
 

 
 

 
 

 
1. INTRODUCTION 

 

Chandrasekhar [1] has taken a detailed research in 

theoretical and experimental results of the onset of thermal 

instability (Bénard Convection) in a fluid layer under varying 

assumptions of hydrodynamics and hydromagnetics stability 

for viscoelastic fluids. Veronis [2] has considered the 

problem of thermohaline convection in a layer of fluid heated 

from below and subjected to a stable salinity gradient. 

Stommel and Fedorov [3] have developed that the length 

scales characteristic of  double-diffusive convecting layers in 

the oceans could be sufficiently large for Earth’s rotation to 

become important in their formation. Moreover, the rotation 

of the Earth distorts the boundaries of a hexagonal 

convection cell in a fluid through a porous medium and the 

distortion plays an important role in the extraction of energy 

in the geothermal regions. Brakke [5] has dealt with a 

double-diffusive instability that occurs when a solution of a 

slowly diffusing protein is laid over a denser solution of more 

rapidly diffusing sucrose. Nason et al. [6] have studied that 

the thermal instability  is deleterious to certain biochemical 

separations may be suppressed by rotation in the 

ultracentrifuge. Chandra [13] has explained a contrary 

between the theory and experiment for the onset of 

convection in fluids heated from below. 

In geophysical situations the fluid is often not pure but 

contains suspended particles. Scanlon and Segel [7] have 

considered the effects of suspended particles under onset of  

Bénard convection and found that the critical Rayleigh 

number is reduced solely because of the heat capacity of the 

pure gas was supplemented by the particles. Here, the 

suspended particles where thus found to destabilize the layer. 

Palaniswamy and Purushotham [8] have studied the stability 

of shear flow of stratified fluids with fine dust and found the 

effects of fine dust to increase the region of instability. 

The Boussinesq approximation has been derived 

throughout the system which explicits that variations of 

density in the equations of motion can safely be neglected 

everywhere except in its association with the external force. 

For incompressible fluids the approximation is well justified, 

but in the case  of compressible fluids forming the governing 

equations of the system become quiet complicated.On 

simplifying them Boussinesq tried to justify the 

approximation for compressible fluids when the density 

variations arise principally from the thermal effects. Spiegel 

and Veronis [9] have simplified the set of compressible fluid 

flow governing equations under the following assumptions: 

(a) The depth of the fluid layer is much less than the 

scale – height, as defined by them, and 

(b) The fluctuations in temperatures, density and 

pressure, introduced due to motion, do not exceed the total 

static variations. 

Sharma and Rana [4] have also expounded the 

thermosolutal instability of incompressible walters’ (MODEL 

B′) rotating fluid permeated with suspended particles and 

variable gravity field in a porous medium. Bhatia and Steiner 
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[10] have to account for the problem of thermal instability of 

Maxwellian viscoelastic fluid in the presence of rotation and 

have found the rotation has a destabilizing influence in 

contrast to the stabilizing effect on a ordinary viscous 

(Newtonian) fluid. Sharma [11] has posited the thermal 

instability of an oldroydian viscoelastic fluid acted on a 

uniform rotation. The convective flow in a porous medium 

using linear stability theory has been examined by Lapwood 

[14]. Wooding [15] has considered the Rayleigh instability of 

a thermal boundary layer inflow through a porous medium. 

Parul Aggarwal and Urvasi Gupta [16] have discussed 

double-diffusive convection of compressible rotating 

Walters’B′ fluid with Hall current saturating a porous 

medium. Thirumurugan and Vasanthakumari [18] studied the 

stability of hydromagnetics Walters’B′ viscoelastic fluid 

rotating in porous medium. 

The influence of non – Newtonian fluids on geophysics, 

chemical industry and petroleum goelogy is gaining 

momentum. Walters’ [12] has reported the mixture of 

polymethyl methacrylate and pyridine heated at 25OC 

containing with 30.5g of polymer per litre behaves very 

nearly as the Walters’ (MODELB′) elastic-viscous fluid. 

Such and other polymer are used in agriculture, 

communication applications and in biomedical applications. 

The Walters’B′ elastic – viscous fluid is one such fluid. 

Thirumurugan and Vasanthakumari [17] have studied the 

thermal convection in walters’B’ viscoelastic fluid in Darcy-

Brinkman porous medium with effect of dusty particles. 

The paramountcy of geophysical fluid dynamics, bio-

physical field and various applications mentioned above, the 

double-diffusive convection Non–Newtonian Walters’ 

(MODELB′) viscoelastic fluid with suspended particles 

through Brinkman porous medium have been enforced to 

consider in the present paper. 

