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Wireless sensor networks (WSNs) play a critical role in cyber-physical systems, enabling 

communication between autonomous sensors. When integrated with the Internet of Things 

(IoT), WSNs unfortunately become vulnerable to various attacks, such as blackhole, 

grayhole, flooding, and scheduling, thereby posing significant security threats. Existing 

methods for intrusion detection in WSNs often suffer from low detection rates, significant 

computational overhead, and false alarms, primarily due to resource constraints and data 

correlations. This study introduces IDS-CNN, a novel intrusion detection method 

leveraging Convolutional Neural Networks (CNNs). The proposed IDS-CNN model, 

designed to optimize efficiency and reduce processing time, comprises nine convolutional 

neural network layers and six Max-Pooling1D layers. To alleviate computational demands, 

dimensionality reduction techniques, specifically Principal Component Analysis and 

Singular Value Decomposition, are applied to raw traffic data. The IDS-CNN model is then 

employed to classify and categorize network threats. Experimental evaluations suggest that 

the IDS-CNN approach yields a high accuracy rate of 99% compared to existing methods, 

based on tests performed on two datasets, WSN-DS and UNSW-NB15. Notably, with the 

UNSW-NB15 dataset, accuracy rates were further improved to 99.99% and 100%. By 

leveraging deep learning techniques to enhance intrusion detection in WSNs, this study 

presents a significant contribution to the field. The IDS-CNN model advances our 

understanding of WSN security by exceeding the accuracy rates of prior models. As it 

addresses the limitations of existing methods, the implications of this research are 

substantial, offering a more reliable and efficient solution for WSN intrusion detection. The 

findings underscore the potential of IDS-CNN in safeguarding WSNs and IoT systems from 

sophisticated and evolving cyber threats. 
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1. INTRODUCTION

The burgeoning development of the Internet of Things (IoT) 

has led to a marked increase in the prevalence of wireless 

sensor networks (WSNs). These networks serve a crucial 

function, connecting a variety of devices and facilitating a 

wide range of applications that enrich daily life [1, 2]. 

However, with the expansion of WSN deployment, security 

assurance has emerged as a pressing concern. Existing security 

measures, such as encryption and authentication, have been 

integrated into WSNs to enhance their protection. Despite 

these precautions, sophisticated attack methods have been 

devised that can circumvent traditional security measures. The 

task of preserving sensitive information within the framework 

of large-scale WSN deployments demands the implementation 

of more robust and advanced security strategies [3]. 

Passive defense approaches alone are insufficient to provide 

foolproof protection for WSNs. Active defense technologies, 

such as intrusion detection systems (IDS), are essential for 

proactive threat detection [4, 5]. IDSs driven by data analysis 

have demonstrated the ability to detect attacks even when 

traditional safeguards are lacking [6]. However, the increasing 

volume of data transmitted over WSNs poses significant 

challenges for real-time analysis by IDSs [7]. Additionally, 

distinguishing between normal and abnormal network traffic 

in WSNs is complicated by the presence of attacks such as 

wormholes, sinkholes, flooding, and jamming, which disrupt 

the typical network behavior [8]. The sheer magnitude of 

network traffic data slows down classifiers and introduces 

difficulties in detecting suspicious behavior due to noise and 

irrelevant features, further impeding effective investigation 

and decreasing the likelihood of successful detection [9, 10]. 

Machine learning approaches, while promising, are not 

without limitations. The performance of machine learning 

models is heavily reliant on the quality of the data and features 

used in the algorithms. Thus, feature selection plays a crucial 

role in optimizing the effectiveness of machine learning 

algorithms. As computers continue to permeate various 

aspects of human life, datasets with high-dimensional feature 

spaces have become commonplace. However, to accurately 

represent the underlying essence, it is necessary to focus on a 

selected set of relevant features. Deep learning algorithms, in 

particular, suffer from performance degradation when 

confronted with a multitude of irrelevant and duplicate 

features. To address this issue, researchers have successfully 

integrated feature selection techniques with machine learning, 

finding widespread application in domains such as network 

traffic monitoring and security [11-13]. 

The unique characteristics of WSNs necessitate specialized 

intrusion detection approaches. Traditional methods used in 

computer networks are ill-suited to safeguard WSNs due to 

disparities in terminal types, data transmission, network 
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topology, and other factors [14]. An effective WSN IDS must 

possess high detection efficacy for both known and unknown 

threats while imposing minimal impact on the WSN 

infrastructure [15]. This research introduces a novel approach 

to intrusion detection in WSNs, aiming to bridge the identified 

gaps. The key contributions of this study include: 

1. Analysis of feature selection techniques, such as principal 

component analysis (PCA) and singular value decomposition 

(SVD), to address the computational complexity and detection 

performance limitations arising from the vast volume and 

diversity of data processed in WSNs. 

2. Utilization of a convolutional neural network (CNN)-

based algorithm for intrusion detection, leveraging a 9-layer 

design with 6-Max-Pooling1D. This design optimizes 

resource efficiency and reduces time complexity. 

