
 

 
 
 

 
 

 
1. INTRODUCTION 

Heat transfer through buoyancy induced flow is an 
important engineering phenomenon which has direct 
applications in solar thermal collectors, cooling of electronic 
devices, nuclear reactors, controlling fire, measuring air 
movement in attics and greenhouses. Experimental and/or 
numerical studies generally concern square or triangular 
shaped enclosures. However, free convection flow and heat 
transfer in a prismatic enclosure is frequently found in attic 
areas of domestic buildings. Walid and Ahmed [1] studied 
buoyancy induced heat transfer and fluid flow inside a 
prismatic cavity. Their results revealed that the cavity's aspect 
ratio has a significant influence on the temperature and flow 
fields. Walid et al. [2] performed numerical analysis of 
natural convection in a prismatic enclosure. Their results 
indicated that heat transfer rate increases with increasing the 
Rayleigh number and decreases with increasing aspect ratio. 
Recently, Yaseen [3] studied numerically the steady natural 
convection flow in a prismatic enclosure with strip heater on 
the bottom wall. From his study it is seen that the Rayleigh 
number, the location of strip heaters and the number of 
heaters remarkably affected the flow and thermal fields.  

The streamlines adequately depict the fluid flow but 
isotherms represent only temperature distribution that may 
not be sufficient to visualize the transport of heat. The 
technique of heatline is one of the best ways of visualizing the 
heat recovery system or true path of heat transfer due to 
convection. The concept of heatline was developed (see 
Kimura and Bejan [4], Bejan [5]) to visualize the conductive 
along with convective heat transports. Heatlines typically 
represent the heat functions which intrinsically satisfy the 
energy equation while a stream function satisfies the mass 
conservation equation. Heatlines are  related to the Nusselt 
number depending on the dimensionless form of 
transformations. Bello-Ochende [6] investigated thermal 
convection in a square cavity considering Poisson type heat 
function. Morega and Bejan [7] visualized heatlines for a 
convective laminar boundary layer flow on a flat plate having 
zero flux or uniform temperature. On the other hand, Zhao et 
al. [8] explored numerically the applications of heatlines, 
masslines and streamlines for conjugate heat and mass 
transfer. They have established that heatlines and masslines 
are effective tools discussing the heat and mass transfer 
mechanisms. They further reported that the results visualized 
by heatlines, masslines and streamlines directly exhibit the 
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ABSTRACT  
 
Finite element simulation is performed visualizing heat flow through heatlines for a free convection flow and 
heat transfer in an air-filled prismatic enclosure. This configuration has applications in collecting solar energy in 
attic spaces of greenhouses and buildings having pitched roofs. The top inclined walls of the enclosure are 
considered at constant low temperature, two vertical walls are adiabatic whereas the bottom wall is heated 
isothermally as well as non-isothermally. The Galerkin weighted residual finite element method is used to solve 
the governing non-linear partial differential equations. The simulated results are displayed through streamlines, 
isotherms and heatlines to examine the effects of buoyancy on the flow and thermal fields. The Rayleigh 
number’s effects on average temperature and velocity fields are also calculated and displayed graphically. The 
results indicate that for a uniformly heated bottom wall both the average temperature and the average velocity in 
the cavity are higher compared to the non-uniformly heated bottom wall. Furthermore, heatlines were observed 
to predict the energy transfer better than those of the isothermal lines. 
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nature of the fluid; the heat and mass transports through solid 
bodies and the diffusive walls of the cavity. The processes of 
unification of heatline, massline and stream line to visualize 
the two-dimensional transport phenomena are described by 
Costa [9]. Costa [10] further reviewed the concepts of 
Bejan’s heatlines and masslines for convection visualization. 
To visualize the path of heat flow through heat function in a 
buoyancy driven turbulent flow over a heated vertical flat 
plate was introduced by Dash [11]. Zhao et al. [12] 
investigated double-diffusive nantual convection in an 
enclosure with localized heating and salting from below. 
They have demonstrated heatlines, masslines and streamlines 
to visualize the heat and fluid flows. The heatline applications 
may further involve conjugate natural convection or heat 
conduction (see Liu et al. [13], Zhao et al. [14]), double-
diffusive convection in a porous enclosure (see Zhao et al. 
[15]), and forced convection in a porous media (see Morega 
and Bejan [16]). However, a comprehensive analysis on heat 
flow during natural convection in a prismatic enclosure 
heated from below with the heatline approach has not studied 
yet. Thus, energy flow throgh heatlines is essential to study.  

