
An Empirical Evaluation of Automated Configuration Tools for Software-Defined

Networking: A Usability and Performance Perspective

Fabio Sergio Bruschetti , Javier Guevara , María Claudia Abeledo* , Daniel Alberto Priano

Centro de Investigación y Desarrollos en Informática (CIDI), Instituto de Tecnologías Emergentesy Ciencias Aplicadas

(ITECA), Universidad Nacional de San Martín (UNSAM), San Martín 1650, Argentina

Corresponding Author Email: mabeledo@unsam.edu.ar

https://doi.org/10.18280/isi.280502 ABSTRACT

Received: 19 June 2023

Revised: 7 October 2023

Accepted: 13 October 2023

Available online: 31 October 2023

The advent of Software Defined Networking (SDN) has ushered in an era where the

functions of interconnected devices are no longer constrained by their original design.

Instead, these devices, now transformed into "general-purpose" nodes within the network,

have roles that are defined by their configuration settings. Given that these configurations

can be compiled into a computer file, software tools have been developed to consolidate

and automate the administration of configuration parameters across all devices in an SDN

network. These tools, akin to source code control tools used in programming languages, are

capable of managing configurations for individual or groups of devices simultaneously.

This study presents an evaluation of three such tools—Ansible, Puppet, and Chef—

assessing their merits and demerits across various performance and usability dimensions,

including configuration, installation, ease of use, and management capabilities. The

comparative analysis reveals Ansible as a remarkably versatile tool, offering a wealth of

advantages that make it a compelling choice for a majority of automation and configuration

management tasks.

Keywords:

SDN, computer networks, software-defined

networking, network management, software

tools, network configuration scripting,

configuration management

1. INTRODUCTION

In the realm of OpenFlow-enabled Software-Defined

Networking (SDN) [1, 2], changes to the network may be

instantaneously implemented, yet often necessitate human

approval and intervention. The average latency for tangible

results to materialize from such modifications is

approximately one to two weeks-a delay that poses significant

management challenges in legacy systems, as exemplified by

Voice over IP (VoIP) applications [3]. This predicament has

stimulated the emergence of automation tools like Ansible [4],

Puppet [5], and Chef [6].

Ansible, a free software tool, offers robust cross-platform

automation capabilities. Primarily designed for IT

professionals, it facilitates the deployment of applications,

updating of workstations and servers, configuration of cloud

resources, and management of software and hardware

configurations [7]. With no dependency on agent software and

no need for additional security infrastructure, Ansible provides

a straightforward implementation process.

Meanwhile, Puppet, a software tool, empowers its users to

define infrastructure through code (SDN) and effectively

manage multiple servers. It also enforces system settings and

configurations. As a part of the DevOps [8, 9] platform, Puppet

holds significant value for managing multiple servers [10].

Chef, an open-source cloud configuration management and

deployment software, is devised to orchestrate servers in the

cloud or within a departmental data center. It enables DevOps

to rapidly instantiate any server as needed, obviating the need

for separate management tools for each individual or

standalone server [11].

This study undertakes a comprehensive comparison of these

three tools, delineating their relative strengths and weaknesses.

It includes simulation tests and analyses of their evolution over

time. The evolution of simulation testing in Ansible, Puppet,

and Chef has been largely driven by the need to cater to

increasingly complex systems, diverse environments, and

stricter security demands. These tools have progressively

adopted more sophisticated techniques for automation, testing,

and configuration validation-enhancing the reliability and

efficiency of configuration automation solutions. While the

tests for the current study are yet to be completed due to the

diversity of proposed scenarios, the findings will be discussed

in future work. The study concludes by detailing the factors

that contribute to the prevailing acceptance of one tool over

the others.

2. NETWORK ADMINISTRATION

Network automation is the process of automating the

configuration, management, testing, deployment, and

operation of physical and virtual devices within a network.

Network services can substantially be enhanced through

automated tasks, functions, and repetitive processes.

Any type of network can use this kind of automation.

Implementing hardware and software-based network

automation will improve efficiency, reduce human error, and

lower operating expenses for data centers, service providers,

and businesses operations.

DevOps is a current cultural and technical trend in most

companies focused on digital technologies. The purpose of

DevOps is to eliminate the differences between the software

developers and the operations that run on the infrastructure.

