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In an increasingly competitive, globalized world, educational institutions must strategically
offer courses that align with the skill-acquisition needs of their target audience. As such,
the application of text mining techniques to extract valuable insights and patterns from
structured data across various knowledge domains becomes paramount. This study
employed text mining to scrutinize students' preferences for course offerings at the
Computer and Language Center of the National University of Jaen. The analysis was based
on data collected from a Google Forms survey of 315 students. The employed methodology
facilitated the unearthing of patterns, trends, and semantic relationships within a large
corpus of students' opinions. Frequency distributions and word clouds were generated using
R programming language. Furthermore, the WEKA software and Python were utilized for
cluster analysis, enabling the detection of groupings and trends within the data. Although
other methods such as sentiment analysis and statistical methodologies exist, text mining
was deemed most suitable for identifying patterns and relationships within students'
opinions. The study revealed that students predominantly favored advanced Excel,
AutoCAD, ArcGIS, Nutrition, and Revit courses, which appeared to correlate with their
professional aspirations and prevailing course trends. Therefore, the application of text
mining tools to analyze structured institutional data can significantly contribute to informed

decision-making processes.

1. INTRODUCTION

The advent of technological innovation and scientific
advancements has catalyzed various strategies aimed at
addressing the exigencies of public management. A critical
enabler in this context is the electronic government, a platform
that amplifies service delivery and provides reliable
information to citizens. Consequently, national governments
are grappling with the challenge of implementing electronic
government to optimize public services.

This study is located within this broader context and seeks
to analyze students' opinions on Computer Science and
Language courses, and identify patterns related to their
professional education. The primary research question guiding
this inquiry is: How can text mining techniques be utilized to
effectively scrutinize students' opinions and course
preferences at the Computer Science and Languages Centre,
and how can significant patterns and relationships be
discerned to augment educational quality and institutional
decision-making?

Text Mining (TM), a process employed to discover and
extract previously unknown knowledge from a large corpus of
text data [1], is crucial to this study. Similarly, Computational
Linguistics, an interdisciplinary field straddling linguistics,
computer science, and machine learning [2], and Natural
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Language Processing (NLP), a subcategory of artificial
intelligence (AI) that automates the understanding,
representation, and manipulation of text and human speech [3,
4], are integral to the study.

TM, which involves extracting non-trivial patterns from
massive text documents [5], informed the text preprocessing
phase methodology of this study. Various TM approaches,
many employing computational linguistics and Python
libraries and R language functions [6], were used as exemplars
for creating word clouds in R. As a growing field, TM aims to
enhance human understanding by revealing hidden text
patterns [7], primarily through stages such as normalization,
cleaning, and elimination of stop words. The flexibility of TM
methodologies allow for diverse utilizations, such as text
understanding and knowledge extraction [8], which facilitated
the development of the data collection phase.

Applications of TM are widespread and diverse, including
cancer research analysis [9], opinion analysis of digital
banking applications [10], sentimental analysis [11, 12]
vaccine hesitancy studies [13], and analysis of information
management systems research topics [14]. Other applications
include Twitter content sharing studies [15], text classification
[16], database wvulnerability identification [17], Business
Intelligence article reviews [18], Peruvian professional CV
analysis [19], and construction sector research [20].
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In the educational field, TM has been utilized for systematic
review using classification and clustering methods [21]. The
K-means clustering algorithm has been employed to group
student outcomes [22] and to identify the cyberbullying [23],
machine learning has been applied in the RFID supply chain
[24], and signal processing, data mining, and pattern
recognition have been used [25]. Also, a mixed methodology
based on integrating data structure and students' academic
performance has been used to determine factors influencing
student performance [26], and methods used in 21st-century
education have been explored [27]. Other studies have
proposed a new recruitment system [28], analyzed online
questions and chat messages [29], and examined China's
educational policy network [30].

This study is critical because the Computer Science and
Languages Center, as a public institution, needs to discern
trends or guidelines for managing, planning, and offering
courses tailored to the specific professional development and
skill enhancement needs of their target audience. Therefore,
the findings will aid in decision-making, ensuring that course
offerings align with students' opinions and/or suggestions. The
application of TM techniques will contribute to identifying
patterns, trends, and needs that can shape educational
decision-making and curriculum planning across various
professional disciplines. The detailed methodological
approach proposed will enable a comprehensive analysis and
understanding of textual data. Furthermore, other institutions
within the same field can adopt it as a reference to enhance
service delivery, improve educational quality in both
disciplines, and meet end-user needs.