3. Development of the IDS-CNN model, specifically 

tailored to detect traffic attacks in WSNs with a focus on 

minimizing false positives. This model overcomes the 

limitations of conventional WSN intrusion detection 

techniques, offering improved detection performance, real-

time capabilities, reduced complexity, and resource 

requirements. 

The remaining sections of this paper are organized as 

follows: Section 2 provides an overview of relevant studies in 

the field. Section 3 discusses the application of deep learning 

in WSNs. Section 4 presents the proposed approach for 

protecting WSNs from intrusion. Experimental environments 

are detailed in Section 5, followed by the presentation and 

interpretation of results in Section 6. Finally, Section 7 

outlines future objectives for further research. 

 

 

2. RELATED WORK 

 

With the proliferation of wireless LANs [16], notably Ad 

Hoc networks and wireless sensor networks, traditional wired 

network intrusion detection system (IDS) solutions are 

incompatible. This highlights the critical necessity for an 

intrusion detection system for wireless sensor networks. 

Intruder detection systems that use anomaly detection will 

look at any suspicious behaviour [17]. Researchers have used 

these findings to construct a variety of powerful anomaly 

detection systems, most of which are variants on artificial 

immunity algorithms, clustering algorithms, machine learning 

algorithms, and statistical learning models. To identify 

anomalies in the NSL-KDD dataset, Liu et al. [18] used an EM 

approach to Expectation Maximization. In this paper, we 

looked at several distinct kinds of attacks, including Synflood, 

land, ping of death, sweeping, and UDP flood. To achieve 

smart, sustainable energy management, Hemanand et al. [19] 

suggested applying the existing Glow worm Swarm 

Optimization technique across IoT sensors to detect the 

devices in need of energy and distribute appropriate energy on 

a need basis. According to Jayalakshmi et al. [20], the routing 

protocol should be one of the factors examined when gauging 

a network's efficacy. It was proposed by Gopalakrishnan et al. 

that the security of the system may be enhanced by deploying 

highly secured cryptographic algorithms on each node in the 

network. 

MQTTset, presented by Vaccari et al. [21], is a dataset 

dedicated to the MQTT protocol, which is commonly used in 

IoT networks. By combining the official dataset with 

cyberattacks against the MQTT network, we show the creation 

of the dataset and validate it through the definition of a 

hypothetical detection system. The obtained results show how 

machine learning models may be trained using MQTTset to 

create detection systems that can secure IoT environments. A 

innovative misuse-based intrusion detection system is 

proposed by Kumar et al. [22], which can identify five types 

of attacks in a network: exploit, DOS, probe, generic, and 

normal. In addition, the KDD99 or NSL-KDD 99 data set is 

used in the majority of the works that are similar to IDS. When 

it comes to detecting modern threats, these data sets are now 

regarded useless and antiquated. In this paper, we use the 

UNSW-NB15 dataset as an offline resource for developing our 

own integrated classification-based algorithm for sniffing out 

cybercrime. As shown by the research carried out by Chandre 

et al. [23], it is possible to predict how successful an attack will 

be against an IoT system that is based on MQTT by employing 

one of a variety of machine learning models. We used the 

precision, accuracy, and F1 score as evaluation criteria to 

make a direct comparison between the models' levels of 

effectiveness. The findings showed that the performance of 

random forest was extremely accurate, with a degree of 

certainty that was equivalent to 96 percent. 

The study provided by Hemanand et al. [24] creates a smart 

IDS using the Cuckoo Search Greedy Optimization (CSGO) 

and the Likelihood Support Vector Machine (LSVM) models 

to improve WSN security. Some of the most popular network 

datasets, such as NSL-KDD and UNSW-NB15, are used to 

validate this model. The first step in normalizing the attributes 

is to do dataset pre-processing, which involves removing any 

unnecessary data, making educated guesses about the values 

that are absent, and applying any necessary filters. The CSGO 

algorithm needs to be given the optimal number of features, 

which was calculated during the pre-processing stage, for it to 

be able to select the best possible features. The very last step 

is to predict whether the label should be considered normal or 

abnormal by utilizing a machine-learning classification 

algorithm that is based on the linear support vector machine 

(LSVM). During the process of evaluating the findings, a 

multitude of performance measurements is utilized to verify 

and assess the efficacy of the suggested security model. 

The effectiveness of an attack on a MQTT-based IoT 

system may be predicted using a number of different machine 

learning models, as demonstrated by the work of Makhija et al. 

[25]. To compare the efficacy of the models, we employed the 

precision, accuracy, and F1 score as evaluation criteria. 

Results demonstrated that random forest's performance was 

very accurate, with a 96 percent degree of certainty. Using the 

Cuckoo Search Greedy Optimization (CSGO) and Likelihood 

Support Vector Machine (LSVM) models, Hemanand et al. 

[24] proposed work creates an intelligent IDS system for 

improving WSN security. This model takes into account the 

most popular network datasets for validation, including NSL-

KDD and UNSW-NB15. At first, the attributes are normalized 

via dataset pre-processing via the elimination of extraneous 

data, the prediction of missing values, and the application of 

filters. In order to pick the optimum features, the CSGO 

algorithm must be fed the optimal number of features that were 

determined during pre-processing. The final step is to forecast 

the categorized label as normal or abnormal using a machine 

learning classification technique based on the linear support 

vector machine (LSVM). During the results evaluation process, 

many performance measurements are used to verify and 

compare the effectiveness of the suggested security model. 

