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Software-defined networks (SDNs), while offering a revolutionary global view of the 

network, remain susceptible to a variety of attacks. This vulnerability necessitates 

innovative solutions for preserving data privacy and enhancing network security. The work 

presented herein introduces an innovative network anomaly detection methodology 

leveraging both federated learning (FL) and deep learning (DL) techniques. In contrast to 

traditional collaborative learning, where potential privacy compromises arise from the 

distribution of local training data to a central server, the proposed methodology enables 

each switch in the network to collect data from its connected hosts and independently train 

a local Long Short-Term Memory (LSTM) model. Subsequently, each switch encrypts and 

forwards its model parameters to the controller. Upon receipt, the controller decrypts the 

parameters from each switch, computes their average, and formulates a global LSTM 

model. This model is disseminated to every switch in the network, enabling each host to 

retrain its local model according to the global parameters. This iterative process is 

conducted multiple times to maintain the timeliness of the information. Evaluation of the 

proposed methodology using the UNSW-NB15 dataset, in conjunction with NF-UQ-NIDS-

v2 and CICIDS2017 datasets, demonstrated its efficacy in anomaly detection, with 

performance exceeding a 96.75% accuracy rate. 
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1. INTRODUCTION

The field of networking technologies is experiencing an 

unprecedented expansion in user base, network devices, and 

applications. To meet escalating network demands, innovative 

models of network architecture are under exploration, among 

which a paradigm shift towards Software-Defined Networks 

(SDNs), pioneered by the Open Networking Foundation 

(ONF), has gained considerable attention [1]. This novel 

approach decouples the control plane from the data plane, 

empowering a remote controller to manage data plane network 

devices [2, 3]. Despite its inherent flexibility, the deployment 

of SDN in enterprise networks encounters significant 

obstacles, particularly those associated with security [4]. 

In the context of this study, a novel method has been 

proposed that employs Federated Learning (FL) to facilitate 

anomaly detection in SDNs while preserving data privacy. 

Network security threats are proliferating [5], and in SDNs, all 

three layers - application, control, and data - are susceptible to 

such threats. Thus, a security breach at any level can 

significantly compromise the other layers. For instance, 

Application Programming Interface (API) exploitation [6] can 

disrupt not only the application layer but also the control layer. 

Consequently, the implementation of detection mechanisms to 

counter security risks - such as information disclosure, 

tampering, spoofing, and repudiation - is essential for every 

network, including SDNs. These risks can originate from data 

planes, control planes, or the communication channels 

between them [5, 7]. 

The proposal in this work involves the development of a 

horizontal federated machine learning model [8] that seeks to 

enhance security in SDNs and improve their performance by 

detecting potential attacks. Leveraging a Long Short-Term 

Memory (LSTM) Deep Learning (DL) model, the federated 

learning approach enables local data training across multiple 

nodes connected to numerous switches. This methodology 

ensures data privacy and security and fosters effective 

collaboration among switches to detect attacks against any 

host or controller in the SDN, achieved by sharing encrypted 

model parameters with the controller [9, 10]. Previous works 

focusing on SDN security have encountered limitations in 

preserving network data privacy, addressing the data island 

problem, managing communication overhead, and optimizing 

resource utilization costs. The methodology proposed in this 

paper seeks to overcome these limitations. 

2. RELATED WORK

Federated Learning (FL) operates on the principle of 

training a centralized model using data that remains in its local 

environment. This decentralized model eliminates the need to 

transfer data to a different location for analysis, instead 

bringing the computation to the data. Introduced by Google as 

a data leakage prevention mechanism, the focus has since 

shifted towards improving analytical challenges [11] and 
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enhancing the security aspects of FL [12]. 

In a notable contribution, Man et al. [13] proposed the 

FedACNN system, an intelligent intrusion detection 

mechanism that enhances a Convolutional Neural Network 

(CNN) deep learning model using FL. The system was 

designed for implementation on edge devices, utilizing local 

datasets and computing resources to train the model before 

sending the model parameters to a central server for 

collaborative training. When tested on the NSL-KDD dataset, 

it was found that FedACNN significantly improved 

classification accuracy for attack data, achieving a detection 

rate of 99.76%. 