 

2. MATHEMATICAL MODEL AND PERTURBATION 

EQUATIONS 

Consider a horizontal and an infinite compressible 

Walters’ B′ viscoelastic fluid layer of depth d, in an isotropic 

and homogeneous medium of porosity 𝜀 and permeability k1 

which is bounded the by planes z = 0 and z = d and that a 

uniform temperature gradient   β = (|dT/dz|), and  a uniform 

solute gradient 𝛽′  = (|dC/dz|) are maintained. The gravity 

field g(0, 0, -g), and a uniform vertical magnetic field H(0, 0, 

H), act on the system. 

The governing equations of motion, continuity, heat 

conduction, and Maxwell’s equation for the flow of 

Walters’B′  fluids are,  

 
𝜌

𝜀
[
𝜕𝑣

𝜕𝑡
+

1

𝜀
(𝒗. ∇)𝒗] =  −∇𝑝 +  𝒈𝜌 −

1

𝑘1
(𝜇 − 𝜇′

𝜕

𝜕𝑡
)𝒗 +

                                        �̃�∇2𝒗 +
𝑲′𝑵

𝜺
(𝒗𝒅 − 𝒗)           (1) 

 
𝜕𝑞

𝜕𝑡
+ ∇(𝜌. 𝒗) = 0               (2) 

 

 𝜌𝐶𝑓 (
𝜕

𝜕𝑡
+ 𝐯. ∇) 𝑇 + 𝑚𝑁𝐶𝑝𝑡 [𝜀

𝜕

𝜕𝑡
+ 𝑣𝑑 . 𝛁] 𝑇 = 𝐾𝑇∇

2𝑇       (3) 

 

 𝜌𝐶𝑓′ (
𝜕

𝜕𝑡
+ 𝐯. ∇)𝐶 + 𝑚𝑁𝐶𝑝𝑡 ′ [𝜀

𝜕

𝜕𝑡
+ 𝑣𝑑 . 𝛁] 𝐶 = 𝐾𝑇∇2𝐶     (4) 

 

where 𝑣𝑑(�̅�, 𝑡)  and 𝑁(�̅�, 𝑡)  are indicating the velocity, 

number density of the particles respectively, 𝐾 ′ = 6𝜋𝜂𝜌𝑣  is 

the strokes drag coefficient, here 𝜂 is the particle radius, 

𝑣𝑑 = (𝑙, 𝑟, 𝑠) and �̅� = (𝑥, 𝑦, 𝑧). 
 The equations of motion and continuity for the particles 

are 

 

𝑚𝑁 [
𝜕𝑣𝑑

𝜕𝑡
+

1

𝜀
(𝒗𝒅. 𝛁)𝒗𝒅] = K′N(𝒗 − 𝒗𝒅)          (5) 

 

where mN  is the mass of the particles per unit volume. 

 

𝜀
𝜕𝑁

𝜕𝑇
+ ∇. (𝑁𝒗𝒅) = 0            (6) 

 

The presence of particles adds an extra force term 

proportional to the velocity difference between particles and 

fluid and appears in the equation of motion. Since the force 

exerted by the fluid on the particles is equal and opposite to 

that exerted by the particles on the fluid, there must be an 

extra force term, equal in magnitude but opposite sign, in the 

equation of the motion for the particles. The buoyancy force 

on the particle is neglected. Interparticles reactions are not 

considered either since the distance between the particles is 

quite large compared with their diameters. These 

assumptions have been used in writing the equation of 

motion for the particles.  

Spiegel and Veronis [9] have expressed any state variables 

pressure, density and temperature are expressed in the form 

 

𝑓(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓𝑚 + 𝑓0(𝑧) + 𝑓 ′(𝑥, 𝑦, 𝑧, 𝑡),           (7) 

 

where 𝑓𝑚 denotes for constant space distribution 𝑓, 𝑓0 is the 

variation in the absence of motion, and  (𝑥, 𝑦, 𝑧, 𝑡)  is the 

fluctuations resulting from motion. The initial state of the 

system is 

 

𝑝 = 𝑝(𝑧), 𝜌 = 𝜌(𝑧), 𝑇 = 𝑇(𝑧), 𝒗 = (0, 0, 0), 𝐶 = 𝐶(𝑧),  
 𝒗 = (0, 0, 0), 𝑁 = 𝑁0            (8) 

 

where 

 

𝑝(𝑧) = 𝑝𝑚 − 𝑔 ∫ (𝜌𝑚 + 𝜌0)𝑑𝑧
𝑧

0

, 𝜌(𝑧) 

= 𝜌𝑚[1 − 𝛼𝑚(𝑇 − 𝑇0) + 𝛼 ′(𝐶 − 𝐶0) + 𝐾𝑚(𝑝 − 𝑝𝑚)],  

𝑇 = −𝛽𝑧 + 𝑇0, 𝐶 = −𝛽′𝑧 + 𝐶0, 𝛼𝑚 = −(
1

𝜌

𝜕𝜌

𝜕𝐶
)

𝑚

,  

𝐾𝑚 = (
1

𝜌

𝜕𝜌

𝜕𝑝
)

𝑚
                                                                      (9) 

 

Here, 𝑝𝑚 and 𝜌𝑚 denote a constant space distribution of p 

while 𝑇0 and 𝜌0 denote temperature and density of the fluid 

at the lower boundary. 