2. PROPOSED METHODOLOGY

For the development of the research, data creation of
frequencies and word cloud, as well as the application of
unsupervised algorithms (K-means) of data mining were
considered; additionally, clustering and statistics were used to
evaluate their behavior.

2.1 Data collection

The data collected show the opinion and suggestions of
university students enrolled in courses offered by the
Computer and Language Centre. Therefore, a sample of 315
students from the Office and English courses belonging to the
VII to X cycle of the professional careers of Civil Engineering,
Mechanical and Electrical Engineering, Food Industry
Engineering, Forestry and Environmental Engineering and
Medical Technology of the National University of Jaen was
used as a sample. The chosen sample, represents
approximately one fifth of the total population of students at
the National University of Jaen, who were sent a link in
Google Forms and the survey was applied during the period
from November 2022 to May 2023. The information collected
was stored in a sheet in an Excel format and the study variables
(career and recommended course) were checked, see Figure 1.

2.2 Frequency and word cloud creation

To analyze the information the information and form the
word cloud, RStudio software was used (Figure 2). It consists
of the following steps:

(1) Installation of libraries to create the word cloud:
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SnowballC, RColorBrewer, RCurl, NLP, tm, WordCloud,
Corpus and ggplot2. SnowballC was used to reduce words to
a common root in order to facilitate vocabulary comparison,
RColorBrewer to provide color to the generated graphics,
RCurl provided functions to obtain URLs and process results
returned by the web server, NLP for working with basic
classes and methods for Natural Language Processing, Tm for
text mining applications, WordCloud for graphing the world
cloud, Corpus for searching term occurrences and calculating
term frequency and ggplot2 for creating graphs declaratively
based on the graph grammar.

(2) Use previously installed libraries.

(3) Load the data using the read.csv function. The data
consisted of two columns and 315 instances, delimited by
commas.

(4) Data cleaning process: The following items were
removed: numerical data, words without meaning on their own,
scores, blanks and words of little relevance to the study. The
data cleaning was carried out using R, and the following
functions were used: tolower to convert text from uppercase to
lowercase, removeNumbers to remove numerical data,
stopwords to remove words without relevance such as articles,
pronouns, prepositions and adverbs within the corpus. Then,
punctuation marks were removed using removePunctuation
function and finally stripWhitspace to remove blank spaces. It
should be noted that there were no missing data values due to
the survey in Google Forms was configured in such a way that
all the fields' questions were obligatory.

(5) Elaboration of the graphical representation of word
frequency, using the corpus worked on and the data processed
in the previous steps.

(6) Finally, the word cloud was plotted taking into account
the word and word frequency.

2.3 Data mining use

From the databse, the data was cleaned using text ming and
machine learning techniques in order to filter it for further
analysis. The Waikato Environment for Knowledge Analysis
(WEKA) software was used for this phase, considering the
following steps:

(1) Loading and exploration of data in .csv format. See
Figure 3.

(2) Data filtering: Consisted of using the NominalToString
attribute of unsupervised learning to transform the data values,
changing the data type (nominal to string), finally the
StringToWordVector class to filter the strings into N-grams
using the Word Tokenizer class, which helped to provide
strings, four was considered as the minimum frequency of
words. In addition, articles, prepositions and pronouns were
removed by choosing the Snowball Stemmer and Rainbow
options for the stop words (empty words). Finally, the words
were converted to lower case, see Figure 4.

(3) Cluster generation: A clustering model was chosen for
data segmentation, using the K-means algorithm. This was due
to, this algorithm facilitates the identification of opinion
patterns, preferences and trends in large amount of textual data
in order to break down the information into meaningful groups,
contributing to the deep understanding and data structure. For
example, it was possible to verify which courses were
recommended by students taking into account the professional
career, such as Civil Engineering, Food Industry Engineering,
Forestry and Environmental Engineering, Mechanical and
Electrical Engineering and Medical Technology (Figure 5).
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2.4 Clustering

Clustering is the process of grouping a set of elements into
clusters of similar objects [31]. The research used clustering
algorithms built into WEKA and K-means was chosen as the
clustering method. As well as, the use of Elbow Method to
determine the optimal cluster number using python [32]. In
addition, the Euclidean distance function, iterations number:
10 and the class for cluster evaluation: School were considered
as parameters (Figure 6).