Additionally, a security architecture augmentation for SDN, 

the Federated Distributed Integrated Clinical Environment 

(FedDICE), was proposed by Thapa et al. [14]. By integrating 

FL's privacy-preserving capabilities, it provided a tool to 

detect and mitigate ransomware attacks through collaborative 

learning. Testing on a clinical network traffic dataset 

demonstrated FedDICE's efficacy in detecting the spread of 

ransomware, with an accuracy rate of approximately 99% in 

the Distributed Integrated Clinical Environment (DICE). 

Meanwhile, Li et al. [15] proposed an architecture named 

FLEAM that fuses FL and fog computing. The combination 

aimed to expedite mitigation, enhance detection accuracy, and 

foster cooperation among defenders against botnets in 

industrial IoT. Research findings suggested that FL could 

boost detection accuracy by up to around 95%. 

Finally, Zhao et al. [16] introduced a two-stage learning 

approach named NAFT. Initially, a party seeking to develop a 

network anomaly detection model participates in FL to acquire 

foundational knowledge from other participants. Following 

this, they restructure the FL-trained detection model and 

retrain it using their private training data. Experiments 

conducted on the UNSW-NB15 dataset indicated that NAFT 

can outperform other methods in anomaly detection, 

especially under conditions of limited training data, with an 

accuracy exceeding 90%. 

In summary, these studies underscore the potential of FL in 

enhancing security measures and improving detection 

accuracy in various network environments. However, they 

also highlight the need for further research to address 

remaining challenges and optimize federated learning systems. 

 

 

3. BACKGROUND 

 

The subsequent section provides a theoretical overview of 

the key mechanisms integral to the work under consideration, 

namely Federated Learning (FL), Deep Learning (DL), 

Homomorphic Encryption, and Software-Defined Networking 

(SDN). These mechanisms are combined to create an intrusion 

detection system based on an FL-aided LSTM. 

 

3.1 Federated learning 

 

Traditional machine learning (ML) pipelines involve 

gathering data from diverse sources and storing them centrally 

for model training [17]. This approach, however, exposes the 

data to potential privacy breaches during transfer to the central 

server. To safeguard data privacy, Federated Learning (FL) 

was proposed [18]. FL is a method wherein multiple devices 

collectively train a shared model by transmitting locally-

computed updates to a central server [8, 13]. This technique 

enhances the capacity for training on larger datasets than a 

single device could manage, while also protecting data privacy 

by maintaining the data on the devices rather than transferring 

it to a centralized location [4]. 

 

3.2 Deep learning 

 

Deep Learning (DL) models have been employed to 

construct the shared model in FL [19]. Owing to its ability to 

learn from data, DL technology, which originated from 

Artificial Neural Networks (ANNs), has found wide-ranging 

applications in areas such as healthcare, cyber-security, visual 

recognition, and more [20, 21]. DL utilizes multi-layer neural 

networks for computation and processing, with the term 

"deep" signifying multiple steps or levels of data processing to 

create a data-driven model [19, 22]. In the construction of a 

neural network, a multitude of interconnected processing 

elements, termed as 'neurons', are utilized [22]. It is from these 

neurons that a series of real-valued activations are generated, 

invariably leading to the attainment of the targeted result [23]. 

Various types of neural networks, including CNN, RNN, 

and LSTM [24], have been utilized with considerable success 

across numerous fields [20, 25]. In the proposed system, the 

LSTM model, which forms connections with preceding states 

in a sequence and addresses the vanishing gradient problem 

using specialized memory cells, has been incorporated to 

improve attack detection in SDN [25]. 