Spiegel and Veronis [9] has given results for the 

compressible fluid and the flow equations are found to be the 

same as that of incompressible fluid except that the static 

temperature gradient 𝛽  is replaced by the excess over the 

adiabatic (𝛽 −
𝑔

𝐶𝑝
) ,  𝐶𝑝 being specific heat of the fluid at the 

constant pressure. This is an exact solution to the governing 

equations.  

Then, the change in density 𝛿𝜌 caused by the perturbation 

𝜃 in temperature is given by 

 

𝛿𝜌 = −𝜌𝑚(𝛼𝜃 − 𝛼 ′𝛾)          (10) 
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The linearized perturbation equations governing the fluid 

are 

 
1

𝜀

𝜕𝒗

𝜕𝑡
= −

1

𝜌𝑚

(∇𝛿𝑝) − 𝒈(𝛼𝜃 − 𝛼 ′𝛾) −
1

𝑘1

(𝑣 − 𝑣 ′
𝜕

𝜕𝑡
) 𝒗 

+
�̅�

𝝆𝒎
∇2𝒗 +

𝐾′𝑁0

𝜌0𝜀
(𝒗𝒅 − 𝒗)                     (11) 

 

∇. 𝒗 = 0            (12) 

 

(1 + 𝑏𝜀)
𝜕𝜃

𝜕𝑡
= (𝛽 −

𝑔

𝐶𝑝
) (𝑤 + 𝑏𝑠) + 𝐾∇2𝜃        (13) 

 

(1 + 𝑏′𝜀)
𝜕𝜃

𝜕𝑡
= (𝛽 −

𝑔

𝐶𝑝
) (𝑤 + 𝑏′𝑠) + 𝐾′∇2𝛾       (14) 

 

𝑚𝑁0
𝜕𝑣𝑑

𝜕𝑡
= 𝐾′𝑁0(𝒗 − 𝒗𝒅)          (15) 

 
𝜕𝑀𝑑

𝜕𝑡
+ ∇. 𝒗𝒅 = 𝟎           (16) 

 

where 𝑣 =
𝜇

𝜌𝑚
, 𝑣 ′ =

𝜇′

𝜌𝑚
, 𝐾 =

𝐾𝑇

𝜌𝑚𝐶𝑓′

𝑔

𝑐𝑓
 and w denote the 

kinematic viscosity, kinematic viscoelasticity, thermal 

diffusivity, solute diffusivity, adiabatic gradient and vertical 

fluid velocity, respectively. 

Also, 𝑏 =  
𝑚𝑁𝐶𝑝𝑡

𝜌0𝑐𝑓
, 𝑏′ = 

𝑚𝑁𝐶𝑝𝑡′

𝜌0𝑐𝑓′
 and 𝑤, 𝑠  are the vertical 

fluid and particles velocity. 

In Cartesian form, Eqs. (11) – (13) with the help of Eqs. 

(15) and (16) can be expressed as  

 
1

𝜀

𝜕𝒖

𝜕𝑡
= −

1

𝜌𝑚

𝜕

𝜕𝑥
(𝛿𝑝) −

1

𝑘1

(𝑣 − 𝑣 ′
𝜕

𝜕𝑡
) 𝑢 +

�̅�

𝝆𝟎

∇2𝑢 

                       −
𝑚𝑁0

∈(
𝑚 𝜕

K′ 𝜕𝑡
+1)𝝆𝒎

𝜕𝒖

𝜕𝑡
,          (17) 

 
1

𝜀

𝜕𝒗

𝜕𝑡
= −

𝟏

𝝆𝟎

𝜕

𝜕𝑦
(𝛿𝑝) −

1

𝑘1

(𝑣 − 𝑣 ′
𝜕

𝜕𝑡
) 𝒗 +

�̅�

𝝆𝟎

∇2𝑣 

                 −
𝑚𝑁0

∈(
𝑚 𝜕

K′ 𝜕𝑡
+1)𝝆𝟎

𝜕𝑣

𝜕𝑡
,                                                   (18) 