Motivated from the above-stated studies, we analyze the 
heat transfer in a prismatic enclosure in order to visualize the 
heat flow and to find an efficient way of transferring heat in 
the enclosure. This study may have applications to visualize 
heat transfer in a roof-type solar still and various other 
engineering structures. The governing equations for heat and 
fluid flow, Poisson equations for stream function and heat 
function are solved using a finite element method. The jump 
discontinuity in Dirichlet type wall boundary conditions for 
temperature at corner points correspond to computational 
singularities. We therefore considered the average 
temperature of the two walls at the corner point and maintain 
the adjacent grid nodes at the respective wall temperatures. 

2. MATHEMATICAL MODELLING 

Consider a two-dimensional viscous, incompressible, 
laminar, natural convection flow in a prismatic enclosure 
filled with air. See Figure 1 for schematic diagram, 
geometrical details and associated boundary conditions. The 
horizontal bottom wall is heated isothermally as well as non-
isothermally while the inclined walls are maintained at a 

constant lower temperature ,cT  and the vertical walls are 

insulated. Under Boussinesq approximation the governing 
equations for steady natural convection flow can be written 
as;  
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The boundary conditions for the above stated model are as 
follows: 

At the bottom wall:  
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At the top inclined walls:  

 

cT T                                                                                 (5b)                                                                                                             

 
At the vertical walls:  
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At all solid boundaries:  

 
0u v                                                                              (5d)                                                                                                   

 
where the variables and the related quantities have been 
defined in the nomenclature. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

2.1 Dimensional analysis 

Dimensional analysis is one of the most important 
mathematical tools in the study of fluid mechanics. To 
describe several transport mechanisms in fluid dynamics, it is 
meaningful to make the governing equations into non-
dimensional form. Advantages of non-dimensionalization 
process can be listed as follows: (i) non-dimensionalization 
gives freedom to analyze any system irrespective of their 
material properties, (ii) one can easily understand the 
controlling flow parameters of the system, (iii) make a 
generalization of the size and shape of the geometry, and (iv) 
before doing experiment one can get insight of the physical 
problem. These aims can be achieved through the appropriate 
choice of scales. As a scale of distance, we choose the length 
of the cavity of the region under consideration measured 
along the x -axis.  

Figure 1. Schematic view of the physical model 
with boundary conditions 
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Thus, in order to reduce the governing equations (1)-(4) 
along with boundary conditions (5) dimensionless, we 
incorporate the following transformation of  variables: 
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Introducing the relation (6) into equations (1)-(4), the 

governing dimensional equations can be written in the 
following dimensionless form: 
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The dimensionless forms of the boundary conditions are as 

follows: 
At the bottom wall:  

 
1 1or X                                                                (11a) 

 
At the top inclined walls:  

 
0                                                                                 (11b) 

 
At the vertical walls:  
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At all solid boundaries: 

 
0U V                                                                         (11d) 

 

 

3. EVALUATION OF STREAM FUNCTION AND HEAT 

FUNCTION 
 
The fluid motion is displayed using the stream function   

which is obtained from the velocity components U  and 

.V The stream function  and the velocity components for a 

two-dimensional flows are related by: 
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which give a single equation 
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A positive sign of  denotes anti-clockwise circulation 

whereas the negative sign represents clock-wise circulation. 

Similarly, a heat function ( ) can be defined from the 

conductive heat fluxes ( , )
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 as well as convective 

heat fluxes ( , )U V  . The heat function satisfies the steady 

energy equation (10) such that  
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Equation (14) gives a single equation as follows 
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The average Nusselt  number, average temperature and 

average velocity can be expressed respectively as 
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/av dV V    and /avV VdV V                                   (17) 

 

where  S  is the dimensionless length of the surface and V is 

the volume to be accounted. 
 