 

3.3 Homomorphic encryption 

 

The protection of data privacy in FL necessitates the 

implementation of additional privacy techniques to prevent 

indirect leakage [8]. In the proposed system, Homomorphic 

Encryption has been utilized during the parameter exchange 

stage. This encryption method allows calculations to be 

performed directly on encrypted data, thereby eliminating the 

need for prior decryption [26, 27]. Unlike differential privacy 

protection, neither the data nor the model are transmitted, and 

they cannot be inferred from the other party’s data, 

significantly reducing the risk of raw data leakage [8]. 

 

3.4 Software-Defined Networking 

 

 
 

Figure 1. Software defined network architecture 
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Figure 2. Traditional network architecture 

 

Software-Defined Networking (SDN) is a novel networking 

paradigm predicated on the separation of the network’s control 

plane from the data "forwarding" plane, as depicted in Figure 

1 [28]. This decoupling allows simple switches to execute the 

policies defined by an intelligent, programmable, and logically 

centralized controller, in contrast to traditional networks 

where routing devices perform both forwarding and control 

functions using static protocols in a distributed manner, as 

shown in Figure 2 [1]. Despite the global network view 

provided by the SDN controller being potentially its most 

significant security advantage over traditional networks, it 

remains vulnerable to various attacks [28, 29]. The proposed 

work aims to address this issue by exploring the use of FL for 

detecting attacks in SDN. 

 

 

4. PROPOSED METHOD 

 

This research article introduces an approach for identifying 

anomalies in SDNs by combining FL with an LSTM model. 

This technique enables SDN switches to collectively acquire 

knowledge of a universal detection model while refraining 

from divulging sensitive information. At the network edge, the 

mechanism runs where various switches share their data to 

give the controller a decision. SDN is divided into two 

partitions: Data Plane and Control Plane. The Data Plane 

includes various switches to which servers and hosts are linked. 

A controller (Ryu has been used in our implementation) keeps 

tracking the weight metrics coming from the switches in the 

data plane partition. The weights represent the connection 

strength between neurons in DL model which updates based 

on the error between actual outputs, and predicted outputs 

using gradient descent as an optimization algorithm.  

All the servers in all data plane partitions train LSTM local 

model by the switch data. Then, sending the weights 

parameters of the model after encrypting by homomorphic 

encryption to the switch, and in turn, the switch will send it to 

the controller. The controller decrypts it, takes the average of 

these weights, and uses it to train a global LSTM model. 

Presuming that the controller and switches communicate for 

a total of t rounds, during the initial round of communication, 

the switches send updates to the controller, and the resulting 

average aggregation of the model parameter by the controller 

is denoted as 𝑊𝐺 , and N = |𝐷1| + |𝐷2| + . . . + |𝐷𝑠 | is the total 

number of hosts data samples for each switch. The controller 

updates the global model by applying the following formula, 

Eq. (1): 

 

1

s
k

G k

k

D
W W

N=

=  (1) 

 

where the local model parameter of host k for each switch is 

𝑊𝑘  in the first round of updating.  

This global LSTM sends in an encrypted way to the 

controller which in turn sends to the switches in all data plane 

partitions. This process returns periodically to ensure the 

freshness of information. According to the outputs of the 

global LSTM model and of the local LSTM model, the SDN 

controller determines if the new flow that enters the SDN 

network is an attack or not on the controller or on the hosts. 

Such a local model has as input the average weight of the local 

models that are built according to data traffic in the SDN data 

plane. Proposed work diagram is shown in Figure 3. 

 

 
 

Figure 3. Proposed federated learning intrusion detection systems 
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4.1 Modeling FL for detection attack in SDN 

 

A FL model has been used in the proposed work to secure 

SDN therefore in this section, a description is explained for the 

model. N edge servers S collect the hosts-shared data D of their 

switch in the data plane. These servers {S1, ……, SN} make 

training on their shared data using the DL model which is the 

LSTM model in our work. The SDN controller c; trains a 

centralized deep learning model by using various weighted 

parameters for the trained models collected from multiple data 

plane switches which collaboratively train the model. To 

denote the data D for the data owner i (edge server), let 

considered the matrix Mi, where each row in the representation 

corresponds to a specific sample, and each column represents 

a particular feature. X is used to refer to the feature space, 

while Y is the designation for the sample IDs space. To build 

the proposed method, a horizontal FL (HFL) [8] has been 

proposed where agents differ in the sample ID but share the 

utilized features. 
 

