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This study presents a numerical exploration into the phenomenon of natural convection 

within a cavity, characterized by a straight (cold) right wall and a wavy (hot) left wall. The 

focus lies in the dynamic interaction between the working fluid (air) and a sinusoidally 

moving solid structure (the fin). The Arbitrary Lagrangian-Eulerian (ALE) methodology 

is employed to handle the moving mesh, and the Galerkin weighted residual finite element 

method is utilized to solve the nonlinear equations and boundary conditions. A mesh 

validation test is undertaken, and a comparative analysis against numerical reference is 

included. In a novel approach, a mathematical formulation incorporating the geometric 

aspect ratio Ar (defined as the fundamental wavelength relative to its wavy width) is 

introduced into the fundamental equations. Numerical results, including isotherms, 

streamlines, temperature profiles, horizontal velocity, and local heat flux coefficient, are 

presented under specific conditions: a geometry ratio Ar=0.3, a Rayleigh number spanning 

from 103 to 107, and a dimensionless time t ranging from 10-5 to 3. These results are based 

on three distinct positions of the oscillating elastic. The findings elucidate the combined 

effect of convection and the vibration of the flexible oscillating fin, particularly at high 

Rayleigh numbers. This study contributes novel insights into the complex interplay 

between fluid dynamics and vibrating structures in the context of natural convection. 
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1. INTRODUCTION

Fluid-structure interactions (FSIs) pose significant 

challenges across various contexts due to the complexities 

inherent in the interaction between fluid flow and moving or 

deformable structures. Notable examples include the 

turbulence experienced by an aircraft, the fluid boundary 

alterations by a butterfly valve, and the sound propagation 

effects caused by a speaker cone. The ramifications of FSIs are 

far reaching, with manifestations in diverse fields such as 

engine combustion chambers [1, 2], natural gas transmission 

[3-7], robotics, particularly surgical robotics [8-11], civil 

engineering [12-16], aerospace engineering [17-20], 

hydraulics [21], topology [22], ocean engineering [23, 24], 

biomechanics [25-27], nuclear engineering [28], and even 

food processing [29]. 

The interaction between fluid flow and a solid structure 

typically results in pressure and temperature loads on the 

structure. Such interactions can induce significant 

deformations that, in turn, modify the fluid flow. The 

complexity of the FSI phenomena necessitates the application 

of multiple approaches for their investigation, including 

numerical simulations [30-32], experimental methods [33-35], 

and hybrid techniques [36]. Within the extensive body of 

scientific literature addressing FSI, the moving mesh Arbitrary 

Lagrangian-Eulerian (ALE) method has been frequently 

utilized [37, 38] due to its capacity to handle the intricate 

nature of FSI phenomena. This technique has been applied in 

both 2D [39, 40] and 3D [41, 42] contexts, providing valuable 

insights into the dynamic interplay between fluid flow and 

structural deformations. 

The role of fluid-structure interaction (FSI) in natural 

convection, a pivotal mechanism of heat transfer, is markedly 

pronounced in cavities outfitted with double-flexible-

oscillating fins. This study delves into the influence of FSI on 

natural convection within a square cavity. A flexible elastic fin, 

fastened to the base of the cavity, governs the desired 

aerodynamic behavior and encapsulates the impact of FSI on 

convection within a uniquely corrugated cavity. The 

investigation casts light on the consequences of flexible elastic 

fins in cavities populated by power-law, non-Newtonian fluid 

flow and heat transfer. 

Despite an abundance of existing research, studies 

addressing natural convection in a wavy cavity, particularly 

those exploring the interaction between air and a flexible fin, 

are noticeably lacking. Thus, our study intends to fill this gap 

by examining the effect of the geometric ratio (Ar) and 

buoyancy forces on heat transfer. A primary objective of this 

inquiry is to understand how the presence of an oscillating 

flexible fin alters the heat flow within the cavity, including 

potential disturbances in fluid speed and direction. Our 

findings demonstrated a coupled influence of convection and 

the vibration of the flexible oscillating fin, an effect that was 

particularly prominent at high Rayleigh numbers with 

displacement in the left side of the oscillating fin element. This 

advanced modeling approach to understanding complex 

phenomena is a significant contribution, as FSIs are integral to 

the design of various engineering systems. Ignoring the 
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oscillatory interactions in structures composed of fatigue-

prone materials could potentially lead to catastrophic 

outcomes. 