Ingénierie des Systèmes d’Information
Vol. 28, No. 5, October, 2023, pp. 1127-1134

Journal homepage: http://iieta.org/journals/isi

1127

https://orcid.org/0000-0001-7516-2248
https://orcid.org/0000-0002-5802-641X
https://orcid.org/0000-0003-1490-0109
https://orcid.org/0000-0003-0155-4753
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280502&domain=pdf

Once this goal is achieved, the development, testing and

deployment processes will be more frequently, reliable and

faster. This leads a cultural change where teams will evolve

from stand-alone to cross-functional. DevOps also leads a

change in the security arena because rules and parameters of

automated processes must be adapted to ensure quick and

continuous releases to patch bugs or provide updates. DevOps

tools also support cross-functional interoperability and

automated workflows to enable multi-platform integration

[12].

On the other hand, NetDevOps [13] takes the collaboration,

tools and automation approaches and extends them to network

architects and operators. NetDevOps (named by Cisco) or

DevNetOps combine network engineers and their tools.

Cisco, a leading provider of networking hardware, appears

to be leading the NetDevOps shift from theory to practice with

some of its customers. In other words, one of the main leaders

in the networking market tries to move its clients to use of

“infrastructure-as-code” and go towards automation and

scripting, applying some of those ideas [14]. These are the

foundations of the Cisco developer community, where

members can learn all about theirs API [15] and how they can

relate to a special kind of networks called intent-based

networks [16].

In this way, companies consolidate networks operation in

the DevOps culture and automation ensuring that their

hardware is connected properly. Routers and switches will be

programmed and configured trough an API which also will

manage security and provide the analytics capability according

to DevOps principles and processes for networks.

To implement changes in a test network and then move

them into production networks in a consistent and secure way,

CI/CD pipelines (Continuous Integration/Continuous Delivery)

can storage the network configurations as code in a source

code control program.

Although these changes are relatively new, service

providers where the first to promote some of these NetDevOps

transformations. In addition of this, many changes have

emerged from the corporate IT areas where there is a greater

need to automate and manage more and more network devices.

Ansible, Puppet and Chef are widely used tools for network

automation and DevOps implementation practices. These

tools help streamline and simplify infrastructure and

application management, enabling greater efficiency,

reliability and scalability in development and operations

environments. The relationship for each tool mentioned is

detailed below:

1. Ansible is a central tool in DevOps practices, as it can be

used to automate everything from infrastructure provisioning

to application deployment and configuration management.

Ansible playbooks allow infrastructure and applications to be

defined and maintained as code, facilitating collaboration

between development and operations teams. Ansible also

integrates with CI/CD tools to enable automated deployments.

2. Puppet plays a key role in DevOps by enabling automated

management and configuration of infrastructure and

applications. It allows you to define the desired state of

systems and ensure that it is maintained at all times. This

facilitates consistent and reproducible application deployment,

and also fosters collaboration across teams throughout the

development and operational lifecycle.

3. Chef is very popular in DevOps environments because of

its focus on infrastructure as code. Chef cookbooks allow you

to define, maintain and version infrastructure and application

configuration in a similar way to software source code. This

facilitates collaboration, automation and continuous

deployment, which are key pillars of DevOps.

3. NETDEVOPS IN COMPANIES

In companies experimenting with NetDevOps, networking

teams are focusing on establishing a culture and environment

where creating, testing, and publishing changes to the network

can happen more quickly, frequently, and reliably. Developers

and operators working together are primarily interested in

launching fast and stable releases. However, there is a lot of

work to be done regarding communication between the

network and the DevOps teams and their tools.

But what are the benefits of NetDevOps? Given its roots in

DevOps, it makes sense that NetDevOps adopts many of the

same goals. "DevOps is described by four principles: a holistic

system thinking approach (see the whole system, not just one

part), no organisational silos, rapid feedback, and automation

to reduce work," says Joel King, an independent network

automation architect.

Network operations has lagged behind other functional

areas that support an organisation's IT infrastructure, King

points out, especially when it comes to automation through

network programmability.

"To implement a new application or service that supports

the business, compute, storage and network components

require configuration changes or the implementation of new

hardware," King explains. "Often these changes are made

manually by an engineer typing in a terminal window, and they

may need to be reviewed through a change control process and

implemented during an off-hours time slot.

NetDevOps "helps improve agility and is particularly

valuable for organisations that deploy infrastructure as code,

because the network is often a bottleneck," says Andrew

Lerner, vice president of networking research at Gartner Inc

(USA) "NetDevOps practices drive clear workflows and

documentation, which helps with auditing, governance and

troubleshooting" [17].

4. THE NEED FOR NEW TOOLS

Nowadays, this is an imperative, not only from the

perspective of the management and operation of physical

devices but also from the perspective of the analysis and

control of network traffic. Manual or “human” verification

will no longer work properly on current scenarios. Using a

manual approach, for example, the number of bits in network

traffic difficult to find specific binary flows in network

connections.