4.2 LSTM for learning how to detect attack 
 

LSTM deep learning model has been used in the proposed 

work. It's a kind of neural network that is publicly known as a 

powerful dynamic classifier [30]. A directed cycle is formed 

among the nodes of the neural network, which enables them to 

store information regarding the previous computations. This 

arrangement allows the nodes to leverage sequential 

information [31]. Therefore, there is an ability to learn the 

correlation between features that cause attacks and can detect 

it occurred in SDN in our model. In the proposed model a 

UNSW-NB15, NF-UQ-NIDS-v2 and CICIDS2017 dataset 

have been used with . 

The proposed system network structure consists of a linear 

layer (LSTM layer), LeakyReLU (Leaky Rectified Linear Unit) 

layers, a Dropout and a sigmoid layer. The input samples and 

hidden layers output are transformed by the linear layer. To 

avoid the “dying ReLU” problem [32], the activation function 

LeakyReLU is used and allows a small, non-zero, constant 

gradient. Overfitting may occur and cause to degraded 

performance on the test dataset, so the Dropout layer is used . 

The LSTM model with UNSW-NB15 dataset has as input 

29 features "F" like basic, flow, content, and features for 

various link traffic "K" in the network while with UQ-NIDS-

v2 dataset has 16 features, and with CICIDS2017 has 26 

features. On each dataset, the HFL mechanisms presented by 

Yang et al. [8] have been applied on these links and their 

features, where in this matrix, each row corresponds to a 

specific link traffic sample, while each column represents a 

distinct feature. Therefore, a matrix with K × F dimension is 

received as input to the LSTM model.  The output is a value 

that predicts the occurrence or nonoccurrence of an attack for 

any new flow traffic entering the SDN in the data plane or in 

the control plane so the controller can then give a notification 

to alert and instruct the switch to drop this traffic. In SDN, 

each switch functions as a conventional layer 2 switch that 

learns from the incoming packets. The LSTM model in the 

study's proposal is defined by the number of layers, neurons, 

and connections between the layers. Initially, these parameters 

should be adjusted to determine the optimal configuration that 

yields the highest accuracy and the lowest loss. Based on 

experimentation, the LSTM achieved the best performance 

with 5 layers and between 32 to 128 neurons. Increasing the 

number of hidden layers did not improve the deep learning 

system's performance. 

5. EXPERIMENTS AND RESULTS  

 

This section assesses the effectiveness of the suggested 

federated learning technique for detecting anomalies in SDNs. 

This approach enables switches to jointly acquire insights into 

a comprehensive detection model without jeopardizing 

privacy. UNSW-NB15, NF-UQ-NIDS-v2, and CICIDS2017 

datasets have been used for model evaluation. In this section, 

proposed work steps have been shown like dataset 

preprocessing, the applicability of the FL Model, and the 

evaluation of classification performance. 

 In the experiments that have been applied, the edge servers 

attached to the switches use local data to do training for the 

model and upload the parameters of the updated model to the 

controller for aggregation. 

 

5.1 Dataset preprocessing 

 

One of the datasets used in the proposed work is UNSW-

NB15. UNSW-NB15 dataset includes normal traffic and all 

attack types records and consists of forty-five features and 

attributes [33]. NF-UQ-NIDS-v2 and CICIDS2017 also 

consist of benign and attack traffic. 

Before passing it to the learning model for training each 

original dataset has been preprocessed. Preprocessing 

procedure includes transformation and normalization. 

 

5.1.1 Transformation 

 From the 29 features used to build our model, UNSW-

NB15 dataset has three character-based features and attributes, 

protocol, state, and service. We have used the one-Hot 

Encoding method [34] to get the numeric representation for 

these text features. In other words, any character-based 

features have to be in a numerical representation. 