 

 

2. PHYSICAL MODEL  
 

In this study, fully developed heat transfer and fluid flow 

are numerically simulated in a two-dimensional, vertically-

oriented corrugated cavity as illustrated in Figure 1. The 

cavity's geometry is characterized by a height H and a width 

w, with a corrugated surface that has a fundamental 

wavelength denoted by λ and an amplitude denoted by a1.  

The profile of the sinusoidal corrugated right and left walls 

[43] illustrated is defined by: 
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In the context of solid dynamics, the behavior of a thin 

elastic fin of fixed length d and thickness b located in the 

middle of the lower wall is of particular interest. This fin is 

known to oscillate in a sinusoidal manner when exposed to a 

fluid flow, and its motion can be described by the following 

equation. 
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where, xs, t*, a2 present respectively the flexible thin fin 

movement position, the time and the oscillation in their 

dimesnonal form. The oscillation frequency is introduced as 

1/τ*. The physical model, as well as the important geometric 

parameters, are illustrated and detailed in Figure 1. 

 

 
 

Figure 1. Physical model and coordinates system 

 

In our study, we focused on the phenomenon of natural 

convection in the context of the interaction between a fluid (air) 

and a structure (an elastic fin undergoing sinusoidal motion), 

within an undulating cavity. This shape was chosen in the 

engineering design to help us take it into consideration and 

provide a comparative study with a non-corrugated cavity to 

clarify the importance and effect of this shape on thermal 

convection, thus increasing the contact surface area between 

the working fluid and the hot heat source. The geometric 

parameter of ripple, denoted by Ar, is introduced into the basic 

equations for both the solid and the liquid. This allows us to 

examine the effect of this parameter on the phenomenon in 

order to optimize convective heat transfer processes inside the 

cavity. 

 

 

3. MATHEMATICAL FORMULATION 

 

The fluid within the corrugated cavity is considered to be 

unsteady, natural convection regime, incompressible, and 

Newtonian. Temperature fluctuations impact the 

thermophysical attributes of the fluid, with the Boussinesq 

approximation employed. This approximation disregards 

density changes regarding the equation of motion's inertia but 

retains them in the buoyancy term of the vertical equation. 

Additionally, it is assumed that all other thermodynamic and 

transport properties remain unaffected by temperature, and the 

influences of compressibility and dissipation are deemed 

insignificant. In fluid-structure interaction and solving the 

Navier-Stokes formulations are solved in a mobile or 

deformable domain. Among the approaches used, the 

Arbitrary Lagrangian-Eulerian (ALE) method arouses much 

interest [44]. Therefore, we obtain the dimensional equations 

expressing the mass conservation and momentum (i.e., 

Navier-Stokes equations), and energy in the ALE description 

can therefore be rewritten in Chapter 3. With this approach, 

the mesh movement caused by the fin’s oscillation is robustly 

taken into account. A proper step of time is selected based on 

as presented in section 3. This section presents the background 

required for the proposed formulation for the fluid domain and 

FSI simulations. They are defined as: 

 

The conservation of mass equation: 

 

0fu =  (3) 

 

The momentum equations: 
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The energy equation: 
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The fluid properties are the density, specific heat, and 

thermal conductivity, denoted by 𝜌𝑓, 𝐶𝑝
𝑓
 and 𝑘𝑓, respectively. 

The subscript f represents the fluid. The acceleration due to 

gravity is denoted by gy, and the coefficient of volumetric 

thermal expansion is denoted by β. The term 𝜌𝑓𝑔𝑦𝛽(𝑇 − 𝑇𝐶) 

is referred to as the volume force. In the convective term (uf-

w*) identify the variation between the fluid domain velocity uf 

and mesh velocity w* at any given time t*. 