When we talk about network devices configuration, the CLI

(Command-Line Interface) method is the most used to make

changes to configurations. This method allows access to

devices through the console port, the auxiliary port, or through

Telnet or SSH. Once connected to the CLI, network

technicians can make changes to device settings. However, the

CLI method has several drawbacks. First, it offers the wrong

level of abstraction by allowing human operators to operate

the console without being able to validate that the proper

procedures are being followed. Also, different vendors do not

use a standard CLI language.

CLI (Command Line Interface) method is a common way

1128

of interacting with computer systems and executing

commands to perform tasks. Although it is widely used and

has many advantages, it also has certain limitations. Some of

these limitations include:

Complexity of commands: Some commands can be

complicated and have a syntax that is difficult to remember.

This can lead to human error if commands are entered

incorrectly.

Learning curve: Learning to use a CLI effectively can take

time, especially for novice or non-technical users. The need to

memorise commands and their syntax can be challenging.

Visualisation limitations: Command line interfaces often do

not provide complete visual representations of information,

which can make it difficult to understand certain data,

especially in complex systems.

Difficulty in automation: Automating tasks through the CLI

can be complex, as it often requires the use of scripts or

scripting to achieve this. This can be more difficult to maintain

and less flexible than more robust automated solutions.

Need for technical knowledge: Using the CLI generally

requires a solid knowledge of the terminology and structure of

the system or software in question. This may exclude non-

technical users or those less familiar with the technology.

Difficulty in graphical environments: Compared to

graphical user interfaces (GUIs), CLIs may be less intuitive

for some people, especially those who are more accustomed to

visual interactions.

Feedback limitations: Some CLIs may provide limited or

insufficiently descriptive information about errors that occur,

which can make troubleshooting difficult.

Cross-platform incompatibility: Some CLI commands may

be specific to certain platforms or operating systems, which

may require adjustment if changing environments.

Difficulty with complex tasks: Performing complex, multi-

faceted tasks through the CLI can be more complicated and

error-prone than doing so through a specially designed GUI.

Industry reacted and introduced NETCONF [18].

NETCONF is the standard to install, modify and remove any

configuration of network devices, while YANG [19] is used to

model both the configuration and the status of the network

elements. YANG organizes data definitions in tree structures

and provides modeling features such as extensible types,

separation of status and configuration data, handling of

syntactic and semantic constraints, among others. These

definitions are organized in modules that allow their

extensibility and reuse. On the other hand, NETCONF has

various constrains to use a same version on different vendor

operating systems. Many of them use a proprietary version

which makes it difficult to write NETCONF applications for

use in multi-vendor networks.

NETCONF was basically created to make automation easier,

but the difficulties it presented made automation even more

difficult. Also, old troubleshooting tools like Ping and

Traceroute did not provide a holistic assessment of how the

network is performing. For example, Traceroute has problems

with unnumbered IP links; these types of links are best for

automated network environments. On the other hand, Ping

does not provide information about network performance.

These tools were originally created for simpler environments.

For this reason, the need arises to progress towards a

vendor-independent solution that allows configuring the rules

and policies of any network and being able to verify if they are

aligned with what is expected of them, that is, their intention.

The solution must be regardless of the number of devices, the

operating system installed, the traffic rules and any other type

of policy that should be configured. There is a need for the

networks to be automated and predictable. The existing tools

did not add value. A new model is required to trace all traffic

and device interactions, not just at the device level, but at the

entire network level.

5. NETWORK AUTOMATION TOOLS

As we have mentioned, network automation is the process

of setting up software to automatically manage, configure, test,

deploy, and operate network devices (whether physical or

virtual). For this reason, SDN networks will make it possible

to implement in a much simpler way the automation before

described and network automation tools will be the key.

These tools discover and map all connected devices,

manage different network configuration, provide resources,

and allow to plan their network capacity. The automation of

the network can be implemented through script languages

(lines of code of a programming language that will be executed

on a trigger event) or based on software (conventional

languages with source code that must be interpreted or

compiled for use). The last ones are also known as smart

network automation tools. Software-based tools will be

discussed below as they can almost eliminate the performance

of manual tasks.

The following is a summary analysis of each tool, its

advantages and disadvantages:

(1) Ansible:

1) Advantages:

Ease of use: Ansible uses a simple, readable YAML-based

syntax, making it easier to learn and use for those new to

configuration automation.

No agents required: Ansible operates over SSH or WinRM,

which means there is no need to install agents on managed

nodes, simplifying the deployment and administration process.