 

5.1.2 Normalization  

Min-Max Scaling has been used in the proposed system to 

normalize the numerical features to be in the same scale i.e., 

between 0 and 1. Normalization formula is as Eq. (2) shown 

[35]: 

 

*

max min

mx x
x

x x

−
=

−
 (2) 

 

where 𝑥∗ denotes the normalized data, while x indicates the 

original data. Furthermore, 𝑥𝑚𝑎𝑥  and 𝑥𝑚𝑖𝑛  represent the 

highest and lowest values, respectively, of the attribute under 

consideration. 

 

5.2 Applicability of FL model 

 

After the normalization step, the FL mechanism has been 

applied to SDN to detect the attack in case it occurs. Every 

switch in the network collected the data of the hosts connected 

to it and sent this data to its server. In turn, the server will train 

a local LSTM model using the shared data. All the switches’ 

servers will send model parameter "weights" to the controller 

in a secure way by encrypting it using paillier homomorphic 

encryption. Then, the controller will decrypt the parameter's 

"weights", aggregate, and get its average in order to build its 

global LSTM model. After that, it sends the encrypted global 

model parameter "weights" to every switch in the network and 

then every host will retain its local model according to its 

"decrypted parameters". As an illustration, Table 1 shows the 
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first weight of the Global model in the first five iterations for 

three datasets in case 1. 

This process will retrain in many iterations to save the 

freshness of the information. According to the global LSTM 

model output, the SDN controller determines if the new flow 

that enters the SDN network is an attack or not. 

 

5.3 Classification performance evaluation 

 

To describe the performance of the proposed system, a table 

which is a confusion matrix has been used. A binary confusion 

matrix is described in Figure 4. 

 

 
 

Figure 4. A binary confusion matrix 

 

The performance metric of the proposed system which used 

FL is accuracy. Accuracy is a metric that reflects the 

proportion of correctly detected instances in the overall traffic 

trace. To calculate accuracy, through the proportion between 

the number of packets correctly classified whether these 

packets are normal or attack over a total number of the packets 

classified by the proposed system correctly and incorrectly, as 

shown in Eq. (3). 

 
 number of tru classifications 

 total number of classifications 
Accuracy

TP TN

TP FP TN FN

=

+
=

+ + +

 
(3) 

 

SDN topology which is shown in the Figure 5 was 

experienced to test the results of the proposed work. The 

topology of one controller and six switches. FL model 

hyperparameters are N, B, E, and T where N represents the 

number of hosts connected to each switch, B is the local batch 

size, E is local epochs numbers and T is the global round 

"iterations" number. 

Two different cases (different numbers of samples) on three 

datasets UNSW-NB15, NF-UQ-NIDS-v2, and CICIDS2017, 

one of 25000 samples and the other are 50000 samples have 

been used to test and compare the classification performance 

results of the proposed system. N value is different for each 

switch as shown in Figure 5, while B is set as 32 to the 25000 

samples and set as 64 to the 50000 samples to get the best 

result according to the case. E and K value is set with two 

different values as Table 2 and Table 3 shown. 

 

 
 

Figure 5. Proposed work SDN topology 

 

Simulation results in the first case and on UNSW-NB15 

dataset under the condition of 5 rounds of iteration and 20 

epoches the proposed system has an accuracy 0.99  while when 

the rounds of iterations are 10 and 20 epochs the accuracy is 1. 

For the second case and also on UNSW-NB15 dataset, under 

the condition of 5 rounds of iteration and 10 epochs, the 

proposed system has an accuracy 0.99, which is the same 

accuracy result when the rounds of iterations are 10 and 20 

epochs. Table 2, Table 3, and Figure 6, Figure 7 show the 

simulation results for the UNSW-NB15 dataset and the other 

datasets NF-UQ-NIDS-v2 and CICIDS2017 in the two cases. 