Feature selection in IDS using a hybrid optimization 

approach was proposed by Alkanhel et al. [26]. The suggested 
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approach, known as GWDTO, is inspired by the grey wolf 

(GW) and dipper throated optimization (DTO) algorithms. 

The suggested technique may be more effective because it 

strikes a better balance between the optimization process' 

exploration and exploitation phases. The suggested GWDTO 

algorithm's performance was measured against a set of 

evaluation metrics and compared to other optimization 

strategies in the literature on the used IoT-IDS dataset to prove 

its efficacy. Furthermore, a statistical analysis is carried out to 

evaluate the reliability and efficiency of the method.  

Edwin Singh and Celestin Vigila [27] used WOA (Whale 

Optimization Algorithm) and DNN (Deep Neural Network) to 

optimize the pre-processed data to build a system for detecting 

and classifying incursions in MANET (Whale Optimized 

Deep Neural Network Model), with the goal of predicting 

unanticipated cyber-attacks. As a result, intruder-proof data 

transfer to other nodes is made possible. Using a combination 

of ML-IDS and WOA-DNN, we can identify the intruders. 

Principal Component Analysis (PCA) reduces the 

dimensionality of the data, leading to more precise results. 

Forward propagation uses a classifier to determine the likely 

safety or danger of a result. Classification accuracy, attack 

detection rate, precision rate, and F-Measure, Recall are used 

to evaluate both the conventional and new models. The 

suggested WOA-DNN model achieves an accuracy rate of 

99.1 percent and improved assessment metrics. WOA-DNN 

has a higher attack detection rate than competing methods, 

which translates to fewer false alarms. The suggested WOA-

DNN model achieves a 99.1 percent accuracy rate in its 

classifications. 

To mitigate the wide-ranging effects of denial-of-service 

(DoS) attacks while keeping energy consumption to a 

minimum, Feature selection models for NIDSs are proposed 

by Almomani [28]. Particle swarm optimization (PSO), grey 

wolf optimization (GWO), firefly algorithm (FFA), and the 

genetic algorithm (GA) all form the basis of this concept (GA). 

The proposed model is made with the intention of enhancing 

NIDS functionality. The suggested model uses Anaconda 

Python Open Source's wrapper-based methods with the GA, 

PSO, GWO, and FFA algorithms to pick features, as well as 

filtering-based methods for the mutual information (MI) of the 

GA, PSO, GWO, and FFA algorithms, which yielded 13 sets 

of rules. Support vector machine (SVM) and J48 ML 

classifiers are used on the UNSW-NB15 dataset to assess the 

proposed model's output characteristics.

 

Table 1. Review on existing strategies 

 

Research Year Dataset Algorithm Attacks Executed Accuracy Precision Recall 
F1 

Score 

Liu et al. [18] 2020 NSL-KDD dataset 

RF 
DT 

Bagging 

SVM 
NB 

BN 

AdaBoost 

XGBoost 

Syn Flood 

Land 
UDP Flood 

Ping of Death (PoD) 

Smurf 
IP Sweeping 

Port Scan 

0.966 
0.996 

0.967 

0.957 
0.452 

0.882 

0.740 

0.970 

0.969 
0.969 

0.969 

0.948 
0.904 

0.944 

0.663 

0.970 

0.967 
0.967 

0.967 

0.957 
0.452 

0.882 

0.740 

0.968 

0.968 
0.968 

0.968 

0.951 
0.545 

0.902 

0.646 

0.968 

Vaccari et al. 

[21] 
2020 

MQTTset Message 

(Queue Telemetry) 
Transport 

Neural network, 
random forest, 

Naïve Bayes, 

Decision tree, 
Gradient boost, 

Multilayer 
perceptron 

flooding denial of 
service, 

MQTT Publish 

Flood, SlowITe 
malformed 

Data, brute force 
authentication 

0.993268 

0.994299 
0.987903 

0.977972 

0.991131 
0.94688 

N/A N/A 

0.9932 

0.9943 
0.9897 

0.9850 

0.9916 
0.9636 

Kumar et al. 

[22] 
2020 

UNSW-NB15 and 

real time data set at 
NIT Patna CSE lab 

(RTNITP18) 

Different decision tree 
models (C5, CHAID, CART, 

QUEST) are trained with 

selected 13 features of the 
dataset 

Exploit, DOS, Probe, 
Generic and Normal 

high 

69.9 
50.37 

99.21 

99.7 
81.17 

54.6 
5 

71.7 

96.7 
98 

high 

Almomani [28] 2020 UNSW-NB15 dataset. 

the support vector machine 

(SVM) and J48 ML 
classifiers 

----------- 
90.119 

90.484 
N/A N/A N/A 

Chandre et al. 

[23] 
2021 WSN-DS CNN 

Denial of Service 

(DoS), Black hole, 

Gray hole, Flooding 

and TDMA 

97 99 99 99 

Makhija et al. 