 
1

𝜀

𝜕𝒘

𝜕𝑡
= −

𝟏

𝝆𝟎

𝜕

𝜕𝑧
(𝛿𝑝) + 𝑔𝛼𝜃 −

1

𝑘1

(𝑣 − 𝑣 ′
𝜕

𝜕𝑡
)𝒘 +

�̅�

𝝆𝒎

∇2𝒘 

                −
𝑚𝑁0

∈(
𝑚 𝜕

K′ 𝜕𝑡
+1)𝝆𝒎

𝜕𝒘

𝜕𝑡
           (19) 

 
𝜕𝒖

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+ 

𝜕𝒘

𝜕𝑧
= 0          (20) 

 

(1 + 𝑏𝜀)
𝜕𝜃

𝜕𝑡
= (𝛽 −

𝑔

𝐶𝑝
) (𝑤 + 𝑏𝑠) + 𝐾∇2𝜃        (21) 

 

(1 + 𝑏′𝜀)
𝜕𝜃

𝜕𝑡
= 𝛽′(𝑤 + 𝑏′𝑠) + 𝐾′∇2𝛾        (22) 

 

Operating Eqs. (17) and (18) by 
𝜕

𝜕𝑥
 and 

𝜕

𝜕𝑦
 respectively, 

adding, we get 

 

1

𝜀

𝜕

𝜕𝑡
(
𝜕𝒘

𝜕𝑧
) = −

𝟏

𝝆𝒎

𝜕

𝜕𝑥
(∇2 −

𝜕2

𝜕𝑧2
) −

1

𝑘1

(𝑣 − 𝑣 ′
𝜕

𝜕𝑡
) (

𝜕𝒘

𝜕𝑧
) 

                           +
�̅�

𝝆𝟎
∇2 (

𝜕𝒘

𝜕𝑧
) −

𝑚𝑁0

∈(
𝑚 𝜕

K′ 𝜕𝑡
+1)𝝆𝒎

𝜕

𝜕𝑡
(

𝜕𝒘

𝜕𝑧
)       (23) 

 

Operating Eqs. (19) and (22) by (∇2 −
𝜕2

𝜕𝑧2)  and 
𝜕

𝜕𝑧
 

respectively and adding to eliminate 𝛿𝑝 between Eqs. (19) 

and (22), we get  

 
1

𝜀

𝜕

𝜕𝑡
(∇2𝑤) = −

1

𝑘1

(𝑣 − 𝑣 ′
𝜕

𝜕𝑡
) (∇2𝑤) +

�̅�

𝝆𝟎

(∇4𝑤) 

                         + (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) 𝛼𝜃 −
𝑚𝑁0

∈(
𝑚 𝜕

K′ 𝜕𝑡
+1)𝝆𝒎

𝜕

𝜕𝑡
(∇2w)    (24) 

 

where ∇2=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 . 

 

 

2. THE DISPERSION RELATION 
 

To decompose the perturbations into normal modes by 

seeking solutions in the form of functions (x, y , t),  

 

[𝑤, 𝜃] = [𝑊(𝑧), 𝑆(𝑧), Θ(𝑧), Γ(𝑧)]exp (𝑖𝑘𝑥
𝑥 + 𝑖𝑘𝑦

𝑦
+ 𝑛𝑡)  (25) 

 

where 𝑘𝑥  and 𝑘𝑦  are the wave numbers in x and y 

directions 𝑘 = √𝑘𝑥
2 + 𝑘𝑦

2 is the resultant wave numbers, and 

n is in general, a complex constant.  

Using Eq. (25) in Eqs. (23), (21) and (22) become 

 

𝑛

𝜀
[
𝑑2

𝑑𝑧2
− 𝑘2]𝑊 

= −𝑔𝑘2(𝛼𝜃 − 𝛼 ′𝛾) −
1

𝑘1

(𝑣 − 𝑣 ′𝑛) (
𝑑2

𝑑𝑧2
− 𝑘2)𝑊 

     +
�̅�

𝝆𝟎
(

𝑑2

𝑑𝑧2 − 𝑘2)𝑊 −
𝑚𝑁0

∈(
𝑚 𝜕

K′ 𝜕𝑡
+1)𝝆𝒎

(
𝑑2

𝑑𝑧2 − 𝑘2)𝑊       (26) 

 

(1 + 𝑏𝜀)
𝜕𝜃

𝜕𝑡
= (𝛽 −

𝑔

𝐶𝑝
) (𝑤 + 𝑏𝑠) + 𝐾 (

𝑑2

𝑑𝑧2 − 𝑘2) Θ       (27) 

 