 

4. COMPUTATIONAL PROCEDURE 

Finite element method (FEM) is a very powerful numerical 
technique that can be applied for solving the ordinary as well 
as partial differential equations related to science and 
engineering problems. The basic idea of this method is 
dividing the whole domain into finite number of smaller ones 
called finite elements. This method is so good in modern 
engineering analysis and can be used for solving integral 
equations including fluid mechanics, heat transfer, chemical 
processing, electrical systems, and many other fields. Thus, 
the equations (7)-(10) and the boundary conditions (11) are 
solved numerically by using Galerkin weighted residual finite 
element method. The details of this method can be found in 
the works of  Zienkiewicz and Taylor [17], Rahman et al. 
[18-19], Uddin [20], Triki and Hadj-Taieb [21]. In FEM the 
discretized finite element meshes are composed of non-
uniform triangular elements. To develop finite element 
equations we used six node triangular elements. All of these 
six nodes are associated with velocities and temperature 
whereas the corner nodes are associated with pressure only. 
Thus, a lower order polynomial is required for evaluating 
pressure which satisfied through the continuity equation. 
Then Galerkin weighted residual technique transformed the 
governing nonlinear partial differential equations into a 
system of integral equations. A Gauss's quadrature method is 
applied to perform the integration involved in each term of 
these equations. The obtained nonlinear algebraic equations 
are modified by imposing the boundary conditions. To solve 
the set of global nonlinear algebraic equations in the form of 
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matrix, the Newton-Raphson iteration technique has been 
adapted through partial differential equation solver with 
MATLAB interface. The convergence criterion of the 
numerical solution along with error estimation has been set to 

1 510 ,m m     where  is the general dependent 

variable ( , , )U V   and m is the number of iteration.  

 

4.1 Mesh generation 

 
In FEM the generation of mesh is a technique to subdivide 

a domain into a set of sub-domains; called finite elements. 
The discrete locations are defined by the numerical grid at 
which the variables are to be calculated. It is basically a 
discrete representation of the geometric domain on which the 
problems need to be solved. Proper meshing of a complicated 
geometry makes FEM a powerful technique solving the 
boundary value problems occurring in a range of engineering 
and technological applications. Figure 2 displays mesh 
configuration of the prismatic domain having triangular finite 
elements. 
 

 

 

 

 

 

 

 

 
 

Figure 2. Finite element mesh of prismatic domain 

 

4.2 Code validation 

  

 
 

 

Figure 3. Comparison of streamlines and isotherms with 
Uddin and Saha [22] (top row) with the present results 

(bottom row) for  their ѱ = 00,  = 150 and Pr = 0.70 case 

To verify the accuracy of the present numerical code, we 
have compared our results with Uddin and Saha [22] 

considering 310Ra  , 015  , 00  and Pr 0.70 . Figure 

3 shows the comparison of the results interms of streamlines 
and isotherms obtained by our code with those of Uddin and 
Saha [22]. The results show an excellent agreement and  
boosts the confidence in using the present umerical code. 

 

 

5. RESULTS AND DISCUSSION 

Numerical simulations have been done using FEM to 
analyze natural convective heat transfer and fluid flow within 
a prismatic enclosure visualizing heatlines. In the next 
subsections, we will discuss the effects of the model 
parameters such as the Rayleigh and Prandtl numbers on the 
flow and heat transfer characteristics with the help of 
isotherms and streamline patterns. In addition, average 
temperature and average velocity in the cavity have been 
calculated for different pertinent parameters. 

 

5.1 Case-I: Linearly heated bottom wall 

 
5.1.1 Effect of Rayleigh number on flow and thermal fields 

The influence of Rayleigh number Ra (103-106) on 

isotherms for linearly bottom heated wall at Pr 0.7  has 

been depicted in Fig. 4(a). The isotherms pattern indicate that 

at lower 3 410 10Ra   , convection is weaker inside the 

cavity since they are almost parallel to each other near the 
heated wall of the cavity. When Rayleigh number increases 
the convection inside the cavity also increases as a 
consequence the isotherms become more and more distorted 
near the middle plane of the cavity forming a pattern like 
mushroom. This particular pattern suggests that heat energy is 
flowing into the fluid inside the cavity from bottom heated 
wall. A higher value of Ra causes higher temperature gradient 
and thus the isothermal lines move from hot wall to the cold 
walls. 