[25] 
2022 

MQTTset 

)Message Queue 

Telemetry Transport ( 
 

RF,  KNN, and SVM 
classifier 

unauthorized access, 

denial of service, 
packet sniffing, and 

malware injection 

96 N/A N/A N/A 

Hemanand et 

al. [24] 
2022 

NSL-KDD and 
UNSW-NB15 

Cuckoo Search Greedy 

Optimization (CSGO) and 
Likelihood Support Vector 

Machine (LSVM) 

Probe 

DoS 
R2L 

U2R 

99.56 

93.56 

99.99  
58.96 

96.47 

98.45 

98.69 
29.45 

64.36 

95.56 

99.5 
43.21 

59.65 

Alkanhel et al. 

[26] 
2023 RPL-NIDDS17 

grey wolf (GW), and dipper 

throated optimization (DTO) 

Sybil, blackhole, 

sinkhole, and clone 

1.18 
average 

error 

N/A N/A N/A 

Edwin Singh 

and Celestin 

Vigila [27] 

2023 NSL-KDD WOA-DNN 

Probe 
DoS 

R2L 

U2R 

99.01 99 99.05 98.1 

 

The assessment criteria and experimental designs used by 

the reference techniques vary considerably from one another. 

To better understand the significance of the data shown in 

Table 1, it would be helpful to have a more in-depth 
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explanation of these variances. The observed performance 

differences across the baseline approaches are heavily 

influenced by factors like as the features used, the datasets 

utilised, and the types of assaults evaluated. Because of these 

variations, it is essential that they be taken into account 

throughout the planning stages of the proposed method's 

development. 

In their analysis of the NSL-KDD dataset, Liu et al. [18] 

found that different methods had diverse degrees of accuracy, 

precision, recall, and F1 score for various attack types. This 

indicates that the efficacy of intrusion detection systems is 

highly dependent on the algorithm selected and how well it 

handles various types of attacks. Vaccari et al. [21] used a 

variety of techniques to identify DDoS, MQTT Publish Flood, 

SlowITe, and malformed data assaults. These algorithms' 

results in terms of accuracy and precision vary widely, 

demonstrating the need to use the right algorithms for the right 

kinds of attacks. 

Using attributes hand-picked from the UNSW-NB15 

dataset, Kumar et al. [22] used several decision tree algorithms. 

The models' efficiency ranged depending on the type of assault, 

with some showing better specificity and recall than others. 

This demonstrates how feature selection and model selection 

are crucial for effective intrusion detection. When working 

with the NSL-KDD and UNSW-NB15 datasets, Hemanand et 

al. [24] utilized the Cuckoo Search Greedy Optimization 

(CSGO) and Likelihood Support Vector Machine (LSVM) 

techniques. The results demonstrated discrepancies in 

detection efficiency across attacks of various sorts, further 

evidencing the impact of dataset features on the efficacy of 

intrusion detection methods. 

Noting that the reported findings show the performance of 

existing solutions, they provide a solid basis for the suggested 

approach. The results are discussed to provide light on the 

reasoning behind the suggested method's design decisions. 

Researchers may make educated selections about what to 

focus on while creating new intrusion detection techniques if 

they have a firm grasp of the strengths and weaknesses of the 

existing systems. 

In conclusion, the suggested technique benefits greatly from 

a thorough description of the experimental settings, 

assessment criteria, and variances in performance among the 

baseline methods. The suggested technique aims to overcome 

the limits of existing tactics by drawing attention to the 

elements causing performance variations and taking into 

account the unique needs of the datasets and attack scenarios, 

hence improving the intrusion detection capabilities. 

 

3. CONVOLUTIONAL NEURAL NETWORKS 

 

This problem could be addressed with the use of 

Convolutional Neural Networks (CNN), which offer an 

automatic and accurate means of detecting network 

irregularities. Common applications of convolutional neural 

networks (CNNs) in computer vision include object 

recognition and classification in images. CNNs are ideally 

suited for IDS because they eliminate the requirement for 

human-engineered feature extraction and can learn complex 

properties automatically from raw network traffic data. CNNs' 

capacity to capture geographical and temporal relationships in 

network traffic data is invaluable for detecting sophisticated 

attacks that evolve over time [25]. 

As can be seen in Figure 1, a typical CNN architecture for 

IDS often consists of several layers of convolutional, pooling, 

and fully linked networks. The CNN's first layer employs 

convolution methods to help extract elementary features like 

edges and corners from the input data. Successive layers 

perform increasingly complex convolution techniques to 

extract higher-level features like shapes and textures. By using 

pooling layers to reduce the dimensionality of the feature maps, 

computation time can be reduced. The collected attributes are 

then classified as "normal" or "abnormal" network activity 

based on the presence of completely linked layers. Most 

intrusion detection system convolutional neural networks (IDS 

CNNs) are taught through supervised learning, where the 

network is taught using a labelled dataset of typical and 

abnormal network traffic. Following training, the network is 

tested on an independent dataset to gauge its ability to detect 

outliers. Improve the CNN's ability to spot network 

abnormalities by expanding the size and diversity of the 

training dataset, tweaking hyperparameters like learning rate 

and regularization, and using data augmentation techniques to 

add variety to the training data [26, 27]. 