(1 + 𝑏′𝜀)
𝜕𝜃

𝜕𝑡
= 𝛽′(𝑤 + 𝑏′𝑠) + 𝐾′∇2𝛾        (28) 

 

Eqs. (26) and (28) in non – dimensional form, become 

 

[1 + (
𝑝𝑙

𝜀
+

𝑀𝑝𝑙

𝜀(1 + 𝜏1𝜎)
+ 𝐹)𝜎 − 𝐷𝐴(𝐷2 − 𝑎2)] (𝐷2 − 𝑎2)𝑊 

+
𝑔𝑎2𝑑2𝑝𝑙𝛼Θ

𝑣
−

𝑔𝑝
𝑙𝑎2𝑑2𝛼′Γ

𝑣
= 0         (29) 

 

[𝐷2 − 𝑎2 − 𝐸1𝑃1𝜎]Θ = −𝛽
𝑑2

𝐾
(

𝐺−1

𝐺
) (

𝐵+𝜏1𝜎

1+𝜏1𝜎
)𝑊       (30) 

 

[𝐷2 − 𝑎2 − 𝐸1′𝑃1′𝜎]Γ = (−𝛽
′
𝑑2

𝐾′) (
𝐵′+𝜏1𝜎

1+𝜏1𝜎
)𝑊        (31) 

 

where we have put 

 

𝐸1 = 1 + 𝑏𝜀, 𝐸1
′ = 1 + 𝑏′𝜀, 𝐵 = 𝑏 + 1, 𝐵′ = 1 + 𝑏′, 𝑎 =

𝑘𝑑, 𝜎 =
𝑛𝑑2

𝑣
 , 𝑃1 = 

𝑉

𝜒
, 𝐹 =

𝑣′

𝑑2  and 𝑝𝑙 =
𝑘1

𝑑2, is the 

dimensionless medium permeability, 𝑝1 =
𝑣

𝑘
, is the themal 

Prandtl number  and 𝐷𝐴 =
�̃�𝑘1

𝜇𝑑2  , is the Darcy number 

modified by the viscosity ratio. 

Eliminating Θ and Γ between Eqs. (29) and (31), we 

obtain 
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[1 + (
𝑝𝑙

𝜀
+

𝑀𝑝𝑙

𝜀(1 + 𝜏1𝜎)
+ 𝐹)𝜎 − 𝐷𝐴(𝐷2 − 𝑎2)] (𝐷2 − 𝑎2) 

(𝐷2 − 𝑎2 − 𝐸1𝑃1𝜎)(𝐷2 − 𝑎2 − 𝐸1
′𝑃1′𝜎)𝑊 

+𝑆𝑎2 (
𝐵′ + 𝜏1𝜎

1 + 𝜏1𝜎
) (𝐷2 − 𝑎2 − 𝐸1𝑃1𝜎)𝑊 

−𝑅𝑎2𝑃1 (
𝐺−1

𝐺
) (

𝐵+𝜏1𝜎

1+𝜏1𝜎
) (𝐷2 − 𝑎2 − 𝐸1𝑃1𝜎)𝑊 = 0           (32) 

 

where 𝑅 = (
𝑔𝛼𝛽𝑑4

𝑣𝑘
) is the thermal Rayleigh number and 𝑆 =

(
𝑔𝛼′𝛽′𝑑4

𝑣𝑘′
) is the analogous solute Rayleigh number. 

Assume that the temperature at the boundaries is kept 

fixed, the fluid layer is confirmed between two boundaries 

and adjoining medium is electrically non – conducting. The 

boundary conditions appropriate to the problem are  

W = D2W = 0,    DZ = 0,  Θ= 0    at z = 0, z = l,        (33)  

The case of two boundaries, though a little artificial is the 

most appropriate for stellar atmospheres. Using the boundary 

conditions, all the even order derivatives of W characterizing 

the lowest mode is 

W = W0 sinπz,                                                                                              (34) 

 

where W0 is a constant.   

Substituting Eq. (27) in Eq. (25) we get 

 

𝑅1𝑥𝑃 = (
𝐺

𝐺−1
) [1 + (

𝑝𝑙

𝜀
+

𝑀𝑃

𝜀(1+𝜏1𝑖𝜎1)
+ 𝜋2𝐹) 𝑖𝜎1 +

𝐷𝐴1(1 + 𝑥)] (1 + 𝑥)(1 + 𝑥 + 𝐸1𝑝1𝑖𝜎1) + (
1+𝑖𝜏1𝜋2𝑖𝜎1

𝐵+𝑖𝜏1𝜋2𝑖𝜎1
) +

𝑆1𝑃𝑥(1+𝑥+𝐸1𝑝1𝑖𝜎1)

(1+𝑥+𝐸1′𝑝1′𝜎
(

𝐵′+𝑖𝜏1𝜋2𝑖𝜎1

𝐵+𝜏1𝜋2𝑖𝜎1
)         (35) 

 

where 

 

R1 =
R

π4  , S1 =
s

π4 TA1 =
TA

π4  , DA1 =
DA

π2 , x =
a2

π2 , iσ1 =

 
σ

π2 , P = π2pl, τ =  
m

K'
, τ1 =

τv

d2 , M =
mN0

ρm
.   

