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒[𝑀𝑎𝑥(𝐶1𝑗1, 𝐶2𝑗2, … 𝐶𝑛𝑗𝑛)] (1) 

 

Subject to: 

 

𝐶𝑖𝑗 − 𝑆𝑖𝑗 − 𝑃𝑖𝑗 = 0 ∀ 𝑖 = 1. . 𝑛 , 𝑗 = 1. . 𝑚 (2) 

 

𝐶𝑖′𝑗′ − 𝐶𝑖𝑗 + 𝐻(1 − 𝑌𝑖𝑗𝑖′𝑗′) ≥

𝑃𝑖′𝑗′  ∀ (𝑖, 𝑗), ∀ (𝑖′, 𝑗′): 𝑂𝑖𝑗 ∈ 𝑁𝑘 , 𝑂𝑖′𝑗′ ∈ 𝑁𝑘  
(3) 

 

𝐶𝑖𝑗 − 𝐶𝑖′𝑗′ + 𝐻(𝑌𝑖𝑗𝑖′𝑗′) ≥

𝑃𝑖𝑗  ∀ (𝑖, 𝑗), ∀ (𝑖′, 𝑗′): 𝑂𝑖𝑗 ∈ 𝑁𝑘, 𝑂𝑖′𝑗′ ∈ 𝑁𝑘  
(4) 

 

𝑆𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗 (5) 

 

𝑆𝑖𝑗+1 − 𝐶𝑖𝑗  ≥ 0 ∀ 𝑖, 𝑗 = 1, … , 𝐽𝑖−1 (6) 

 

𝑌𝑖𝑗𝑖′𝑗′ = {
1, if operation 𝑜𝑖𝑗precedes 𝑜𝑖′𝑗′

0, otherwise 
  (7) 

 

In this context, we have Sij and Cij denoting the initiation 

and finalization times for job i, where H is a significantly large 

positive integer. Additionally, Nk represents the group of 

operations {Oij} that can be allocated to machine k, and Yiji'j' 

is a decision variable establishing a sequence between 

operations Oij and Oi'j'. 

Constraint 2: Intra-job precedence constraint: An operation 

within the same job cannot commence until the previous 

operation within that job has been completed. 

Constraints 3, 4: Resource sharing constraint: Each machine 
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is limited to handling a single operation at any given moment. 

Constraint 5: This constraint states that the initiation time 

for each operation must be greater than or equal to zero. 

Constraint 6: This constraint ensures that the value of the 

makespan must be greater than or equal to the completion 

times of the last operations for all jobs. 

 

3.2 Graphical modeling 

 

The JSSP is commonly portrayed using a disjunctive graph 

G = (V, C ⋃ D) to represent tasks and resources, with V 

representing the nodes corresponding to operations, excluding 

the initial node (I) and terminal nodes (F) in the graph. C 

represents a set of directed edges (→) connecting operations 

within the same job (technological sequence), and D denotes a 

set of undirected edges (---→) linking operations executed 

on the same machine. Furthermore, the processing time of 

each operation is indicated at the upper part of the node. 

 

 

4. ANT COLONY OPTIMIZATION FOR JSSP 

 

4.1 Elitist ACO 

 

To optimize the Makespan, we propose the utilization of an 

elitist ACO algorithm, where the problem is modeled as a 

disjunctive graph and the transition between vertices is carried 

out using Eq. (8) 

 

𝑃𝑖𝑗 =
(𝜏𝑖𝑗)

𝛼
(𝜂𝑖𝑗)

𝛽

∑ (𝜏𝑖𝐿)𝛼(𝜂𝑖𝐿)𝛽
𝐿

  (8) 

 

where, 𝑃𝑖𝑗  represents the transition probability from vertex i to 

vertex j, 𝜏𝑖𝑗 denotes the pheromone amount for the arc i to j, α 

defines the impact of pheromone, 𝜂𝑖𝑗 indicates the desirability 

of i, j edge, β defines the impact of the desirability. 

∑ (𝜏𝑖𝐿)𝛼(𝜂𝑖𝐿)𝛽
𝐿  is the summation of the product of 

pheromones and distances over all available transitions from 

vertex i. 