 

 
 

Figure 1. Convolutional neural network [28] 

 

Using CNNs in IDS has many advantages, one of which is 

the detection of previously unknown threats. Because, unlike 

more conventional methods, CNNs may be taught to identify 

specific attack patterns in network traffic data. With the aid of 

specialized training datasets, CNNs can be educated to identify 

many forms of cyberattacks, including Distributed Denial of 

Service (DDoS) attacks and SQL injection attacks. Finally, 

Convolutional Neural Networks offer a promising solution to 

the problem of detecting advanced, until unknown attacks in 

IT systems. Due to their ability to automatically learn complex 

features from raw network traffic data, CNNs are an essential 

aspect of network security in today's complex and 

interconnected world. 

 

4. THE PROPOSED RESEARCH METHODOLOGY   

 

Many researchers, seeking superior IDS performance in 

WSN, have turned to ever-more-intricate data mining 

strategies. However, real-time implementation of such 

algorithms in wireless sensor networks is impractical due to 

their high processing overhead. Large feature dimensions in 

the input data, an abundance of redundant data, and 

insufficient data preparation all contribute to the high 

computational cost of IDS. 

Feature selection is a technique for reducing the number of 

potential features from a big pool to a more manageable one. 

Given the significance of the data, pre-processing techniques 

like Principal component analysis (PCA) and Singular Value 

Decomposition (SVD) are used to improve the detection 

accuracy of the classification algorithm, reduce the 
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computational load of IDS, and preserve as much information 

as possible. The data analysis module depicted in Figure 1 can 

receive event information and assess it to determine if the 

observed behaviour constitutes an intrusion using this method. 

In Figure 2 we can see the overall structure of the algorithms. 

Figure 2 shows the recommended architecture for the system 

based on this study. The first part of this text is devoted to data 

processing in its various forms. 

 

 
 

Figure 2. Specification of the algorithm framework for 

WSN-DS and UNSW-NB15 dataset 

 

The term "data engineering process" is often used to 

describe this approach. This is a crucial step in the learning 

process. There are three phases of data processing: cleaning, 

normalization, and feature selection. The most important 

features are selected using a filter-based method inspired by 

principal component analysis and singular value 

decomposition. After the required feature vector has been 

selected, the training set is used to train the model. A trained 

model can then be validated using data from the validation set. 

Finally, the validated model is used to analyze data from the 

test dataset. 

 

4.1 The Preparation of data 

 

(1) Collecting and mapping information 

The label characteristic of the sample data is a string of 

letters; to get rid of it from the algorithm, we need to convert 

those letters into integers. The Attack classification includes 

the five different forms of data (Normal, Blackhole, Grayhole, 

Flooding, and Time Division Multiple Access). Due to the 

incalculability of this data, it is organized non a sequential 

sequence using the ordinal digits 0, 1, 2, 3, and 4. Adjustment 

in light of Table 2. 

 

Table 2. Attack-type-characteristic-value conversion table 

 
Original Eigenvalue Transformed Eigenvalue 

Normal  0 

Grayhole 1 

Blackhole 2 

TDMA 3 

Flooding 4 

 

(2) LabelEncoder 

Categories' nominal and ordinal feature labels are 

represented as Strings. Some labels might have ordered 

information (ordinal qualities) while others might not 

(nominal features). Labels must be encoded as numbers during 

data pre-processing to increase the likelihood that the learning 

algorithm will correctly interpret the features. LabelEncoder's 

encoding method assigns numbers to labels. 

(3) Maximum and minimum normalization 

Since the continuous data ranges from less than 1 

characteristic to hundreds of thousands, normalization is 

necessary for numerous classification techniques. Here, we 

employ the outliers of Eq. (1) to provide a baseline for 

comparison. Where xj is the original feature data, Minj is the 

minimum value for the feature, Maxj is the maximum value for 

the feature, and xj is the normalized feature data. 

 

𝑥𝑗
∗ =

𝑥𝑗 − 𝑀𝑖𝑛𝑗

𝑀𝑎𝑥𝑗 − 𝑀𝑖𝑛𝑗

 (1) 

 

4.2 Features extraction 

 

(1) Principal component analysis 

Principal component analysis (PCA) is widely applied to the 

problem of discovering patterns in high-dimensional data. The 

goal of PCA is to represent both recognized and unknown 

faces using a smaller number of typical feature photographs 

(called Eigenobject). PCA has been shown to be useful for 

detecting and validating facial features, as shown by statistical 

data. The PCA technique requires transforming a two-

dimensional matrix of face images into a one-dimensional 

vector. A one-dimensional vector can be orientated in either 

the row or the column without affecting its value [22, 23]. 

(2) Singular value decomposition 

Singular value decomposition (SVD) is another technique 

for data partitioning. It's used for things like feature extraction, 

matrix approximation, and pattern recognition in signal 

processing and statistics. When applied to a single signal, PCA 

fails to extract features, and when applied to a signal with 

varying frequencies, PCA fails to give information about the 

features existing in the signal. For feature extraction, SVD can 

be more useful than principal component analysis due to the 

fact that frequency differences may mask genuine differences 

across physiological states [29-31]. 