2.4.1 Statistics for assessing cluster performance

Sum Squared Error (SSE): It is one of the statistical methods
used to measure the total difference between the actual value
and the achieved value [33], which is defined as [34], see Eq.

(1):

(1

k
SSE (X,T) = Z Z Il x; —m; 11

i x;eC;

where:

[I. II: Euclidean distance

m;: Centroid of cluster C;

In this study, the choice of using the K-means algorithm and
the elbow method is based on their effectiveness in addressing
the task segmentation textual data and determining the optimal
number of clusters in the analysis of opinions and preferences
related to Computer and Language courses. The K-means
algorithm is a widely recognized technique in text mining for
clustering data and revealing patterns in large text sets. On the
other hand, the elbow method is employed to identify the
appropriate number of clusters, allowing for a more
meaningful results interpretation. This choice aligns with the
unsupervised nature of opinion and preference data, and seeks
to capture intrinsic relationships of participant's responses.
The combination of these two methods seeks to ensure a robust
analysis and an important representation of the different
perspectives and trends in the data, thus contributing to a
deeper understanding of student's course and career
preferences.
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3. RESULTS

A frequency bar chart (Figure 7) and word cloud (Figure 8)
were generated. Figure 7 lists the most repeated courses after
the data analysis. As a result, students show their preferences
in the following courses: advanced Excel, AutoCAD, ArcGIS,
Nutrition, Revit, Portuguese, Python language, French and
Arduino, which shows the trend and importance of these
courses for students of different professional careers.

Informatic and Language Center frequency Courses

60

50

30

Word frequencies

20

excel
autocad
arcgis
python
revit
nutrition
arduino
french

portuguese

Figure 7. Frequency of words on course preferences

This study uses data collected from surveys that were
administered to students at the Computer and Language Centre.
The key features of this data include the variety of terms used
to express opinions and preferences. Thus, by processing texts
and analyzing word frequency, a word cloud was created as a
visual representation that highlights the most frequent and
relevant words in the dataset. The word cloud generated in the
study condenses the student's responses into an image in which
the size of each word reflects its frequency in the text. In this
way, the word cloud provides a quick and visual insight into
trends in students' course preferences. Each term in the word
cloud is a clue to understanding the predominant preferences
and areas of interest, giving an overview of emerging patterns



in the data and highlighting the most relevant aspects of the
analysis.

In the word cloud (Figure 8), it is observed that the
advanced Excel is the one with the outstanding size, then, there
are courses like AutoCAD, Revit, Python, Nutrition, ArcGIS
that have a lower preference. The results also show courses
such as Quality Control, languages such as French, Mandarin
Chinese and Portuguese, which have an intermediate
preference. Finally, courses such as Visual Basic, Graphic
Design, SolidWorks have a low preference.
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Figure 8. Word cloud on course preferences

cluster k=2 (see Figure 9), indicating that this is the optimal
number of clusters for the given data.

Figure 10 shows the graph generated in WEKA for cluster
(k=2), where the x-axis shows the school or professional
career and y-axis shows cluster 0 in blue and cluster 1 in red.
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Figure 9. Elbow method to find the cluster

Table 1. Number of iterations and SEE

Number of Iterations Sum of Square Errors (SSE)

1 336.48

. . 2 279.80

Table 1 shows the results obtained after running 10 3 253.17

iterations using WEKA software and then applying the Elbow 4 24827

method. 5 228.15

Figure 9 shows the application of the elbow method, which 6 217.60

consists of plotting the relationship between the number of 7 209.38

clusters and the sum of squared error (SSE). In order to plot 8 176.38

the graph, the data shown in Table 1, were considered an it was 19 0 18526'7701
possible to observe that the inflection point is observed in the .
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4. DISCUSSION

The emergence and convergence of technologies like
artificial intelligence, the Internet of Things, and automation
in Industry 4.0 are also boosting parallel developments in the
education sector [35]. For instance, ChatGPT is a type of
artificial intelligence chatbot that can understand and respond
to natural language inputs [36]. Thus, this tool has been
designed to generate well-crafted texts indistinguishable from
those produced by humans, applicable to a wide range of
knowledge fields [37]. As a result, in recent years, the
importance of integrating natural language processing (NLP)
techniques for opinion extraction has been recognized [38]. In
this context, text mining techniques were used to assess
organization engagement with technologies like 5G networks,
advanced robotics, artificial intelligence, autonomous driving,
blockchain, and drones [39].