The desirability of an edge is determined by a weighting 

function, primarily based on heuristics, which assigns a value 

indicating the quality or attractiveness of that edge. The 

weighting function 𝜂𝑖𝑗 can be defined as follows: 

 

𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
  (9) 

 

where, dij is the length of the edge i, j, dij = 𝒑𝒊𝒋𝒌, it represents 

the processing time of operation j of job i by machine k in the 

case of JSSP. 

α and β are vital factors guiding the decision-making 

process of each ant (k) by shaping their edge selection, taking 

into account pheromone levels (τ) and the heuristic data (η) 

correspondingly. The objective is to ensure that edges with 

higher pheromone levels are more visible, resulting in a higher 

transition probability to other nodes within the group of 

attainable operations. To seek the parameters α and β, different 

methods are considered, such as reviewing the literature and 

comparing with reference data, consulting experts, conducting 

empirical testing, using parameter tuning techniques, and 

employing automatic parameter adaptation. In our paper, we 

use literature review and benchmarking methods. So, from the 

literature, we find that the usual way to specify the parameters 

α and β is as numerical values, and the following relationship 

is established: β = 1 - α, with α  [0, 1]. 

The equation 10 defines the quantity of pheromone 𝜏𝑖𝑗 

found on each edge of the pathway in the generation t. 

 

𝜏𝑖𝑗 = ∑ Δ𝜏𝑖𝑗
𝑘𝑛

𝑘=1 + 𝜌 ∗ 𝜏𝑖𝑗(𝑡 − 1)  (10) 

 

The term 𝜏𝑖𝑗
𝑘  symbolizes the ant's part in the current 

generation t overall pheromone. The amount of evaporation is 

represented by ρ. To make sure that previous pheromone 

levels do not considerably affect the ants' future judgments, 

the amount of evaporation must be included. Eq. (11) defines 

the inverse relationship between the value of the solution and 

the pheromone production provided by every ant, which is 

based on the standard of the response it finds. 

 

Δ𝜏𝑖𝑗
𝑘 =

𝑄

𝐿𝑘
  (11) 

 

In this context, Q represents a fixed value. Lk denotes the 

makespan duration corresponding to the result that k ant has 

discovered. In order to accelerate the approach's convergence, 

all elitist ants' (e) knowledge is used to improve the pheromone 

trail's transparency on the best path's vertices. Therefore, Eq. 

(12) is used instead of Eq. (11) to determine the optimal route 

established for each period. 

 

Δ𝜏𝑖𝑗
𝑘 =

𝑄

𝐿𝑘
 (e) (12) 

 

4.2 JSSP elitist ACO 

 

The approach's fast convergence may lead to a reduction in 

exploration capacity, as the ants quickly converge to one path, 

that has the potential to produce a local optimum. In order to 

counterbalance the issue, the algorithm allows the inclusion of 

operations in the set of feasible choices that may delay or 

pause machine execution for a certain amount of time if that 

specific task remains running on another device. But these 

actions can only be chosen if there is enough pheromone 

present on the edge that connects to the node, making the 

probability of selection higher than operations with 

immediately available jobs. This preference for delaying 

operations requires a large amount of pheromone, with the 

attribute of unused devices are undesirable and penalize the 

process by making it less visible.  

The approach seeks to produce a wide range of solution by 

thoroughly exploring the search space, generating a diverse set 

of solutions, some of which may surpass the local optima 

initially discovered during the early iterations. These superior 

solutions act as limits, guiding the search and preventing it 

from stopping too close to the global optimum, ensuring that 

the algorithm continues searching for solutions that are distant 

from the global optimum by up to 5%. The initial diversity of 

the algorithm is crucial in directing the ants towards the 

exploration of the solution space, where the path leading to the 

total best solution can be identified. The pseudocode used to 

solve the JSSP is as follows: 

 

Algorithm  

(1) Initialization of parameters: 𝛼, 𝛽, 𝜌, 𝑒 Ants and C cycles 

(2) For each edge 𝑎𝑖𝑗  do:  