In addition, 𝜎∗𝑓
 is the total Cauchy stress tensor which is 
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given by:   

 

( )* * *2f fσ I  T ufp = − +
,

( ) ( )* 1

2

f f fT u u u
T

f  =  + 
    

 

where, μ is the fluid dynamic viscosity, p* is the dimension of 

the fluid pressure, I denotes the second-order identity tensor, 

and 𝑇∗𝑓(𝑢𝑓) present the fluid strain rate tensor. 

The dimensional equations of elastodynamic displacement 

and energy of the fin can be expressed as follows: 
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The density, the specific heat, and the thermal conductivity 

of the solid are respectively denoted by: 𝜌𝑠, 𝐶𝑝
𝑠 and 𝑘𝑠. S is the 

solid abbreviation. 𝜑∗𝑠
 is the solid displacement vector, 𝜌𝑠𝑔

 
is the force applied to the body, and T denotes fluid/solid 

temperature, which all are in their dimensional form. 

Consider the linear fin to be made of isotropic elastic 

material, and account for its nonlinear geometry variation 

under the pressure exertion of the fluid. The stress tensor is 

therefore represented as: 

                                                                                            
* 1 * * *s TJ F S F−=σ  (8) 

 

where, 𝐹∗ = 𝐼 + 𝛻𝜑∗𝑠  is the gradient tensor of the 

transformation and 𝐽 =  det(𝐹∗)  is the determinant of the 

matrix 𝐹∗, the second Piola-Kirchhoff tensor 𝑆∗ is defined by 

the following equations:  
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where, ℂ(𝐸∗, 𝜐), 𝐸∗ and 𝜐 are the elasticity tensor, the Young 

modulus of elasticity, and the Poisson ratio, respectively, the 

colon “:” is the double-dot tensor product.  

 

Boundary conditions: 

 

The corrugated walls on the right and left of the cavity are 

maintained at a constant cold temperature Tc and a constant 

hot temperature Th, respectively. The horizontal walls are 

thermally insulated. For the fixed part, the fin is maintained at 

a constant hot temperature Th. Additionally, it was taken into 

account that the solid and fluid phases are separate and that at 

the point where the two media come into contact, they 

interchange energy and momentum. The following premises 

are made regarding the fluid-solid interface's dynamic and 

energy-balancing boundary conditions: 
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(10) 

 

n: the normal unit vector. 

This implies a condition of adhesion for the fluid (equality 

of velocities), and that the forces on the interface are conserved 

(equality of stresses). 

 

Dimensionless Form of the governing equations: 

 

The dimensionless variables are listed below. 
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(11) 

 

The use of dimensionless variables from Eq. (11) in all the 

governing equations of the system gives us new dimensionless 

formulas presented as follows: 

The dimensionless Eq. (1) of the corrugated surface can be 

expressed by Eq. (12): 
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where, the dimensionless displacement of the flexible elastic 

fin presented in Eq. (2) can be expressed as follows: 
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Consequently, the governing Eqs. (6)-(7) for elastodynamic 

displacement and temperature of the flexible elastic fin can be 

expressed as dimensionless:  
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where, 𝜌𝑟 =
𝜌𝑓

𝜌𝑠 , 𝐶𝑝
𝑟 =

𝐶𝑝
𝑓

𝐶𝑝
𝑠  , and 𝐾𝑟 =

𝐾𝑠

𝐾𝑓  are the parameters 

ratio for density, specific heat, and thermal conductivity solid-

liquid, respectively. Thus, 𝐸 =
𝐸∗𝜆.𝑤

𝜌𝑓𝛼𝑓
2  is the flexibility 

parameter and 𝐹𝑣 =
𝑤(𝜌𝑓−𝜌𝑠)𝑔

𝐸∗  is the body force source term, 

both dimensionless.   