Dry-run mode: Ansible allows you to simulate changes

before applying them, which helps prevent errors.

Cross-platform support: It can manage operating systems

and devices from different platforms, including Linux,

Windows and network devices.

Extensive community and documentation: Ansible has an

active community and a wealth of online resources available.

2) Disadvantages:

Scalability: While Ansible can handle large deployments, it

can face performance issues compared to more scalability-

oriented tools.

Runtime: Ansible can be slower compared to other tools in

large-scale deployments due to its SSH-based execution

model.

(2) Puppet:

1) Advantages:

Resource management model: Puppet uses a declarative

model to manage resources, allowing you to define the desired

state and Puppet takes care of enforcing it.

Broad ecosystem: Puppet has a large number of predefined

modules that make it easy to configure and manage various

components.

Long-term management: Puppet is suitable for

environments that require long-term configuration

management and constant maintenance of the desired state.

Role and profile management: Puppet allows a clear

separation between role definition, profiles and node-specific

1129

configuration.

2) Disadvantages:

Learning curve: Puppet can be more complex for beginners

to learn due to its terminology and structure.

Requires agents: Managed nodes must have a Puppet agent

installed, which can increase complexity and maintenance

requirements.

(3) Chef:

1) Advantages:

Infrastructure as code: Chef allows infrastructure to be

defined as code, which facilitates automation and consistent

deployment.

Flexibility: Chef is highly configurable and adapts well to

diverse environments and use cases.

Large community: Chef has an active community and a

variety of resources available online.

2) Disadvantages:

Learning curve: Chef can be complex to learn for beginners

due to its terminology and approach.

Requires agents: Like Puppet, Chef requires agents installed

on managed nodes, which can add complexity and

maintenance requirements.

More initial configuration: Chef may require more initial

configuration compared to other tools.

6. ANSIBLE TOOL

This tool is designed for multi-tier deployments [20],

modeling the interrelationship of all IT systems across the

infrastructure rather than just managing one system at a time.

It does not use agents or additional custom security scheme, so

it is easy to implement. Most importantly, it uses a quite simple

language (YAML, in the form of Ansible Playbooks) that

enables automation tasks to be described in an almost plain

English.

Ansible connects to your nodes and distributes small

programs called "Ansible modules”. Ansible then runs these

modules using SSH [21] by default and removes them when

done.

Your module library can reside on any machine and no

servers, daemons, or databases are required. Generally, it will

work with the user's favorite programs such as remote terminal

access, text editor and a version control system for tracking

changes.

Ansible supports passwords, and the best way to use it is via

SSH keys with the SSH-agent as shown in Figure 1. Any user

can log in, it does not have to be root. Then the user can use

the SU or SUDO commands without problems. Ansible's

"authorized_key" [22] module is a great way to use it to

control which machines can access which hosts.

Through Ansible, multiple inventories can be configured

statically or dynamically, composed of hosts, groups of hosts

and groups of groups, host variables, group variables, non-

SSH connections and many more. This parameterization is

stored in a text file as shown in Figure 2.

To add new hosts to the network, it is not necessary an

additional server to generate the SSH keys, with Ansible it will

be possible to generate these keys on each host.

As shown in Figure 3, all components of the infrastructure

topology can be orchestrated precisely with Ansible playbooks

[24]; it will allow a detailed control over how many nodes can

be tackle at once.

Figure 1. An example of an Ansible implementation,

where the generation of SSH keys was done-GNS3 2.2.8

simulator [23]

Figure 2. Example of the file for inventory management in

Ansible - GNS3 2.2.8 simulator

Figure 3. An example of an Ansible playbook - GNS3 2.2.8

simulator

1130

7. PUPPET TOOL

Puppet is an open-source software tool for the deployment

and management of network configurations. It is most used in

Linux and Windows to move configurations to multiple

application servers at the same time. Puppet can also be used

on various platforms, including IBM mainframes, Cisco

switches, and Mac OS servers.

Like other DevOps applications, Puppet does more than just

automate system administration. It changes the human

workflow and allows developers and sysadmins to work

together. Developers can write, test, and launch applications

without waiting for Operations staff to provide the necessary

resources.

Puppet is available in both open source and commercial

versions. It has its own language called the eponymous Puppet

[25]. Puppet automates configuration changes and removes

manual script-based changes. However, Puppet is not just

another shell language like PowerShell for Windows or Unix,

or Linux Bash shells. Also, Puppet is not a pure programming

language like PHP. Puppet uses a declarative, model-based

approach to automation of the IT infrastructure. This allows

Puppet to define the infrastructure through lines of code and to

enforce the system configuration through specific applications.