𝜏0𝑖𝑗 = 𝑐 where c is a constant 

Δ𝜏𝑖𝑗 = 0 actual pheromone accumulator 

(3)  For every cycle C do: 

715



 

        3.1. Random assignment of the first operation 

        3.2. Define the decidability rule for each ant k 

         3.3. While  𝑡𝑎𝑏𝑢 𝑘 is not full do: 

                For every ant k do: 

                    Determine the set of operation  

        achievable from the current node 

           Select the next operation to be visited  

                     according to Eq. (8) 

            Move the ant to the selected operation 

            Save the selected operation in 𝑡𝑎𝑏𝑢 𝑘  

        3.4. For every ant k do: 

    Determine the makespan 𝐿𝑘 makspan of the  

     constructed plan 

    Store the plan with the lowest makespan  

               from cycle C 

      For every edge 𝑎𝑖𝑗  do: 

             Calculate Δ𝜏𝑖𝑗  according to equation 11 or 12 

          3.5. For every edge 𝑎𝑖𝑗  do: 

      Update pheromone 𝜏𝑖𝑗 according to  

                equation 10 

        Δ𝜏𝑖𝑗 = 0   

           3.6. Display the shortest plan from cycle C 

               3.7. 𝑡𝑎𝑏𝑢 𝑘 = 𝜙 Clear the list of visited  

                             elements 

(4) Display the plan with the shortest makespan 

Gantt diagram is built and displayed. 

 

Algorithm description  

According to the literature, the parameter values are defined 

as follows: α=0.2, β=0.8, and ρ=0.7, Cycles C = 1000, and the 

jobs n determines ants e, which is computed as 𝑒 =
𝑛

2
. 

Pheromone values are initialized to small positive values. 

The stochastic building stage of solutions starts with e ants. 

Within the limitations of the task, a random selection is made 

from the nodes that are first visited for the initial operation. By 

equivalent chance, the decision strategy that takes the least 

computation time or the greatest execution time of the 

operations is chosen at random. Ants continue to traverse the 

graph until the tabuk memory is fully populated. There are 

n×m+2 operations in total. To avoid revisiting, the Tabuk list 

limits the options for operations. Operations with delays of 

five-time units or fewer are included. After every ant builds a 

solution, pheromones are revised according to equation 10. 

Pheromones are released at visited edges. Following each 

algorithmic cycle, this global update is carried out, and the 

pheromone accumulator is then reset. Finally, the algorithm 

presents the shortest makespan and generates the Gantt 

diagram. 

 

Implementation of elitist ACO for JSSP 

We implemented the system as a Windows application. For 

this, we used IntelliJ IDEA (version 2023.1.1, released on 

April 28, 2023). It is an integrated development environment 

(IDE) for Java technology used in software development. It is 

developed by JetBrains, available as open source under the 

Apache 2 license, and supports the Java programming 

language. We also utilized the following tools: JDK 9 (Java 

Development Kit).  

Below are the steps and the screenshot of the program's 

execution using the FT06 job shop instance data. 

First, we input n (jobs), m (machines) and the parameters. 

Afterward, clicking "Generate" creates a matrix with rows 

representing jobs and columns representing machines. Each 

row i fits with job i containing m operations. Each operation j 

is modeled by a cell containing two fields. The first field 

corresponds to machine k that processes operation j. The 

duration of the execution of operation j of task i by machine k 

is denoted by the second field (see Figure 1). The matrix is 

being filled according to the data. 

Finally, we click the "Calculate" button, which displays the 

makespan and generates the Gantt diagram (see Figure 2). 

 

 
 

Figure 1. The data for the job shop instance FT06 
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Figure 2. Makespan and Gantt diagram of FT06 

5. EVALUATION OF THE APPROACH

To validate our approach, we utilized the following 

benchmark instances: FT: Fisher and Thompson [25], LA: 

Lawrence [26], Applegate and Cook [27], YN: Li et al. [28], 

TA: Taillard [29] and ABZ: Adams et al. [30]. We used the 

following database. 