Presented below are the non-dimensional Eqs. (3)-(5) that 

elucidate the fluid's dynamic and thermal characteristics 

within the Arbitrary Lagrangian-Eulerian (ALE) framework: 

The conservation of mass equation: 
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The momentum equations:       
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The energy equation: 
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The aforementioned parameters, rendered dimensionless, 

manifest themselves as follows: 

The total Cauchy stress tensor is: 𝜎𝑓 = [−𝑃 I +  Pr ⋅

𝐴𝑟(𝛻𝑢 + (𝛻𝑢)𝑇)], 𝑅𝑎 =
𝑔𝑦𝛽(𝑇ℎ−𝑇𝑐)𝜆3

𝜐𝑓𝛼𝑓  
is the Rayleigh number, 

and 𝑃𝑟 =
𝜐𝑓

𝛼𝑓
 is the Prandtl number. 

Additionally, the visualization of the fluid flow ψ patterns 

of the dimensionless flow function is defined by solving the 

following partial differential equation. 
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Taking into account the boundary conditions, the thermal 

and dynamic behavior of the walls in the dimensionless 

coordinates is written as:                            

At the hot wall: 
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At the cold wall: 
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At the upper and lower walls: 

 

1 1 1 cos 2  X 1 1 cos 2 ,Y= ( / )

θ
U=V=0,ψ=0, =0

Y

1 1
0 X and X 1 ,Y=0

2 2 2 2

θ
U=V=0,ψ=0, =0

Y

Y Y
H w

Ar Ar

B B

   
          

−   + +          
         

 

 


   
  − +     

   



 

 

(22) 

 

At the solid embedding  
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Hence, the Eq. (10) of the interaction between a solid-fluid 

can also be expressed in its dimensionless form as follows: 
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In the present analysis, the parameter of interest is the local 

heat flux coefficient hc at any point of the hot corrugated wall. 

This parameter characterizes the efficiency of heat transfer by 

natural convection. It can be evaluated as follows 

                                                                                

 near wa

f

l

c

l

h r
n

A K


= −


 (25) 

 

where, hc is the local heat flux coefficient. 

We chose these equations because they often allow us to 

describe the behavior of the phenomenon of the fluid structure 

interaction by an approximate resolution, and to propose a 

better modeling of a single phase of the fluid as is also the case 

in our situation. The main objective of this equation is to 

describe the movement of fluids. Since a fluid can be a liquid 

or a gas, we understand that this equation concerns a whole 

bunch of things around us. The resolution of these equations 

modeling a fluid as a continuous medium. In our case we 

integrate the geometric parameter into this equation in order to 

treat its influence mathematically and physically. 
 

 

4. NUMERICAL SIMULATION 

 
Among the methodologies employed to address the 

complex FSI phenomenon, the Arbitrary Lagrangian-Eulerian 

(ALE) approach stands out as a dependable and precise 

numerical technique [44-46]. This method effectively captures 

the movement of mobile structures within the fluid domain. 

Within the simulation domain, mesh nodes can either adhere 

to a Lagrangian procedure, remaining stationary, or an 

Eulerian process, maintaining fixed positions. Alternatively, 

nodes can follow an arbitrary movement pattern. 

Comprehensive validation of this method is elaborated [47, 

48]. The computational fluid dynamics (CFD) framework 

draws upon diverse numerical solvers to execute the weighted 

residual Galerkin finite element method (FEM) [49, 50]. This 

approach integrates error control, adaptive meshing, and the 

solution of dimensionless nonlinear equations Eq. (14) to Eq. 

(18), coupled with boundary conditions Eq. (20) to Eq. (21), 

as well as the interlinking coupled boundary interface Eq. (24). 

To discretize the computational domain, non-uniform 

triangular grid meshes are applied, as illustrated in Figure 2. 

The computations halt at each time step when the error falls 

below 10-7, ensuring accurate results. 

 

4.1 Mesh testing 

 

A pivotal factor in enhancing the numerical accuracy of the 

solution revolves around the selection of an appropriate mesh. 