 

4.3 Classification model 

 

Using information gathered from wireless sensor networks 

and filtered with a sequence backward feature selection 

strategy, an intrusion can be detected using the IDS-ML 

classification method. IDS-ML is a rapid, distributed, high-

performance gradient boosting system built on gradient-based 

approaches [32]. IDS-ML is built around a variant of the 

histogram method that significantly reduces the feature and 

sample sizes required during training. An Intrusion Detection 

System based on Convolutional Neural Networks allows for 

real-time detection of network intrusions (IDS). By examining 

labeled data, the IDS may be trained to tell the difference 

between typical and malicious network activity. 

In order to efficiently analyze and extract characteristics 

from input data, the suggested Convolutional Neural Network 

(CNN) architecture comprises of many layers. Intricate data 

patterns may be captured and learned by these layers, allowing 

the model to make precise predictions. The function of each 

stage is described in the next paragraph: 

A Convolutional layer with 16 filters, a kernel size of 3, and 

a stride of 1 is the foundation of the Convolutional Neural 

Network (CNN) model. The input data is a 15-by-1 matrix, 

and this layer attempts to extract neighborhood-level patterns 

and characteristics. Next, a MaxPooling layer applies 
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downsampling to the feature maps in order to make them more 

manageable. The non-linear LeakyReLU activation function is 

used to improve the model's capability of learning intricate 

representations. The next levels are more Convolutional layers, 

each with 32, 64, and 64 filters. To further extract and improve 

the learnt features, a MaxPooling layer and the LeakyReLU 

activation function are added to each layer after the learner. 

The goal of these layers is to provide the model with the 

building blocks it needs to extract more complicated 

representations of the input. 

After the Convolutional layers is a Dense layer with 128 

units and a linear activation function. The retrieved features 

are aggregated and made ready for further processing with the 

aid of this layer. Two more Convolutional layers, each with 32 

filters and the same padding strategy to preserve spatial 

dimensions, are added to the model. MaxPooling and 

LeakyReLU activation, which follow these layers, also aid in 

feature extraction. 

To further improve the model's capability of capturing 

complicated patterns and correlations in the data, a Dense 

layer with 512 units and a linear activation function is added. 

The LeakyReLU activation function is used to two extra 

Convolutional layers of 16 filters each. These additional layers 

aid in the extraction of more nuanced information. After the 

multidimensional feature maps are flattened using the Flatten 

layer, a Convolutional layer is applied with 35 filters, a kernel 

size of 3, and a stride of 1. Class probabilities may be predicted 

with the help of the model's last layer, a Dense layer with 2 

units and a softmax activation function. 

In conclusion, the proposed CNN architecture uses 

Convolutional, MaxPooling, Dense, and activation layers to 

efficiently extract features and train representations from the 

input data, allowing for accurate classification or prediction in 

the context of the task at hand. According to Table 3, the 

proposed CNN design employs 47 342 parameters. 

Table 3. Proposed CNN layers parameters 

Layer (Type) Output Shape Param # 

conv1d-1 (Conv1D) (None, 13, 16) 64 

maxpooling1d-1 (MaxPooling1) (None, 13, 16) 0 

leakyrelu-1 (LeakyReLU) (None, 13, 16) 0 

conv1d-2 (Conv1D) (None, 11, 32) 1568 

maxpooling1d-2 (MaxPooling1) (None, 11, 32) 0 

leakyrelu-2 (LeakyReLU) (None, 11, 32) 0 

conv1d-3 (Conv1D) (None, 9, 64) 6208 

maxpooling1d-3 (MaxPooling1) (None, 9, 64) 0 

leakyrelu-3 (LeakyReLU) (None, 9, 64) 0 

conv1d-4 (Conv1D) (None, 7, 64) 12352 

maxpooling1d-4 (MaxPooling1) (None, 7, 64) 0 

leakyrelu-4 (LeakyReLU) (None, 7, 64) 0 

dense-1 (Dense) (None, 7, 128) 8320 

conv1d-5 (Conv1D) (None, 7, 32) 12320 

maxpooling1d-5 (MaxPooling1) (None, 7, 32) 0 

leakyrelu-5 (LeakyReLU) (None, 7, 32) 0 

conv1d-6 (Conv1D) (None, 7, 32) 3104 

maxpooling1d-6 (MaxPooling1) (None, 7, 32) 0 

leakyrelu-6 (LeakyReLU) (None, 7, 32) 0 

dense-2 (Dense) (None, 7, 512) 16896 

conv1d-7 (Conv1D) (None, 7, 16) 24592 

leakyrelu-7 (LeakyReLU) (None, 7, 16) 0 

conv1d-8 (Conv1D) (None, 7, 16) 784 

leakyrelu-8 (LeakyReLU) (None, 7, 16) 0 

conv1d-9 (Conv1D) (None, 7, 35) 1715 

flatten-1 (Flatten) (None, 245) 0 

dense-3 (Dense) (None, 2) 492 

The suggested CNN architecture can be trained using 

labelled network traffic data to classify traffic flows as normal 

or pathological. The testing phase involves feeding the 

network traffic into a CNN and comparing the results to a 

threshold in order to determine whether or not the traffic is 

normal. 