Table 1 displays, the authors’ names, the instance name, its 

dimension and the optimal solution taken from the studies [25-

28, 30]. 

We also utilized the following algorithms: 

(1) Constraint Programming (OR-Tools): Google created

OR-Tools, a freely accessible suite of tools and algorithms for 

solving optimization problems, such as constraint 

programming. The code is available at the following link: 

https://developers.google.com/optimization/scheduling/job_s

hop.  

(2) GA: The genetic algorithm's code is available at the

following link: https://github.com/aalitor/Job-Shop-

Scheduling-Genetic-Algorithm. 

(3) TS: The TS approach’s source code is available at the

following link: https://github.com/jakubBienczyk/Tabu-

Search-Job-Shop-Problem. 

(4) PSO: The PSO algorithm's source code can be

accessed via this link: 

https://github.com/KelianB/BioInspiredAI-Project3. 

Table 2 compares the outcomes of the suggested ACO 

compared to various other approaches (OR-Tools, GA, TS, 

PSO) running on the selected databases. Each cell indicates the 

best makespan and the execution time in seconds in 

parenthesis. It shows also the percentage relative error by 

instances sizes and approaches and the percentage relative 

error average by approach. The last row of Table 2 displays 

the t-test results and the corresponding p-values obtained using 

the t-test statistic to compare the optimal solution with the 

solutions produced by the algorithms 

By setting a significance threshold (confidence level) at 

0.05, it becomes evident that all calculated p-values for the 

algorithms are higher than this threshold. This observation 

implies that we lack sufficient evidence to assert that the 

differences between the optimal solutions and the solutions 

generated by the algorithms are statistically significant. 

Therefore, it suggests that the algorithms are statistically 

equivalent to the optimal solution, producing results 

comparable to the optimal outcome. Consequently, one can 

conclude that the algorithms are effective in the resolution of 

the JSSP. 

Table 1. Database 

Authors Instances Sizes Optimal 

Solution 

Fisher and Thompson FT06 6×6 55 

FT10 10×10 930 

FT20 20×5 1165 

Adams, Balas and 

Zawack 

ABZ5 10×10 1234 

Lawrence 

LA01 10×5 666 

LA06 15×5 926 

LA12 20×5 1039 

LA16 10×10 945 

LA22 15×10 927 

LA26 20×10 1218 

Applegate and Cook ORB01 10×10 1059 

Tailland 

TA21 20×20 1642 

TA31 30×15 1734 

TA51 50×15 2760 

TA61 50×20 2868 

Yamada, Nakano YN01 20×20 884 

Table 2. Experimental results 

Instance Size OR-

TOOLS 

R. E

(%)

GA R. E

(%)

TS R. E

(%)

PSO R. E

(%)

Proposed 

ACO 

R. E

(%)

FT06 6×6 55 

(0) 

0 55 

(41.49) 

0 55 

(52.2) 

0 55 

(5) 

0 55 

(3.25) 

0 

FT10 10×10 930 

 (5) 

0 982 

(49.43) 

5.59 957 

(91) 

2.90 957 

(65) 

2.9 930 

(14.5) 

0 
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FT20 20×5 1165 

(5) 

0 1230 

(189) 

5.58 1197 

(71) 

2.75 1217 

(49) 

4.46 1165 

(25) 

0 

ABZ5 10×10 1234 

(1.8) 

0 1256 

(58.59) 

1.78 1238 

(21.3) 

0.32 1252 

(31) 

1.46 1234 

(11.2) 

0 

LA01 10×5 666 

(0.049) 

0 666 

(2.43) 

0 870 

(93) 

30.63 666 

(3) 

0 666 

(1.45) 

0 

LA06 15×5 926 

(0.15) 

0 926 

(1.527) 

0 926 

(6) 

0 926 

(4) 

0 926 

(1.1) 

0 

LA12 20×5 1043 

(0.38) 

038 1084 

(206.8) 

4.33 1050 

(41) 

1.06 1084 

(23.12) 

4.33 1043 

(2.24) 

0.38 

LA16 10×10 945 

(0.6) 

0 979 

(23.58) 

3.6 957 

(49) 