7.1 Puppet modeling capabilities

Puppet identifies the current state of a node, defines the

model of the desired end state, and describes the actions

required to move from one to the other. Each server instance

managed by Puppet receives a catalog of resources and

relationships with its current state, compares it to the desired

state, and then defines and makes the necessary changes for

the system to meet that desired state. Puppet will be able to

manage the software and its services by creating the complete

configurations through lines of code.

Puppet encourages users to control the different levels of

complexity of the settings. Users will be able to write code that

is reusable, easy to configure, understand and refactor. To

achieve this, Puppet uses profiles and roles. The code can be

separated into the following three levels:

(1) Component modules: They manage each technology,

such as puppetlabs-apache [26].

(2) Profiles [27]: Container classes that use multiple

component modules to configure a layered stack of

technologies. For example, you can create a profile to

configure Jenkins, the integration application, its web interface,

and automated tasks.

(3) Roles [27]: Container classes that use multiple profiles

to build a complete system configuration. For example, a

server will have standard profiles, such as "base operating

system profile" and "base web server profile". The first one

could declare that the server must run Ubuntu 16.04.2, while

the other would declare that it must use NGINX [28].

All this stuff (tools, languages, profiles, roles, processes,

etc.) can seem to add additional complexity. In fact, it provides

the flexibility and potential to create practical and specific

interfaces to automate the configurations of each system

within an organization. This will make, for example,

hierarchical data easier to use, system configurations easier to

read, and refactoring easier to perform as shown in Figure 4.

Ansible and Puppet are two popular configuration

management tools, and the choice between them depends on

several factors.

Figure 4. Puppet working model
Source: Cisco System

Ease of use and quick learning: Ansible tends to have a

smoother learning curve than Puppet.

It doesn't require agents: Ansible operates over SSH or

WinRM and does not require the installation of agents on

managed nodes. This simplifies the deployment and

administration process, which can be an advantage if you want

to avoid the effort of maintaining agents on all systems.

Ad hoc task automation: Ansible is particularly effective for

automating one-off and ad hoc tasks. Ansible makes it easy to

run commands on multiple servers on an occasional basis or to

perform specific tasks without complex configuration.

Focus on simplicity: Ansible uses YAML to define

configurations and tasks, which can be more intuitive for those

familiar with markup languages or text-based configuration.

Application deployment and orchestration: Ansible can be

a solid choice because of its focus on infrastructure as code

and its ability to work with a variety of platforms.

Smaller or medium-sized deployments: Ansible may be

better suited for medium-sized or smaller deployments, where

simplicity and flexibility may outweigh the scalability and

complexity needs that Puppet could better handle.

On the other hand, the choice between Puppet and Ansible

depends on a number of factors, and there are situations where

Puppet might be preferable over Ansible. Here are some

considerations for deciding when it's better to use Puppet over

Ansible:

Long-term management and constant maintenance: Puppet

is especially well-suited for environments that require long-

term configuration management and constant maintenance of

the desired state. If you are looking for a tool that is effective

at maintaining configuration consistency over time and

ensuring that systems comply with policies on an ongoing

basis, Puppet could be a solid choice.

Role and profile management: Puppet is known for its role

and profile management approach. If you want to clearly and

structurally define the configuration of different types of

systems (roles) and node-specific customisations (profiles),

Puppet offers a robust approach to achieve this.

Complex configurations and multiple states: If the

1131

infrastructure is large and complex with multiple states and

node-specific configurations, Puppet may be preferable. Its

declarative model allows you to define the desired state and

Puppet takes care of applying it consistently across all nodes.

8. CHEF TOOL

Chef converts and models "cloud configuration

management" in lines of code through a flexible and versatile

process which is human-readable and easily verifiable.

Infrastructure-as-code enables both the management of local

and cloud resources.

Chef is also a framework for automating and managing

infrastructure and applications. Specifically, Chef translates

system administration tasks into reusable definitions, known

as cookbooks and recipes. In a recipe, Chef's authors define

the desired state of a system by writing its configuration in

lines of code. Chef then processes that setting along with data

about the specific node where the code is running to ensure

that the desired state matches the final state of the system.

8.1 Chef automation

Automation makes the process much more scalable. With

Chef, you simply clone your existing platform into a test

platform. You do not need to configure servers or clusters

manually. Your test platform can be the public cloud, the same

used for the production environment. The entire setup process

can take minutes instead of hours, days, or weeks.

The following is an implementation of the Chef tool. In this

example, if a new website configuration does not work, it does

not need to be manually reconfigured. Chef is used to

automatically revert to the previous version of the application

code in the production environment and for all users. In Figure

5 we present a screen capture of the Chef tool [29]. Figure 6

shows an Oracle VirtualBox screen capture on workstation

side.