 

Eq. (35) is required dispersion relation accounting for 

the onset of double-diffusive convection of Walters’B′ 

elastico – viscous fluid permeated with suspended 

particles in a Brinkman porous medium. 

 

 

4. THE STATIONARY CONVECTION 

 

For stationary convection putting 𝜎 = 0 in Eq. (35), we 

obtain 

 

𝑅1 = (
𝐺

𝐺−1
) {

(1+𝑥)2

𝑥𝑃𝐵
[1 + (1 + 𝑥)𝐷𝐴1] +

𝑆1𝐵′

𝐵
}        (36) 

 

Eq. (36) expresses the modified Rayleigh number R1 as a 

function of the dimensionless wave number x and the 

parameters 𝐺,𝐵, 𝐷𝐴1, 𝑃 and Walters’B′ elastic - viscous fluid 

behaves like an ordinary Newtonian fluid since elastico – 

viscous parameter F vanishes with 𝜎 . Let the non 

dimensional numbers G accounting for compressibility effect 

is kept as fixed, then we get 

 

𝑅𝐶
̅̅̅̅ = (

𝐺

𝐺−1
)𝑅𝐶           (37) 

 

𝑅𝐶
̅̅̅̅  and 𝑅𝐶 denotes, respectively, the critical number in the 

presence and absence of compressibility thus, the effect of 

compressibility is to postpone the instability on the onset of 

double diffusive convection. The cases G = 1 and G < 1  

correspond to infinite and negative values of Rayleigh 

numbers due to compressibility which are not relevant to the 

present study. 

To study the effect of Darcy number, stable solute 

gradient, suspended particles and medium permeability, we 

examine the behavior of 
𝑑𝑅1

𝑑𝐷𝐴1
,
𝑑𝑅1

𝑑𝑆1
,
𝑑𝑅1

𝑑𝐵
, and 

𝑑𝑅1

𝑑𝑃
 analytically. 

From Eq. (36), we get 

 
𝑑𝑅1

𝑑𝐷𝐴1
= (

𝐺

𝐺−1
)

(1+𝑥)3

𝑥𝑃𝐵
          (38) 

 

which is positive implying thereby the stabilizing effect of 

Darcy number on the double diffusive convection in 

Walters’B′ elastico-viscous fluid permeated with suspended 

particles in a Brinkman porous medium. This stability effect 

is an agreement of the earlier work of Thirumurugan and 

Vasanthakumari [17]. Eq. (36) yields 

 
𝑑𝑅1

𝑑𝑆1
= (

𝐺

𝐺−1
)

𝐵′

𝐵
            (39) 

 

which is positive implying thereby the stabilizing effect of 

stable solute gradient on the double diffusive convection in 

Walters’B′ elastico-viscous fluid permeated with suspended 

particles in a Brinkman porous medium. This stability effect 

is an agreement of the earlier work Sharma and Rana [4]. 

From the Eq.(36), we get 

 
dR1

dB
= - (

G

G-1
) {(

(1+x)

xPB2) [1 + (1 + x)DA1]-
S1B'

B2 }          (40) 

 

which is negative implying thereby the effect of suspended 

particles is destabilizing effect on the double diffusive 

convection Walters’B′ elastic – viscous fluid in a Brinkman 

porous medium. This stability effect is an agreement of the 

earlier work of Scanlon and Segel [7] and Thirumurugan and 

Vasanthakumari [17]. It is evident from Eq. (36) that  

 
dR1

dP
 = - (

G

G-1
) {(

(1+x)

xBp2) [1 + (1 + x)DA1]}         (41) 

 

From Eq. (41), we found that medium permeability has 

destabilizing effect on the double diffusive convection in 

Walters’B′ elastico–viscous fluid permeated with suspended 

particles in a Brinkman porous medium, which is identical 

with the result as derived by Thirumurugan and 

Vasanthakumari [18]. 