1.27 982 

(19) 

3.92 947 

(2.4) 

0 

LA22 15×10 927 

(3.28) 

0 1024 

(56.76) 

10.46 959 

(71) 

3.45 963 

(30) 

3.88 927 

(5.98) 

0 

LA26 20×10 1218 

(79.8) 

0 1334 

(369.17) 

9.52 1244 

(480) 

2.13 1260 

(71) 

3.45 1218 

(104.5) 

0 

ORB01 10×10 1059 

(1.2) 

0 1100 

(162.83) 

3.87 1105 

(174) 

4.34 1282 

(492) 

21.06 1059 

(3.05) 

0 

TA21 20×20 1666 

(177.52) 

1.46 1822 

(1222.8) 

10.96 1790 

(503) 

9.01 1876 

(74) 

14.25 1667 

(68.65) 

1.52 

TA31 30×15 1784 

(258.16) 

2.88 1962 

(1471.7) 

13.15 1946 

(1205) 

12.23 2041 

(92) 

17.70 1785 

(87.24) 

2.94 

TA51 50×15 2804 

(678.94) 

1.59 3041 

(1543.4) 

10.18 3131 

(3213) 

13.44 3392 

(387) 

22.90 2804 

(305.14) 

1.59 

TA61 50×20 2905 

(1412.57) 

1.29 3361 

(1523.1) 

17.19 3858 

(2061.3) 

34.52 3633 

(293) 

26.67 2907 

(247.12) 

1.36 

YN01 20×20 910 

(923.12) 

2.94 993 

(875.75) 

12.33 943 

(848) 

6.67 1121 

(33) 

26.81 910 

(29.14) 

2.94 

   0.66  6.78  7.80  9.61  0.67 

t-test t =  

p-value = 

-0.045252 

 0.9642 

-0.40047  

0.6917 

-0.46399  

0.6462 

-0.56543  

0.5763 

-0.046709 

 0.9631 

 

 
 

Figure 3. Results of ACO vs algorithms (OR-Tools, GA, TS, PSO) and optimal solution running on the selected databases 

 

 

When examining the results from Table 2, we cane notice 

that certain algorithms performed better or worse on specific 

instances. This is primarily due to the specific performance 

characteristics of each algorithm, the complexity of the 

problem, and sensitivity to instance characteristics. Therefore, 

by taking into account instance sizes, types, and problem 

complexity and analyzing Table 2 and Figure 3 below, the 

following interpretations can be made: The OR-Tools 

algorithm has proven to be competitive, especially for small-

sized problems. It produced identical or near-optimal 

makespans in many cases with an acceptable execution time. 

However, for some larger problems, it did not reach the 

optimum. Overall, the GA and PSO achieved good results for 

most problems, often approaching the optimal makespan. 

These algorithms seem well-suited for solving problems of 

moderate complexity. The TS provided variable results, 

achieving good solutions at times but delivering less 

competitive results at other times. Its performance strongly 

depends on the specific details of the problem being solved. 

Our adapted ACO approach outperformed other algorithms, 

often producing identical or near-optimal makespans in many 
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cases. However, for certain larger problems, the ACO 

algorithm surpassed other algorithms, achieving results closer 

to the optimal makespan.  

Analyzing Table 2, we can observe that: The OR-Tools 

algorithm presents relatively short execution times for most 

problems, especially for small-sized problems like FT06 and 

LA01. The GA and PSO generally have moderate execution 

times, which can vary depending on the problem's size and 

complexity. They managed to find quality solutions within 

reasonable timeframes, although they are longer compared to 

OR-Tools and ACO. The TS algorithm shows variable 

execution times and can be slower than other algorithms for 

certain larger problems. The ACO exhibits relatively short 

execution times for most problems, especially for small-sized 

problems, but longer execution times for larger problems. This 

may be attributed to the iterative and stochastic nature of the 

algorithm. The ACO and OR-Tools algorithms stand out for 

their short execution times, making them attractive options for 

small to medium-sized problems. ACO excels for larger 

problems. The GA and PSO also perform well in terms of 

execution time and have achieved quality solutions. The TS 

offers an interesting alternative, although its performance may 

vary across different problems. 