Chef also allows cloud deployments quite easy. An example

of this can be the implementation of NGINX to analyze the

performance of an Apache web server. This will be done using

the NGINX cookbook [30] for Linux servers.

You do not need to become a NGINX expert. You just need

to implement NGINIX on a test server, transfer the web

programs using Chef's Recipes [31], and start making

comparisons.

(1) Listed below are reasons to use Ansible instead of Chef:

Simplicity and speed of deployment: Ansible is known for

its ease of use and smoother learning curve. If you need to

deploy an automation solution quickly or if you have a team

that is new to configuration automation, Ansible may be a

better choice.

Figure 5. Node configuration using Chef tool

Figure 6. Workstation configuration running on Oracle VM

VirtualBox

Ad hoc task automation: Ansible shines at automating one-

off, ad hoc tasks, such as running commands on multiple

servers or performing specific tasks without complex

configuration. If you're looking for a solution for quick

administration tasks, Ansible is a solid choice.

No agents required: Ansible operates without the need to

install agents on managed nodes. If you prefer to avoid

installing and maintaining agents on your systems, Ansible is

an attractive option.

(2) Reasons to use Puppet instead of Chef are also listed

below:

Long-term management-Puppet is suitable for

environments that require long-term configuration

management and consistent maintenance of the desired state.

If you are looking for a tool that is effective at maintaining

configuration consistency over time, Puppet may be more

appropriate.

Role and profile management: Puppet excels at defining

roles, profiles and node-specific configuration. If you want to

clearly separate configuration logic from node-specific details,

Puppet may be more appropriate.

Large-scale infrastructure: If you have a large and complex

infrastructure, Puppet may be more scalable and effective for

managing the configuration of multiple large-scale systems.

To conclude with Chef's analysis, the following are real-

world scenarios for the use of Chef:

Simplicity and speed of deployment: Ansible is known for

its ease of use and smoother learning curve. If you need to

deploy an automation solution quickly or if you have a team

that is new to configuration automation, Ansible may be a

better choice.

Ad hoc task automation: Ansible shines at automating one-

off, ad hoc tasks, such as running commands on multiple

servers or performing specific tasks without complex

configuration. If you're looking for a solution for quick

administration tasks, Ansible is a solid choice.

No agents required: Ansible operates without the need to

install agents on managed nodes. If you prefer to avoid

installing and maintaining agents on your systems, Ansible is

an attractive option.

9. CONCLUSIONS

In simple terms, the tools described above provide an

abstraction layer between the existing configuration of a server

1132

and its desired state. Optimum configuration state for this

network devices will be achieved by focusing more on the

desired result than on the detailed tasks required to achieve it.

In this review we can see that Ansible has several

advantages over the other tools since it is more oriented to

SysOps due to its structure and paradigm. Instead, Puppet and

Chef are focused on developers. Ansible is the easiest option

to configure and then you would be starting to use it

immediately. The tool has a detailed and structured

documentation.

As we can see, the Ansible tool has gained popularity

because it is oriented to uniform infrastructure and there are

several add-on components available to improve its user

interface capabilities and functionality. There is a huge group

of administrators who have chosen it as a configuration

management tool among the other competitors mentioned

hereto.

Puppet is a reliable tool with particularly good usability.

Taking full advantage of its wide range of features, structure,

and scalability requires some practical knowledge of Ruby.

Puppet setup maybe much detailed and sometimes

complicated, but it is the safest choice if you are looking for a

homogeneous software environment. The Puppet user will

need to learn new procedures and functions to program the tool.

Table 1. SDN automation configuration tools comparison

Item\Tool ANSIBLE PUPPET CHEF

Language
Python,

YAML

Ruby, Puppet

DSL, Embedded

Ruby (ERB), DSL

Chef DSL

Ruby

Usage Easy Complex Complex

Architecture
Only master

(Agentless)
Master-Agent Master-Agent

Installation /

Setup
Easy Complex Complex

Configuration Only Pull Only Pull
Both Push and

Pull

Management
Easy (push

model)

Complex (master-

agent)

Complex (Chef

server –

Managed

systems)

Chef is a simple, well-designed tool and much more usable

than Puppet. It has a demanding learning curve for SysOps

who lack experience in application development and coding as

it requires a broader knowledge of programming languages

and more experience.

In general, all three tools are expected to continue to be part

of the automation and configuration management landscape.

However, the choice of which one to use will depend on the

specific needs and goals of each particular organisation, as

well as how each tool fits with emerging trends in technology

and DevOps practices.