5. EXPERIMENTAL SETTINGS

Here, the publicly available WSN-DS dataset was employed 

[33] for the experiment. created specifically for use with

WSNs, this dataset contains information used to detect

intrusions (WSN). Blackhole, Grayhole, flooding, and

scheduling are the four forms of DoS assaults seen in WSN-

DS. Table 2 contains the comprehensive statistical data. Of the

total number of samples in both the training and testing sets,

224796 (or 70%) were drawn at random from the former, and

149865 (or 30%) from the latter. The experiments were also

conducted with data from the UNSW-NB15 assaults dataset

[34]. As may be shown in Table 3, the 42 elements present in

the UNSW-uncluttered NB15's design. There are a total of 42

features, of which only three are not numerical in nature

(categorical features).

But the confusion matrix (CM) is utilized to evaluate the 

Accuracy, Recall, Precision, and F-measure of our approach 

on the dataset. In equations (5) through (8), the true positive 

(TP) and false negative (TN) counts are balanced by the false 

positive (FP) and false negative (FN) counts, respectively [35-

38]. Precision: the percentage of instances that are accurately 

classified; Take into account again the percentage of "good" 

components that were properly assigned to the "good" group; 

Accuracy: the percentage of false alarms that occur when 

using a detection model that initially misclassified some 

components as false positives; The F-Score is the Mean. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
(3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4) 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(5) 

6. RESULT ANALYSIS AND DISCUSSION

In this section, the efficiency of the model that was 

suggested is evaluated. The researchers carried out a variety of 

separate studies, including: 1) Comparing IDS-CNN with and 

without a feature extraction step against machine learning 

classification methods using PCA or SVD with ten or fifteen 

characteristics. 2) Analysing the performance of IDS-ML in 

contrast to the performance of other machine learning 

classification methods; 3) Analysing the performance of IDS-

CNN in light of four distinct measures; the accuracy and recall 

rates of the detection system must be high enough for usage on 

the network and eventual integration with the intrusion 

detection system used on the network. Improved classification 

technique, including WSN-DS and UNSW-NB15 dataset 

without feature selection phase, are compared in Table 4. 
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Table 4. Comparison of multiple classification measurements 

on WSN-DS and UNSW-NB15 dataset without feature 

selection phase 

 

Dataset 

 Measures 

Accuracy Precision Recall 
F1-

Measure 

WSN-DS 0.9807 0.9832 0.9807 0.9807 

UNSW-

NB15 
0.9289 1 0.9348 0.9663 

 

For better estimator accuracy or better performance on very 

high-dimensional datasets, the feature selection module can be 

used to perform feature selection/dimensionality reduction on 

sample sets. This paper uses two algorithm PCA and SVD with 

10 or 15 features. Figures 3 to 6 the results obtained from 

applying feature selection with ML algorithms on WSN-DS 

dataset. 

Figures 7 to 10 shows the findings that were achieved by 

applying feature selection using DL algorithms to the UNSW-

NB15 dataset via PCA and SVD with either 10 or 15 features. 

 

 
 

Figure 3. Accuracy comparison of multiple feature selection 

approaches on WSN-DS 

 

 
 

Figure 4. Precision comparison of multiple feature selection 

approaches on WSN-DS 

 

 
 

Figure 5. Recall comparison of multiple feature selection 

approaches on WSN-DS 

 

 
 

Figure 6. F1-measure comparison of multiple feature 

selection approaches on WSN-DS 

 

 
 

Figure 7. Accuracy comparison of multiple feature selection 

approaches on UNSW-NB15 dataset 
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Figure 8. Precision comparison of multiple feature selection 

approaches on UNSW-NB15 dataset 

Figure 9. Recall comparison of multiple feature selection 

approaches on UNSW-NB15 dataset 

Figure 10. F1-measure comparison of multiple feature 

selection approaches on UNSW-NB15 dataset 

To compare the suggested algorithms to the state-of-the-art, 

ran them through the IDS-CNN with feature selection methods; 

the feature ranking for these algorithms is shown in Table 5. 

The proposed model has greater performance. The outcomes 

of the experiments are detailed in Table 5, as well as in Figure 

11. In order to evaluate the classification performance of our

system, and make use of the confusion matrix, abbreviated as

CM.

Focusing on the feature extraction method and accuracy, 

Table 5 compares the IDS-CNN algorithm to various 

approaches on the UNSW-NB15 dataset. In comparison to the 

Deep CNN method's 97% accuracy, the IDS-CNN algorithm's 

results are clearly superior (99.66%) (see table). Data from the 

UNSW-NB15 dataset shows that the IDS-CNN algorithm is 

more effective at identifying intrusions than the Deep CNN 

approach. 