The percentage relative error average for the suggested 

ACO, OR-Tools, GA, TS, and PSO is displayed in Figure 4. 

The suggested ACO's percentage relative error average is just 

0.67%, indicating an excellent estimation to the JSSP optimum. 

 

 
 

Figure 4. Relative error average by approaches 

 

 

6. A JSSP IN THE REAL WORLD 

 

Our proposed ACO is applied to address a JSSP in the 

pharmaceutical industry at the BIOCARE. 

 

6.1 Company presentation 

 

Pharmaceutical Industry BIOCARE the parent company of 

the BIOCARE Group, a dynamic Algerian conglomerate with 

a strong corporate culture, structured into several subsidiaries 

operating in the pharmaceutical domain. 

The industrial zone comprises various dedicated structures, 

designed with a layout that facilitates the flow of raw materials 

and finished products. Notably, there is an administrative 

building, two production zones, Alpha (non-Betalactam) and 

Beta (Betalactam), a quality control laboratory, and a storage 

hangar for products. 

Emphasis is placed on the pharmaceutical quality of raw 

materials, with a stringent selection of suppliers and multiple 

checks (physicochemical and microbiological) from reception 

to finished products. 

All operators undergo regular training on manufacturing 

processes and associated risks, enabling them to master all 

procedures and parameters during various phases (production, 

control, cleaning, maintenance, etc.).  

At BIOCARE, the two major industrial stages in the 

production of a medication are the manufacturing process and 

the packaging process.  

 

6.2 Manufacturing process 

 

Figure 5 shows the steps of the manufacturing process at 

BIOCARE. 

 

6.3 Packaging process 

 

Figure 6 shows the steps of the packaging process at 

BIOCARE. 

 

6.4 Product flow in the pharmaceutical industry 

BIOCARE 

 

In the pharmaceutical industry at BIOCARE, a multitude of 

products exists. The one-week schedule proposed by the 

company involves the production of 4 different types of 

medications, with each type having a set of batches 

manufactured. Table 3 lists the medications considered in the 

schedule, representing the jobs.  
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Figure 5. The steps of the manufacturing process 

Figure 6. The steps of the packaging process 

Table 3. The jobs 

Job J1 J2 J3 J4 

Products Trimebutine Diaglinide 2 

mg 

Antage 20 

mg 

Biovex 

6.5 Machine at the manufacturing line in the 

pharmaceutical industry BIOCARE 

The manufacturing workshop at BIOCARE consists of 9 

machines (M1, M2, ..., M9), representing the production chain 

required to carry out the previously mentioned 4 jobs. Table 4 

illustrates the breakdown of machines in the workshop. This 

data is provided by the company. 

6.6 Product flow at the machines in the manufacturing 

workshop in the pharmaceutical industry BIOCARE 

The production of a medication (job) involves the use of 

multiple machines, necessitating the division of each job into 

a set of operations equal to the number of machines required 

in its manufacturing process, and the assignment of each 

operation to a machine. Each operation is processed by a 

predetermined machine for a predetermined duration. Table 5 

illustrates the allocation of operations on the machines. In 

Table 5, Pij indicates the processing times of each operation j 

of job i on machine k, including the cleaning time. Indeed, at 

the end of each operation, it is necessary to clean the machine 

and the premises before they are used again for another type 

of medication. These data are provided by the company. 

Table 4. Machine allocation in the workshop 

Workshop Machine Symbol Machine Description 

Manufacturing 

M1 Weighing 

M2 Granulator 250℃ 

M3 Tablet Press 

M4 Coating Machine 

M5 Blister Packaging 

M6 Boxing 

M7 Mixing 

M8 Encapsulation 

M9 Bagging 

Table 5. Job flow on the machine 

Job Workshop Operation Machine Symbol Machine Description 𝑷𝒊𝒋 (hours)