In Table 1 we expose a comparison of main characteristic

of each tool.

REFERENCES

[1] Nguyen, T.H., Bonnet, C. (2016). 5-IP mobility

management for future public safety networks. Wireless

Public Safety Networks 2, Buenos Aires, Argentina, pp.

127-172. https://doi.org/10.1016/B978-1-78548-052-

2.50005-0

[2] Abeledo, M.C., Priano, D.A., Guevara, J., Bruschetti, F.S.

(2023). Comparison of flow forwarding between

software-defined and legacy networks based on fixed

routing and QoS conditions. Review of Computer

Engineering Studies, 10(1): 7-13.

https://doi.org/10.18280/rces.100102

[3] Zanuttini, D., Andres, C., Gonzalez, J., Lacapmesure, A.,

Priano, D., Pucci, N., Bullian, P. (2018). Using Software

Defined Networking for Call Admission Control and

VoIP applications. In 2018 Congreso Argentino de

Ciencias de la Informática y Desarrollos de Investigación

(CACIDI), IEEE, Buenos Aires, Argentina, 1-5.

https://doi.org/10.1109/CACIDI.2018.8584371

[4] Masek, P., Stusek, M., Krejci, J., Zeman, K., Pokorny, J.,

Kudlacek, M. (2018). Unleashing full potential of ansible

framework: University labs administration. In 2018 22nd

conference of open innovations association (FRUCT),

Jyvaskyla, Finland, pp. 144-150.

https://doi.org/10.23919/FRUCT.2018.8468270

[5] Puppet Infrastruture Automation & Compliance at

Entrepise scale, 2023, https://puppet.com/.

[6] Singh, R., Purwar, R.K. (2019). Cloud automation with

configuration management using CHEF Tool.

International Journal of Engineering Research and

Technology (IJERT).

https://doi.org/10.17577/IJERTV8IS040166

[7] How Ansible works (2023). Learn the fundamentals of

Ansible, powerful IT automation software that

emphasizes simplicity and ease of use.

https://www.ansible.com/overview/how-ansible-works

[8] Ebert, C., Gallardo, G., Hernantes, J., Serrano, N. (2016).

DevOps. IEEE Software, 33(3): 94-100.

https://doi.org/10.1109/MS.2016.68

[9] Zhu, L., Bass, L., Champlin-Scharff, G. (2016). DevOps

and its practices. IEEE software, 33(3): 32-34.

https://doi.org/10.1109/MS.2016.81

[10] Hintsch, J., Görling, C., Turowski, K. (2015).

Modularization of software as a service products: A case

study of the configuration management tool Puppet. In

2015 International Conference on Enterprise Systems

(ES), Basel, Switzerland, pp. 184-191.

https://doi.org/10.1109/ES.2015.25

[11] Luchian, E., Filip, C., Rus, A.B., Ivanciu, I.A., Dobrota,

V. (2016). Automation of the infrastructure and services

for an openstack deployment using chef tool. In 2016

15th RoEduNet Conference: Networking in Education

and Research, Bucharest, Romania, pp. 1-5,

https://doi.org/10.1109/RoEduNet.2016.7753200

[12] Shah, J.A., Dubaria, D. (2019). NetDevOps: A new era

towards networking & DevOps. In 2019 IEEE 10th

Annual Ubiquitous Computing, Electronics & Mobile

Communication Conference (UEMCON), New York,

NY, USA, pp. 0775-0779.

https://doi.org/10.1109/UEMCON47517.2019.8992969

[13] Palermo, J. (2019). Building Code. In: .NET DevOps for

Azure. Apress, Berkeley, CA.

https://doi.org/10.1007/978-1-4842-5343-4_6

[14] Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M.,

Tamburri, D.A. (2017). DevOps: Introducing

infrastructure-as-code. In 2017 IEEE/ACM 39th

International Conference on Software Engineering

Companion (ICSE-C), Buenos Aires, Argentina, pp. 497-

498. https://doi.org/10.1109/ICSE-C.2017.162

[15] Madden, N. (2022). API security in action. Manning

Publisher ISBN: 9781617296024/1617296023

1133

[16] Fantom, W., Alcock, P., Simms, B., Rotsos, C., Race, N.