To this end, a finer mesh configuration (referred to as "case 2") 

is strategically employed along the boundary of the heated 

corrugated wall and the fluid-solid interfaces. The significance 

of this mesh refinement lies in its ability to capture intricate 

details with greater fidelity. Figure 2 visually portrays the 
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intricate interplay between the fluid and the fin, offering 

insights into this interaction. 

Figure 2. Constructed mesh of the studied model 

In pursuit of this objective, a specialized border meshing 

technique was meticulously employed along the heated 

corrugated wall. This technique was executed across four 

distinct cases, each tailored to maximize precision and 

accuracy. Detailed information regarding these cases is 

presented in Table 1, providing a comprehensive delineation 

of the diverse meshing strategies embraced. 

The test scenario is characterized by specific parameter 

values: t=3, Ra=106, Pr=10, E=1011, and Ar=0.3. These 

meticulously chosen parameters collectively establish a 

consistent and controlled foundation for assessing and 

comparing the performance of the various meshing approaches. 

Table 1. Mesh sensitivity test and details of domain meshes 

and boundary elements as well as the average heat flux 

coefficient value for four selected mesh sizes 

Cases Domain Elements Boundary Elements hc Average 

Case 1 3472 239 5,4049 

Case 2 5148 286 5,3946 

Case 3 8635 398 5,3932 

Case 4 21213 755 5,3924 

Figure 3. Grid testing of local heat flux coefficient with 

different grid cases 

Figure 3 provides a visual representation of the 

dimensionless local heat flux coefficient, denoted as "hc". This 

figure highlights the evolution of hc along the extent of the 

corrugated wall. Notably, the behavior of hc within Case 2 

remains consistent and unaffected by the alteration in mesh 

type. 

It is evident from the analysis that Case 2 stands out as the 

most suitable and appropriate choice. This conclusion is 

supported by the fact that the local heat flux coefficient hc 

within Case 2 remains unaffected by variations in mesh type, 

reaffirming its reliability and stability (refer to Figure 3). 

reaffirming its reliability and stability (refer to Figure 3). 

4.2 Model validation 

In pursuit of refining our numerical approach, we focus on 

two key aspects: Optimizing computational efficiency and 

enhancing precision in essential variables' convergence 

behavior. With this goal in mind, the outcomes of this study 

are obtained through numerical analysis, utilizing a grid size 

of 2. These findings are subsequently validated through a 

comprehensive comparison with previously documented 

research. 

This study places particular emphasis on validating the 

natural convection phenomenon within a square cavity 

characterized by a partially heated left wall, a cold right wall, 

and horizontally thermally insulated walls. To establish the 

credibility of our results, we undertake a meticulous 

comparison with the outcomes presented in previous studies 

[51-53], which delved into the same problem. As a crucial 

validation measure, we calculate and verify the average 

Nusselt number test of the heated left wall, a key parameter 

characterizing heat transfer (refer to Table 2). 

Table 2. Comparison results of average Nusselt number 

validation with literature results for Pr=0.71 

Ra 

104 105 106 

Ghalambaz and all [51] 2.2450 4.5237 8.8663 

Sathiyamoorthy and Chamkha [52] 2.2530 4.5840 8.9210 

Val Davis [53] 2.2430 4.5190 8.8800 

Present study 2.2451 4.5209 8.8253 

Figure 4. Comparison of the isotherms: (a) Ghalambaz and 

al. [51], and (b) the present study when t=1.25, Ra=106, 

Kr=10, E=1011 and Pr =0.7 

Furthermore, a secondary validation is conducted involving 

a flexible oscillating fin affixed to the left wall within the 

square cavity. This validation is executed for specific 

parameter values: t=1.25, Ra=106, Pr=0.7, E=1011. In this 

validation, isotherms, depicted in Figure 4, and streamlines, 

illustrated in Figure 5, are meticulously compared with those 

presented in reference [51]. 