The proposed system has been evaluated by applying it on 

UNSW-NB15, UQ-NIDS-v2, and CICIDS2017 datasets 

which 70% of them used for training the model and 30% is 

used for testing in the first case while 50% of them have been 

used for training the model and 50% is used for testing in the 

second case to get the best accuracy results. The training 

models used in it are LSTM. 

This means that the higher the number of iterations, high the 

probability of better performance of the proposed system. 

Figure 8 illustrates the correlation between the number of 

communication iterations and the level of accuracy. 

Experiments display that collaborative training of FL can 

achieve excellent accuracy to detect attacks in SDN while 

protecting data privacy. Future work includes building FL-

based hybrid DL models and applying them to complex SDN 

topologies with huge traffic data. 

 

Table 1. Global model weights in first five iterations 

 

Dataset Iterations 
Layers Weights 

Layer 1 Layer 2 Layer 3 Layer 4 

UNSW-NB15 

Iteration 1 -0.370038 -0.273164 0.201741 -0.241722 

Iteration 2 -0.459213 -0.322575 0.215829 -0.216713 

Iteration 3 -0.527186 -0.434171 0.220976 -0.196434 

Iteration 4 -0.463473 -0.427878 0.272371 -0.230685 

Iteration 5 -0.473676 -0.467626 0.303990 -0.225534 

NF-UQ-NIDS-v2 

Iteration 1 0.500880 -  0.169867 0.002923 -0.077887 

Iteration 2 0.271446 - 0.134888 0.044123 -0.107748 

Iteration 3 0.146077 -0.083110 0.030749 -0.171271 

Iteration 4 -0.096911 -0.053008 0.046418 -0.163636 

Iteration 5 -0.137259 -0.041089 0.040396 -0.167910 

CICIDS2017 

Iteration 1 0.596411 -0.444252 -0.285819 0.373098 

Iteration 2 0.521290 -0.490071 -0.470377 0.585126 

Iteration 3 0.554174 0.547552 -  -0.414508 0.575711 

Iteration 4 0.647027 -0.594188 -0.440617 0.619177 

Iteration 5 0.681467 -0.594197 -0.359703 0.547394 
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Table 2. The detection performance of the proposed system in case 1 for three datasets 

 

Case 1 

(25000 Samples) 

Number of Iterations Number of Epochs Dataset Accuracy 

5 

20 

UNSW-NB15 0.99 

NF-UQ-NIDS-v2 0.94 

CICIDS2017 0.96 

10 

UNSW-NB15 1 

NF-UQ-NIDS-v2 0.96 

CICIDS2017 0.95 

 

Table 3. The detection performance of the proposed system in case 2 for three datasets 

 

Case 2 (50000 

Samples) 

Number of Iterations Number of Epochs Dataset Accuracy 

5 

10 

UNSW-NB15 0.99 

UQ-NIDS-v2, 0.95 

CICIDS2017 0.95 

10 

UNSW-NB15 0.99 

UQ-NIDS-v2, 0.96 

CICIDS2017 0.97 

 

 
 

Figure 6. The detection performance of the proposed system 

for various datasets in case 1 

 

 
 

Figure 7. The detection performance of the proposed system 

for various datasets in case 2 

 

 
 

Figure 8. Relationship between the number of iterations and 

accuracy 

6. CONCLUSIONS 

 

The study in this paper presents an intelligent detection 

mechanism for identifying attacks in SDN. The proposed 

system is based on FL-aided LSTM which provides ideal 

performance in attack detections with protecting data privacy. 

When an attack is predicted, the controller must drop the 

packet. The method attained an overarching accuracy of 

96.75% across various datasets. As the number of 

communication rounds between switches and the controller 

increased, accuracy also improved, illustrating the advantages 

of employing federated learning. The suggested technique can 

bolster the security of SDNs by identifying attacks in network 

traffic, all the while maintaining data confidentiality, 

minimizing communication overhead, and reducing utilization 

costs. 
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