The academic paper is related to other research [18], since
text mining tools such as the use of R libraries, tm package and
WordCloud were used to form the word cloud and to verify
the words frequency. On the other hand, four steps were used
in the methodology, of which the preprocessing and data
visualization was used in the present study [19].

The words with the highest frequency (Figure 7) are related
to the academic training of students at the National University
of Jaen in the five professional careers: Civil Engineering,
Food Industry Engineering, Forestry and Environmental
Engineering, Forestry and Environmental Engineering and
Medical Technology. AutoCAD and Revit courses were the
most recommended software by Civil Engineering students
because engineering projects to be developed successfully

make it difficult for any company to deal with a single program.

In the same way, the development of digital competences
makes it essential for students to take on challenges that
demonstrate continuous changes with the efficient
performance of digital tools [40]. Consequently, ArcGIS was
the software choice for Forestry and Environmental
Engineering students due to the positioning accuracy of data
collected by remote sensing platforms, which is of great
importance in forestry and wildlife studies, salvage logging,
soil disturbance after logging operations and fire risk
management [41]. In health science, Nutrition was the
recommended course for Medical Technology and Food
Industry Engineering students; for example, nutrition
education has a significant impact on material knowledge and
child nutritional status [42]. Thus, the nutritional
recommendations for bariatric and metabolic surgery aim to
provide knowledge on different surgical techniques in the
treatment obesity and metabolic diseases [43].

In relation to Python and Arduino, these were the tools
needed by professional engineering careers, since the use of
computational software like Python, role an important play in
different areas knowledge, such as science, physics, chemistry
and genetics [44]. In contrast, the digitalization in healthcare
requires applications that use human sensors that are
monitored in everyday life due to Internet of Things [45].

On the other hand, advanced Excel program was the most
recommended by students of different professional careers,
making it the most widely used for data analysis and
visualization [46, 47]. Finally, languages such as Portuguese
and French were the most requested, since the use of foreign
language in professional communication facilitates
participation in cultural, commercial, political and economic
exchanges [48].
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It is important to highlight the interconnection between the
use of ChatGPT, NLP and text mining in relation to the
objectives and results of the study. The incorporation of
ChatGPT for interactive survey suggestion, NLP for text
preprocessing, allowing for appropriate cleaning and
extraction of relevant features for subsequent application of
text mining techniques, which allowed the identification of
patterns and trends within students' responses. The application
of clustering techniques, like K-means algorithm, allowed the
classification responses into meaningful groups. Furthermore,
the word cloud creation allowed a concise and effective
visualization frequent terms, providing a course preference.
Theses interconnected technologies not only improved the
quality results, but also provided a deeper understanding of
common students' preferences for academic and curricular
decision-making in educational institutions.

5. CONCLUSIONS

Text mining emerges as a field that seeks to improve
people's perception about different topics, in which
information and text patterns of great interest were presented
[49]. In the context of this study, tools such as WEKA software,
as well as R and Python programming languages were used to
analyze the results of students' opinions from the Computer
and Language Center of the National University of Jaen.

The results indicate that the most suggested and plausible
courses by students form the professional career of Civil
Engineering, Food Industry Engineering, Mechanical and
Electrical Engineering, Forestry and Environmental
Engineering were advanced Excel, AutoCAD, ArcGIS,
Nutrition and Revit. However, it was important to note that
beyond the mention of courses or programs, this study has
deeper implication for the educational field. The findings
provide valuable information for improving curriculum
planning, teacher training, students' satisfaction, current
courses trends and contribute to the existing text mining
literature. It is recommended to explore how this result can
influence in educational decision-making, contributed for the
academic discussions and educational quality in general.

The research proves to be a seminal study for the
exploration of future research on how course preferences
related to academic performance and students' satisfaction,
providing a more holistic view of the impact of these
preferences on students' vocational training. Finally, it is
recommended to consider incorporate sentiment analysis to
capture emotions in students' opinions and to use a larger
sample for future works.
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