By closely examining the results presented in Table 2, 

Figure 4, and Figure 5, it is evident that a remarkable level of 

agreement is achieved between our findings and those of the 
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reference study. This robust alignment substantiates the 

accuracy and reliability of our numerical approach and its 

ability to capture the intricacies of the physical phenomenon 

under investigation. 

 

 
 

Figure 5. Comparison of the streamlines: (a) Ghalambaz and 

all [51] and (b) the present study when t=1.25, Ra=106, 

Kr=10, E=1011 and Pr=0.7 

 

 

5. RESULTS AND DISCUSSION 

 
This present study lays the theoretical groundwork for 

delving deeper into the hydrodynamic and thermic attributes 

within fluid-structure interaction across diverse multi-domain 

applications. The comprehensive investigation undertaken 

here sheds light on the intricate interplay of various coupling 

factors in the context of natural convection, heat transfer 

performance, and fluid-structure dynamics. This is achieved 

within a fluid-structure interaction system, systematically 

studying the impacts of key parameters. 

The factors under scrutiny encompass a spectrum of critical 

aspects, including the local heat flux coefficient (hc), the 

variation of velocity (U), temperature profiles (θ), streamlines, 

and isotherm behaviors. These dynamics are explored across a 

range of dimensionless times (t) and flexible fin positions 

within the latter phase. 

The study's focus is anchored in air (with Prandtl number 

Pr=0.7), taking into consideration the non-dimensional fixed 

parameters of both the fluid flow and solid. Key variables 

include Rayleigh numbers (Ra) spanning from 103 to 107, a 

thermal conductivity ratio (Kr) of 10, a geometric ratio (Ar) of 

0.3, solid and wall amplitudes (η1 and η2) of 0.1 and 0.05 

respectively, Young's modulus (E) at 1011, and specific elastic 

fin dimensions (B and D) set at 0.01 and 0.25 respectively. The 

elastic fin's movement period is established at 0.1, forming a 

comprehensive framework for comprehensive analysis. 

 

5.1 Evolution of fluid and thermal fields  

 

In Figure 6, a detailed examination of the dimensionless 

temperature distribution is presented for various Rayleigh 

numbers, while keeping the geometric ratio Ar constant at 0.3, 

specifically at the position Y=0.25 within the cavity. 

A notable observation is made for the case of Ra=103, 

where heat propagation follows a quasi-linear pattern. Moving 

away from the intensely heated corrugated wall, and 

particularly for higher Rayleigh numbers, a gradual decrease 

in heat intensity is discernible, reaching a value of 0.4. 

Subsequently, a distinct stabilization of temperature occurs 

both before and after the region encompassing the limits of the 

elastic element's vibratory movement. 

 
 

Figure 6. Variation of temperature profile for different 

Rayleigh numbers and three fin positions at Y=0.25, Ar=0.3, 

Kr=10, E=1011, Pr=0.7 
 

Furthermore, at X=0.85, another temperature disturbance 

emerges. This phenomenon arises due to the proximity of hot 

air to the cold wall, resulting in a perturbation within the 

temperature profile (refer to Figure 6). 

A significant insight gleaned from the isotherms analysis is 

the interplay between conduction and convection processes, 

particularly when considering the influence of varying 

Rayleigh numbers. At higher Rayleigh numbers, conduction 

becomes dominant at the upper region of the cavity, whereas 

convection plays a more significant role at the lower region. 

An important observation is the discernible impact of the 

flexible fin positioned along the middle of the bottom wall. 

This impact is consistently evident across all cases under 

investigation. This influence of the fin is further highlighted 

through the isotherms presented in Figure 7, which underscore 

the fin's role. 

A noteworthy finding is the stability exhibited by the 

isotherms in later sections of the cavity, regardless of the 

Rayleigh number (Ra). In contrast, disturbances in the 

isotherm pattern emerge in the vicinity above the elastic fin, 

particularly on the left side. This region marks the zone where 

convection is triggered, leading to an intensification of heat. 