Figure 4(b) shows the patterns of streamlines for 
3 4 5 610 ,10 ,10 ,10Ra  from top to bottom respectively. The 

temperature of the bottom wall is higher than the temperature 
of the top inclined walls as a result the density of the fluid 
near the heated bottom wall diminishes compared to the 
density of the fluid adjacent to the top inclined walls. This 
results in a clockwise rotation of the fluid inside the cavity as 
can be seen from these figures. For lower values of Rayleigh 

numbers ( 310 and 410 ), the effect of convection is less 

pronounced and hence, the inertia forces do not make 
significant contribution to the heat transfer mechanism inside 
the cavity. An increase in Rayleigh number induces the 
buoyancy force, resulting a strong circulation of the fluid 
inside the cavity. A clockwise rotating small vortex is also 
formed near the upper corner of the cavity. 

Figure 4(c) illustrates the distributions of heatlines for 
different values of Rayleigh number when the bottom wall is 
linearly heated. The heat flow within the enclosure is 
displayed using the heat function obtained from conductive 

heat fluxes ( , )
X Y

  
 
 

 as well as convective heat 

fluxes ( , )U V  . Heatlines arise from hot regimes and end on 

cold regimes illustrating the path of the heat flow. From this 
figure, we notice that for low Rayleigh number the heat lines 
distribute uniformly following clockwise and anticlockwise 
rotations from the heated wall to the colder wall. In this case, 
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the intensity of the flow is very low and heat transfer occurs 
mainly due to conduction. We noticed that heat leaves the hot  
wall and reseaches the cold wall in an almost uniform way. 
However, for a high Rayleigh number, the flow intensity is 
observed significantly. It is also observed that the heat 
transfer is more intense at the lower heated wall, and  
relatively colder at the right upper region of the enclosure. In 

this case, the heat lines are the adequate tools for the 
visualization and analysis of  heat transfer process from hotter 
wall to the colder wall. As the Rayleigh number increases the 
heat flows almost look like similar to the streamlines and 
there is a formation of small vortex near the upper corner of 
the inclined walls. 

             

   (a) Isotherms 

                 

(b) Streamlines 
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Figure 4 (a)-(b). Effects of Rayleigh number  Ra on (a) Isotherms and (b) Streamlines for linearly heated bottom wall 
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              (c) Heatlines                     (a) Isotherms 

 

 

 

310Ra   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

410Ra   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

510Ra   

 

 

 

  

 

 

 

 

 

610Ra   

 

 

 

 

 

 

 

 

 

 

 

Figure 4 (c). Effects of Rayleigh number  Ra on (c) Heatlines 

for linearly heated bottom wall. 

Figure 5 (a). Effects of Rayleigh number  Ra on (a) 

isotherms for uniformly  heated bottom wall. 
                (b) Streamlines                        (c) Heatlines 
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Figure 5 (b)-(c). Effects of Rayleigh number  Ra on (b) Streamlines and (c) Heatlines  for uniformly heated bottom wall 

 

5.2 Case-II: Uniformly heated bottom wall 

 
5.2.1 Effect of Rayleigh number on flow and thermal fields 

The influences of Rayleigh number 3 610 10Ra    at 

Pr 0.7  on the isotherms, streamlines and heatlines for 

uniformly heated bottom wall case have been shown in Figs. 
5(a)-(c) respectively. Isotherm contours detect the 
effectiveness of heat transfer in a fluid and determine the 

dictating modes of heat transfer-whether it is conductive or 
convective. At lower values of Rayleigh number 

3 410 10Ra   , the isotherms became almost parallel to the 

bottom horizontal wall. The density of isotherms is less at the 
middle of the enclosure, which indicates relatively weaker 
convective heat transfer for this case. For relatively higher 

values of Ra  the isotherms dispersed throughout the 

enclosure and it increases inside the enclosure. Figure 5(a) 
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confirms the dominance of conduction heat transfer since the 
isotherms are uniformly distributed. When the Rayleigh 
number is increased the isotherms become more distorted due 
to the stronger buoyancy (convection) effects. Figs. 5(a) 
further depicts that in the middle of the prismatic cavity the 
isotherms become an inverted mushroom shape which 
indicate that convection mode of heat transfer is dominant in 

the region of 510Ra  and 610Ra  . Thus higher Ra  

facilitates convective heat transfer mechanisms. 
The streamlines corresponding to uniformly heated bottom 