The dispersion relation is analysed numerically and 

graphs have been represented by giving some numerical 

values for different parameters, to depict the stability 

characteristics. 
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Figure 1.  The variation of Rayleigh number 𝑅1 with 

Darcy number 𝐷𝐴1 for fixed values of 𝐺 = 5,  𝑆1 =
4, 𝐵 = 6, 𝑃 = 2, 𝐵′ = 3 and 𝑥 = 0.2, 𝑥 = 0.5, 𝑥 =  0.9 

 

In Fig. 1, Rayleigh Number 𝑅1  is plotted against 

Darcy number 𝐷𝐴1  for G = 5, 𝑆1 = 4, B = 6, P = 2 and 

𝐵′ = 3 for fixed values of x = 0.2, x = 0.5 and x = 0.9. As 

the value of Darcy number 𝐷𝐴1   increases, the 

corresponding value of the Rayleigh number 𝑅1 increases 

showing its stabilizing effect on the system. 

 

 
 

Figure 2. The variation of Rayleigh number R1 with Stable 

solute gradient 𝑆1 for fixed values of   for 𝐺 = 5 and B = 6, 

𝑆1 = 4, P = 2, 𝐵′ = 3 and 𝑥 = 0.2, 𝑥 = 0.5, 𝑥 = 0.9 

 

In Fig. 2, Rayleigh number R1 is plotted against 

Stable solute gradient 𝑆1 for 𝐺 = 5 and B = 6, 𝑆1 = 4, P 

= 2 and B = 3 for fixed wave numbers  𝑥 = 0.2, 𝑥 =
0.5 and 𝑥 = 0.9. The Rayleigh number R1 increases with 

increases in stable solute gradient 𝑆1  showing its 

stabilizing effect on the system. 

In Fig. 3, Rayleigh Number 𝑅1  is plotted against 

Suspended particles B for G = 5, 𝑆1 = 4, 𝐵′ = 3, P = 2 and 

𝐷𝐴1 = 10 for fixed wave numbers 𝑥 = 0.2, 𝑥 = 0.5, 𝑥 = 0.9. 

The Rayleigh number 𝑅1  decreases with the increases 

suspended particles B showing its destabilizing effect on the 

system. 

 

 
Figure 3. The variation of Rayleigh Number 𝑅1 is plotted 

with Suspended particles B for fixed values of G = 5, 𝑆1 =
4,𝐵′ = 3, P = 2, 𝐷𝐴1 = 10 and 𝑥 = 0.2, 𝑥 = 0.5, 𝑥 = 0.9 

 

 
 

Figure 4.The variation of Rayleigh number R1with medium 

permeability P for fixed values of  G = 5 , 𝑆1 = 4, B = 6, 

𝐵′ = 3 and 𝐷𝐴1 = 10 and 𝑥 = 0.2, 𝑥 = 0.5, 𝑥 =  0.9 

 

In Fig. 4, Rayleigh number R1 is plotted against medium 

permeability P for G = 5 , 𝑆1 = 4, B = 6  B′ = 3 and 𝐷𝐴1 =
10  for fixed wave numbers 𝑥 = 0.2, 𝑥 = 0.5 and 𝑥 = 0.9 . 

The Rayleigh number R1 decreases with increases in medium 

permeability P showing its destabilizing effect on the system.   

 

 

5. PRINCIPLE OF EXCHANGE OF STABILITIES 

AND OSCILLATORY MODES 

 

We have to examine the possibility of oscillatory modes, 

if any in compressible Walters’ B′ viscoelastic fluid due to 

the presence of suspended particles, viscoelasticity, medium 

permeability and gravity field. Multiply Eq. (29) by 𝑊∗ the 

complex conjugate of W, integrating over the range of z and 

according to Eq. (29), with the help of boundary conditions 

(Eq. (33)), we have 
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[1 + (
𝑝𝑙

𝜀
+

𝑀𝑝𝑙

𝜀(1 + 𝜏1𝜎)
+ 𝐹)𝜎] 𝐼1 − 𝐷𝐴𝐼2 −

𝑔𝑎2𝛼𝑘𝑝𝑙

𝑣𝛽
 

+(
𝐺

𝐺 − 1
) (

1 + 𝜏1𝜎
∗

𝐵 + 𝜏1𝜎
∗
) (𝐼3 + 𝐸𝑝1𝜎

∗𝐼4)
𝑎2𝛼 ′𝑔𝑘 ′

𝑣𝛽′
(
1 + 𝜏1𝜎

∗

𝐵 + 𝜏1𝜎
∗
) 

(𝐼6 + 𝐸1′𝑝1𝜎
∗𝐼7) = 0          (42) 

 

where 

  

𝐼1 = ∫(|𝐷𝑊|2 + 𝑎2|𝑊|2)𝑑𝑧 

1

0

 