(2022). A NEAT way to test-driven network

management. In NOMS 2022-2022 IEEE/IFIP Network

Operations and Management Symposium, Budapest,

Hungary, pp. 1-5.

https://doi.org/10.1109/NOMS54207.2022.9789909

[17] Salazar-Chacón, G. (2022). Hybrid Networking SDN

and SD-WAN: Traditional Network Architectures and

Software-Defined Networks Interoperability in

digitization era. Journal of Computer Science and

Technology, 22(1): e07-e07.

https://doi.org/10.24215/16666038.22.e07

[18] Bjorklund, M., Schönwälder, J., Shafer, P., Watsen, K.,

Wilton, R. (2019). NETCONF extensions to support the

network management datastore architecture (No.

rfc8526). https://www.rfc-editor.org/rfc/rfc8526.html.

[19] Clemm, A., Medved, J., Varga, R., Bahadur, N.,

Ananthakrishnan, H., Liu, X. (2018). A yang data model

for network topologies. https://www.rfc-

editor.org/rfc/rfc8345.

[20] Singh, N., Singh, A., Rawat, V. (2022). Deploying

jenkins, ansible and kubernetes to automate continuous

integration and continuous deployment pipeline. 2022

IEEE International Conference on Service Operations

and Logistics, and Informatics (SOLI), Delhi, India, pp.

1-5. https://doi.org/10.1109/SOLI57430.2022.10294378

[21] Bilder, D. (2018). " Extension Negotiation in the Secure

Shell (SSH) Protocol", https://www.rfc-

editor.org/rfc/rfc8308.

[22] Albrecht, M.R., Degabriele, J.P., Hansen, T.B., Paterson,

K.G. (2016). A surfeit of SSH cipher suites. In

Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, pp. 1480-1491.

https://doi.org/10.1145/2976749.2978364

[23] Alberto Priano, D., Abeledo, M. C., Guevara, J.,

Marsicano, M., Sergio Bruschetti, F., Giniger, I. (2023).

Comparative analysis of sdn controllers: a study on

installation, protocols interaction, network topologies

monitoring, and GUI experience. Review of Computer

Engineering Studies, 10(3): 41-47.

https://doi.org/10.18280/rces.100302

[24] Hochstein, L., Moser, R. (2017). Ansible: Up and

running: Automating configuration management and

deployment the easy way. O'Reilly Media, Inc. ISBN-13:

978-1491979808, ISBN-10:1491979801

[25] Van der Bent, E., Hage, J., Visser, J., Gousios, G. (2018).

How good is your puppet? An empirically defined and

validated quality model for puppet. In 2018 IEEE 25th

international conference on software analysis, evolution

and reengineering (SANER), Campobasso, Italy, pp.

164-174. https://doi.org/10.1109/SANER.2018.8330206

[26] Heinonen, J. (2015). Learning puppet: build intelligent

software stacks with the puppet configuration

management suite. ISBN-13: 978-1784399832, ISBN-10

1784399833.

[27] Plummer, S., Warden, D. (2016). Puppet: Introduction,

Implementation, & the Inevitable Refactoring. In

Proceedings of the 2016 ACM SIGUCCS Annual

Conference, pp. 131-134.

https://doi.org/10.1145/2974927.2974950

[28] Vujović, M., Savić, M., Stefanović, D., Pap, I. (2015).

Usage of NGINX and websocket in IoT. In 2015 23rd

Telecommunications Forum Telfor (TELFOR), Belgrade,

Serbia, pp. 289-292.

https://doi.org/10.1109/TELFOR.2015.7377467

[29] Das, D. (2014). Integrating cloud service deployment

automation with software-defined environments

(Master's thesis), Universität Stuttgart.

https://doi.org/10.18419/opus-3297

[30] DeJonghe, D. (2020). Nginx cookbook. O'Reilly Media.

[31] Sabharwal, N., Wadhwa, M. (2014). Developing a

cookbook. In: Automation through chef opscode. Apress,

Berkeley, CA. https://doi.org/10.1007/978-1-4302-

6296-1_9

NOMENCLATURE

CLI Command Line Interface

DevOps DevOps Methodology

DSL Domain-Specific Languaje

ERB Embedded Ruby

GNS3
Graphical Network Simulator 3 application

software.

GUI Graphical User Interface

IBM International Business Machines Corporation

IT Information Technology

Mac OS
Apple Computer ś Macintosh Operating

System

NETCONF Network Configuration Protocol

NetDevOps Networking operations using DevOp tools

NGINX Web server application

PFP Hypertext Scripting Preprocessor

SDN Software Developed Networks

SSH Secure Shell Protocol

SU Linux command

SUDO Linux command

SysOps System Operator

VM

VirtualBox
Oracle Corporation ś Virtual Machine software

VoIP Voice over Internet Protocol

WinRM Windows Remote Management

WS Workstation

YAML Configuration languaje

YANG Data Modeling languaje

1134