wall are displayed in Fig. 5(b). The denisty of the hot fluid 
near the bottom of the enclosure is lower than the denisty of 
the cold fluid near the inclined walls. Thus, the less denser 
fluid near the center of the bottom wall moves upward while 
the relatively heavy fluid near the cold inclined walls moves 
downward along the cold walls. The less denser fluid loses 
energy when moves downward and consiquently forces the 
thermal boundary layer to separate along the inclined walls. 
The heavy fluid then enters the thermal boundary layer near 
the bottom wall and completes the re-circulation pattern. 
Figure 5(b) shows that for a uniformly heated bottom wall 
two counter rotating vortices arise inside the enclosure whose 
eyes are located near the center of each half of the cross-
section. This figure also reveals that an increased Rayleigh 
number intensifies the intensity of the buoyancy driven 
circulations inside the cavity. The heatlines are drawn based 
on the isothermal boundary conditions. Figure 5(c) shows that 
heatlines are smooth and nearly parallel to the vertical lines 
indicates transport of heat is due to conduction. When the 

Rayleigh number increased to 610Ra  , the density of the 

heatlines near the heated wall also increased and deformation 
in heatlines became much clear. This leads to higher 
convective heat transport from the heated walls. In addition, 
there creates two small vortices at higher Ra, which is 
consistent with the stream function patterns. 

 

5.3 Average Nusselt number 

The distributions of the average Nusselt number versus 
Rayleigh number at the heated bottom wall and cold inclined 
walls for linearly as well as uniformly heated thermal 
boundary conditions are presented in Figs. 6(a)-(b), 
respectively. From these figures we observe that the average 
Nusselt number increases when the Rayleigh number 
increases which is utilized to represent the overall heat 
transfer rate within the flow domain. It is also seen that 

average Nusselt number increases slowly upto 410Ra   and 

beyond this Ra  they rise rapidly for both cases. The highest 

heat transfer rate is observed for a uniformly heated bottom 
wall case.  
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Figure 6. Average Nusselt number (Nu) at (a) heated 
bottom wall and (b) cold inclined walls. 

 

5.4 Average temperature and average velocity 
 
Figure 7(a) demonstrates the distribution of average 

temperature versus the Rayleigh number for linearly as well 
as uniformly heated thermal conditions. We notice that the 
average temperature rises for increasing the Rayleigh number 
irrespective of the types of thermal boundary conditions. But 
highest average temperature is observed when the bottom 
wall is uniformly heated.  

The average velocity within the domain is depicted in Fig. 
7(b). In this figure, we see that the average velocities are 

almost linear upto 410Ra   and beyond this region they rise 

rapidly for both cases. We further observe that the average 
velocity is higher when the bottom wall is uniformly heated.  
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(a) 

 

 
(b) 

 

Figure 7. Average (a) temperature (Ɵav) and (b) velocity 
(Vav) in the cavity 

6. CONCLUSIONS 
   
In this research we conducted a numerical study to 

investigate steady natural convective heat transfer and fluid 
flow inside a prismatic cavity via heatline analysis. Galerkin 
weighted residual finite element method is applied to obtain 
smooth solutions for streamlines, isotherms and heatlines. 
Based on the numerical results, the major findings are listed 
below: 

 The convective heat transfer is increased effectively with 
the increase of the Rayleigh number.  

 Conduction is the primary mode of heat transfer when 
the Rayleigh number is small. 

 Higher Rayleigh number provides better heat transfer 
through convection. 

 The highest rate of heat transfer is obtained for a 
uniformly heated bottom wall case. 

 Both the average temperature and velocity inside the 
cavity are higher for a uniformly heated bottom wall case 
compared to the non- uniformly heated bottom wall case. 
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NOMENCLATURE 

 
g   acceleration due to gravity 

L   length of the base and height of the cavity 

Nu   average Nusselt number 
p   dimensional fluid pressure 

P   dimensionless fluid pressure 

Pr   Prandtl number 

Ra   Rayleigh number 

T   dimensional temperature 
,u v   dimensional velocity components 

,U V   dimensionless velocity components 

W   height of the vertical walls of the cavity 
,x y   dimensional coordinates 

,X Y   dimensionless coordinates 

   thermal diffusivity 

   coefficient of thermal expansion 

   kinematic viscosity 
   density 

   dimensionless temperature 
   stream function 

   heat function 
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