J1 Manufacturing 

O11 M1 Weighing 4 

O12 M2 Granulator 250°C 7 

O13 M3 Tablet Press 15 

O14 M4 Coating Machine 5 

O15 M5 Blister Packaging 12 

O16 M6 Boxing 16 

J2 Manufacturing 

O21 M1 Weighing 6 

O22 M7 Mixing 3 

O23 M3 Tablet Press 48 

O24 M5 Blister Packaging 32 

O25 M6 Boxing 20 

J3 Manufacturing O31 M8 Encapsulation 72 

O32 M5 Blister Packaging 80 

J4 Manufacturing 

O41 M1 Weighing 5 

O42 M2 Granulator 250°C 8 

O43 M9 Bagging 40 

O44 M6 Boxing 16 

Delivery of 
raw materials 

Weighing Mixing Compression Packiging Encapsulation Coating 

Primary packaging
Secondary 
packaging

Quality Control Storage 
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Figure 7. The data for the job shop BIOCARE 

Figure 8. Makespan and Gantt diagram BIOCARE 

6.7 Application of the suggested ACO to address the 

BIOCARE JSSP 

We executed the pharmaceutical scheduling problem using 

our proposed ACO algorithm. The planning period considered 

by BIOCARE corresponds to one week. Production operates 6 

days out of 7, with two alternating teams to ensure production. 

Since these teams have a one-hour break, the total production 

time per day is 2×(8−1) =2×7=14 hours. It is considered that a 

working day is equivalent to 14 hours, and thus, the proposed 

schedule lasts for 14×6 hours, which is 84 hours. 

The JSSP involving instances (4×9) for the 4 jobs and 9 

machines that constitute the manufacturing workshop is 

solved using the suggested ACO (see Figure 7). The makespan 

obtained is 181 hours, as illustrated in Figure 8. The goal has 

been achieved. In fact, compared to the schedule proposed by 

the company, approximately 3 hours have been saved. While 

this saved time may seem relatively short, it's important to 

consider that the planning period is quite brief (one week). 

Furthermore, in addition to saving time in completing all the 

scheduled jobs, our schedule also appears to provide more 

available time slots for tasks beyond the original plan. This 

improvement encompasses not only the total duration but also 

machine availability. 

7. CONCLUSION

The goal of this work is to solve a JSSP using ACO, a 

bioinspired intelligence technique and its application to a real-

life case within the pharmaceutical products laboratory 

(BIOCARE). The adapted ACO was compared to other 
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approaches for solving JSSP to demonstrate its effectiveness. 

The competitiveness of the developed algorithm ACO has 

been demonstrated by its ability to discover excellent solutions 

for JSSP in a short time. During the experiments, the adapted 

ACO and the other approaches succeeded to find the makespan 

for several benchmark examples. However, the performance 

was limited for large-scale problems. The adapted ACO turned 

out to be better at addressing large JSSP with an execution 

time that increases with the number of jobs. turned out to be 

better at addressing big JSSP. It achieved this with an average 

percentage relative error of only 0.67%, although its execution 

time increased with the execution time increasing as the 

number of tasks and the number of ants increase, which 

represents a challenge and drawback of the ACO. 

Notably, when we applied the implemented ACO to the 

pharmaceutical company BIOCARE, an important rise in 

planning efficiency in contrast to the company's existing 

techniques, resulting in an approximate 3-hour improvement 

in their weekly planning.  

In general, we conclude that ACO could be successfully 

applied to real-world industrial problems. 

As perspective, we plan to apply the proposed ACO to 

identify the best solutions for the large-scale instances in other 

industries.  
Also, to harness high-performance computing technologies 

and parallelism. By employing hybrid metaheuristics, which 

combine ACO with other optimization techniques to search for 

optimal solutions in complex search spaces while reducing 

computation time. 
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NOMENCLATURE 

JSSP Job Shop Scheduling Problem 

ACO Ant Colony Optimization 

ASP Answer Set Programming 

TS Tabu Search 

GA Genetic Algorithm 

PSO Particle Swarm Optimization 

Greek symbols 

 Impact of pheromone 

 Impact of desirability 

𝜌 Rate of evaporation of the pheromone 

𝜏 Pheromone amount 

𝜂 Desirability 
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