Figure 11. Evaluation of several classification models 

Table 5. Comparison of IDS-CNN algorithm and other 

methods on UNSW-NB15 dataset 

Algorithms 
Feature Extraction 

Technique 
Accuracy 

J48 [28] N/A 90.484 

CGSO-LSVM 

[24] 
CSGO 99.65 

CNN-BiLSTM 

[38] 
O-SS-SMOS 77.16 

IDS-CNN PCA10 99.66 

IDS-CNN SVD10 99.86 

The IDS-CNN algorithm is compared against other 

approaches in Table 6 using the WSN-DS dataset. The feature 

extraction method employed by the Deep CNN approach is 

unfortunately not specified in the table. The IDS-CNN 

algorithm, on the other hand, clearly hits an accuracy of 

99.26%. The high accuracy attained by the IDS-CNN 

algorithm supports its efficacy in identifying intrusions in the 

WSN-DS dataset, however there is currently no way to 

compare its accuracy to that of the Deep CNN approach. 

The overall strengths of the IDS-CNN algorithm are shown 

by the findings in both tables. The IDS-CNN system 

successfully detects intrusions across many datasets, with an 

accuracy of 99.66% on the UNSW-NB15 dataset and 99.26% 

on the WSN-DS dataset respectively. These results confirm 
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IDS-CNN's efficiency as an intrusion detection system, 

demonstrating its promise as a dependable and robust solution 

for bolstering the safety of wireless sensor networks. 

 

Table 6. Comparison of IDS-CNN algorithm and other 

methods on WSN-DS dataset 

 
Algorithms Feature Extraction Technique Accuracy 

Deep CNN [23] NA 97 

IDS-CNN 99.66 99.26 

Algorithms Feature Extraction Technique Accuracy 

Deep CNN [23] NA 97 

IDS-CNN 99.66 99.26 

 

Table 5 contrasts the strategies suggested in this paper with 

those found in the literature review. According to the findings, 

when comparing other methods for the feature selection 

scheme, IDS-CNN performed better than any of the others, 

and when comparing DL methods for the multiclass 

configuration, it was the best option. After conducting these 

studies, the researchers have determined the following: 

Tables 4 and 5 show that when compared to the other 

algorithms tested on the wireless sensor network datasets 

WSN-DS and UNSW-NB15, the IDS-CNN model obtains 

higher levels of accuracy and recall. Figures 3 to 10 illustrate 

how the reduced feature dimension that follows feature 

selection of the data affects the algorithm's accuracy, F-

measure, and other indications. The feature selection 

algorithm is clearly the winner among the three methods. It is 

crucial to be able to address feature dependencies and the 

interplay between feature subset search and model selection 

when working with WSN-DS and UNSW-NB15 data. It is 

easy to get rid of certain unnecessary internally dependant 

qualities because the other three approaches don't consider the 

classifier's interaction with the data. However, when the data 

comprising those characteristics is processed as a whole, the 

discrimination performance of those features is low, despite 

the fact that the features themselves provide significant 

potential for discrimination. The wrapper's learning algorithm, 

which relies on the precision of its predictions, is responsible 

for weighing the pros and cons of the chosen subset. The 

ability to employ classifiers in conjunction with feature 

selection to zero in on a smaller set of traits that will be most 

useful during the learning process. 

 

 

7. CONCLUSIONS 

 

When it comes to identifying malicious software, the most 

often used method is a combination of feature selection 

algorithms and machine learning approaches. By lowering the 

number of features and the dimensionality through feature 

selection, this method not only enhances generalization but 

also helps reduce the problem of overfitting. It also helps 

clarify the connection between characteristics and the values 

they represent. In particular, the IDS-CNN model shows 

substantial improvements in accuracy over its rivals. IDS-

CNN is ideally suited for intrusion detection in WSNs because 

of its fast-training efficiency, low memory usage, high 

precision of 100%, and the ability to handle large-scale data 

processing, all of which are benefits of its use of decision-

based learning within a gradient boosting framework. 

It is critical, however, to recognize the constraints of the 

suggested IDS-CNN approach. There will always be situations 

or varieties of attacks when your chosen approach won't fare 

as well as it could. To overcome these obstacles and improve 

the method, more study is required. To further reduce the 

computing cost of IDS, future research should investigate 

innovative feature selection strategies to enhance 

dimensionality reduction and data pretreatment. When 

combined with other machine learning techniques for WSN 

intrusion detection, the performance of IDS-CNN can be even 

better. However, it is crucial to think about whether or not 

these results are generalizable to other WSN intrusion 

detection situations, despite the fact that the results acquired 

from experiments and research done on similar processes 

illustrate the efficacy of IDS-CNN. To further understand IDS-

CNN's resilience and dependability, it would be helpful to 

evaluate and test it on a wider range of datasets and under 

varied network circumstances. 

Potentially improving real-world WSN security is the real-

world relevance of the suggested IDS-CNN approach. IDS-

CNN can help improve the safety and reliability of WSN 

installations by detecting intrusions with a high degree of 

precision, a low incidence of false alarms, and just a modest 

amount of processing power. This has significant 

repercussions in many fields, including as manufacturing 

process monitoring, environmental sensing, healthcare 

delivery, and smart infrastructure. The results of this research 

show promise for improving the security and dependability of 

the IoT ecosystem by, among other things, protecting sensitive 

data and maintaining WSN uptime. 
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