This phenomenon is more pronounced on the left side of the 

cavity, as depicted in Figure 7. 
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Figure 7. Isotherms distributions. for different Rayleigh numbers Ra at Ar=0.3, Kr=10, E=1011 and Pr=0.7 

 

 
 

Figure 8. U velocity profile variation for different Rayleigh 

numbers Ra and elastic fin positions at Y=0.25, Ar=0.3, 

Kr=10, E=1011, and Pr=0.7 

A significant thermal disturbance is evident above the 

flexible element's fin, attributable to the coupling of 

conduction and convection effects. This underscores the 

pivotal role played by fluid-structure interaction in optimizing 

heat transfer efficiency. The temperature profile demonstrates 

an inverse relationship with the geometric ratio Ar. 

 

5.2 Ra and Ar effects on Velocity, streamline, and flow 

distribution 

 

The evolution of horizontal velocity profiles at the 

designated height of Y=0.25 is illustrated in Figure 8. Through 

a comparative analysis between fluid flow within a square 

cavity devoid of undulations and the corrugated cavity with 

Ar=0.3, a comprehensive understanding of the impact of Ar on 

convection can be gleaned. 

The presence of undulation, as indicated by the Ar=0.3 

condition, leads to a pronounced effect on fluid behavior. This 

undulation contributes to fluid compression, consequently 

accelerating its motion, particularly evident above the flexible 

fin element. The fin's motion is itself instrumental in 

influencing this fluid acceleration. 

Furthermore, a direct proportionality between velocity and 

Rayleigh number becomes evident. For lower Rayleigh 

numbers, fluid velocity near the side walls remains notably 

low. However, with increasing Rayleigh numbers, the fluid's 

velocity experiences a considerable increment, amounting to 

around 28.33% to 30% for every tenfold increase in Rayleigh 

number from 103 to 107. This relationship underscores the 

dynamic influence of Rayleigh numbers on fluid motion 

within the cavity. 

Figure 9 provides a visual representation of the streamlines 

within the corrugated cavity, showcasing different Rayleigh 

number values while maintaining Ar=0.3. Several significant 

observations emerge from this analysis: 

Recirculation Zones: For lower Rayleigh numbers, such as 

Ra=103, a prominent clockwise-rotating recirculation zone is 

observed above the flexible oscillating fin. This recirculation 

zone remains consistent regardless of the fin's position. As 

Rayleigh number increases, this zone extends further. 
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Figure 9. Streamlines for distributions. for different Rayleigh numbers Ra at Ar=0.3, Kr=10, E=1011, and Pr=0.7 

 

 
 

Figure 10. Variation of the local heat coefficient number on 

the wavy hot wall for different Rayleigh numbers Ra and 

three fin positions at Ar=0.3, Kr=10, E=1011, and Pr=0.7 

Emergence of Additional Recirculation Zone: With Ra=104, 

a smaller counterclockwise-rotating recirculation zone 

appears to the left of the elastic fin. This secondary zone is 

further influenced by the sinusoidal motion of the fin and the 

presence of the corrugated boundary walls. 

Impact of Elastic Fin: The presence of the flexible 

oscillating fin affixed to the lower wall has a clear impact on 

the variation in speed across all studied cases. This influence 

is prominently depicted in the streamline patterns. 

The dynamic interplay between fluid motion, fin oscillation, 

and boundary shapes is vividly captured by the evolving 

streamline patterns, offering valuable insights into the 

complex fluid-structure interaction within the cavity. 

The corrugated walls and the flexible fin have trapped a part 

of the fluid and induced local flow circulations at the bottom 

left region. 

 

5.3 Ra and Ar effects on local heat flux coefficient  

 

Figure 10 presents a critical parameter of interest: the local 

heat flux coefficient, which effectively characterizes the heat 

transfer rate. Several crucial insights can be gleaned from this 

analysis: 

Enhanced Heat Transfer Rate: In the presence of the flexible 

oscillating fin, the local heat flux coefficient reveals 

significant heat transfer enhancement. The apex of this 

enhancement is notably observed in the left area of the cavity. 