𝐼2 = ∫ (|𝐷𝑊|2 + 2𝑎2|𝑊|2 + 𝑎4|𝑊|2)𝑑𝑧
1

0

 

𝐼3 = ∫ (|𝐷Θ|2 + 𝑎2|Θ|2)𝑑𝑧
1

0

 

𝐼4 = ∫ |Θ|2𝑑𝑧  

1

0

 

 

The integral part 𝐼1 − 𝐼4  are all positive definite, putting 

𝜎 = 𝑖𝜎1 in Eq. (28), where 𝜎1  is real and equating the 

imaginary parts, we obtain 

 

𝜎𝑖

[
 
 
 
 
 (

𝑝𝑙

𝜀
+

𝑀𝑝𝑙

𝜀(1+𝜏1
2𝜎𝑖

2)
+ 𝐹) 𝐼1 −

𝑔𝑎2𝑑2𝛼𝑘𝑝𝑙

𝑣𝛽
(

𝐺

𝐺−1
)

{(
𝜏1(𝐵−1)

𝐵2+𝜏1
2𝜎𝑖

2) 𝐼3 + (
𝜏1(𝐵−1)

𝐵2+𝜏1
2𝜎𝑖

2) 𝐸𝑝1𝐼4}

−
𝑎2𝛼′𝑔𝑘′

𝑣𝛽′
{(

𝜏1(𝐵−1)

𝐵′
2
+𝜏1

2𝜎𝑖
2
) 𝐼5 +

𝐵′+𝜏1
2𝜎𝑖

2

𝐵′2+𝜏1
2𝜎𝑖

2 𝐸𝑝1𝐼6} ]
 
 
 
 
 

= 0       (43) 

 

Eq. (37) establishes that 𝜎𝑖 = 0 or 𝜎𝑖 ≠ 0 which shows that 

modes may be non – oscillatory or oscillatory modes 

employed due to the presence of viscosity, viscoelasticity, 

suspended particles and medium permeability which were non 

– existent in their absence. 

 

 

6. CONCLUSIONS 

 

The system has been investigated  with the effect of 

suspended particles on double-diffusive convection of 

Walters’B′ elastico-viscous fluid in the Brinkman porous 

medium. The dispersion relation, including the effects of 

suspended particles, Darcy number, medium permeability and 

viscoelasticity on the double-diffusive convection in 

Walters’B′ fluid in porous medium is derived mathematically. 

From the analysis, the main conclusions are as follows: 

(i) For finding stationary convection, the compressible 

Walters’B′ elastico-viscous fluid behaves like an ordinary 

Newtonian fluid as elastico-viscous parameter F vanishes 

with 𝜎. 

(ii) The first derivative expressions 
𝑑𝑅1

𝑑𝐷𝐴1
,
𝑑𝑅1

𝑑𝑆1
,
𝑑𝑅1

𝑑𝐵
, and 

𝑑𝑅1

𝑑𝑃
  have been examined analytically and it has been found 

that the Darcy number and stable solute gradient have 

stabilizing effect whereas the suspended particles and 

medium permeability have a destabilizing effect on the 

system. 

(iii) The effects of Darcy Number, stable solute gradient 

and medium permeability on double-diffusive convection in 

Walters’B′ elastico – viscous fluid permeated with Suspended 

particles, in a Brinkman porous medium is also represented 

graphically as in Figs. 1, 2, 3 and 4 respectively, which are 

good agreement with the analytical results. 

(iv) The oscillatory modes are employed to examine the 

nature of stability existent due to the presence of 

viscoelasticity, suspended particles, gravity field and medium 

permeability, which were non – existent in their absence.   
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NOMENCLATURE 

 

v    Fluid velocity  

Cf         Heat capacity of fluid  

Cpt      Heat capacity of particles  

Cs    Heat capacity of solid 

Cf
′, Cpt′ Heat capacity analogous to solute       

p Pressure 

N  Suspended particles number density 

K            Thermal diffusivity  

K′         Solute diffusivity 

KT Thermal conductivity 

k1 Medium permeability 

t Time coordinate  

T Temperature 

g  Acceleration due to gravity   

H 
ρ    

ρs         

ρ0      

υ      

η      

μe       

δp        

δρ      

ε       

β          

θ             

α     

υ'     

α′       

β'        

Magnetic field 

Fluid density 

Density of solid 

Reference density 

Kinematic viscosity 

Particle radius 

Magnetic permeability 

Perturbation in pressure 

Perturbation in density 

Medium porosity 

Temperature gradient 

Perturbation at temperature T 

Thermal coefficients of expansion 

Kinematic viscoelasticity 

Solvent coefficients of expansion 

Solute gradient 
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