This effect is most prominent in the vicinity of the flexible fin's 

location. 

Impact of Rayleigh Number: As the Rayleigh number (Ra) 

increases, the heat transfer rate experiences substantial 

amplification. Specifically, with each transition to a higher Ra 

value (i.e., Ra=103, 104, 105, 106, and 107), the maximum heat 

transfer rate doubles. This consistent trend reflects the 

progressive intensification of heat transfer as the driving force 

behind the convection phenomenon becomes more 

pronounced. 

Stabilization at High Rayleigh Numbers: A noteworthy 

observation is the stabilization of the heat transfer system as 

the Rayleigh number becomes significantly high. This 
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stabilization indicates the convergence of heat transfer 

processes under the influence of fluid-structure interaction, 

ultimately leading to a consistent heat transfer rate. 

Figure 10 effectively captures the intricate relationship 

between fluid dynamics, convection, and the presence of the 

flexible oscillating fin, showcasing how it profoundly 

influences heat transfer within the cavity. 

In Our study, we consider that the Rayleigh number varies 

between 103 and 107. For values less than Ra=103, the 

convection phenomenon does not initiate. Conversely, for 

Ra=107, the flow regime transitions from laminar to turbulent, 

where the chosen solution method is no longer suitable for this 

model. 

 

 

6. CONCLUSIONS 

 
In this study, a comprehensive numerical investigation was 

conducted to enhance natural convection heat transfer within 

a wavy cavity by harnessing the influence of a flexible 

oscillating fin as a flow rate modulator. Air was selected as the 

working fluid, and the Galerkin finite element method in 

conjunction with the Arbitrary Lagrangian-Eulerian technique 

was used for numerical simulations. 

The primary objective was to explore the impact of fin 

flexibility, coupled with dynamic parameters such as 

amplitude and Rayleigh numbers, on the flow field. The 

interaction between the geometric ratio and Rayleigh numbers 

was examined, revealing significant effects on velocity, flow 

direction, and heat transfer. The Galerkin method facilitated 

the systematic evaluation of these effects. The most significant 

findings are summarized below: 

• A quasi-linear heat propagation pattern is followed for 

Ra=103, with a gradual reduction in thermal intensity observed 

for higher Ra values. 

• Discernible impacts on the stability of isotherms are 

observed in the presence of the flexible fin, with disturbances 

primarily noted above the fin, mainly on the left side of the 

cavity. 

• Fluid velocity exhibits a direct proportionality with the 

Rayleigh number, showing a significant increase at higher Ra 

values. 

• Recirculation zones are highlighted by streamlines, which 

are influenced by the presence of the elastic fin and wavy walls. 

• Significant heat transfer enhancement is observed in the 

presence of the flexible fin, primarily on the left side of the 

cavity, in terms of the local heat flux coefficient. 

• A substantial increase in the heat transfer rate is noted as the 

Rayleigh number increases. 

This study could pave the way for further research, as it is 

based on the relationship between the geometric ratio (Ar) and 

the fundamental equations for fluids and solids within various 

research domains, including nanofluids, porous media, natural 

convection, and forced convection. This approach has not been 

explored before. 
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NOMENCLATURE 

 

1a  Amplitude of wavy surface of cavity ( )m  

2a  The fin’s amplitude ( )m  

b , d  Thickness and length of the fin ( )m  

*E  Young’s modulus
2( / )N m  

*F  The dimensionless transformation gradient tensor 

g  Gravitational acceleration 
2( / )m s  

K  Thermal conductivity ( / )W mK  

Ar  Dimensionless geometry ratio of cavity 

,  W L  Width and height of cavity ( )m  

Pr  Prandtl number 

Ra  Rayleigh number 

*S  tensor of stress
2( / )N m  

t  Non-dimensional time 

T  Temperature ( )K  

pC  specific heat ( / . )J Kg K  

,f fu v  x- and y- velocity components ( / )m s  

,u v  X- and Y- non-dimensional velocity components 

P  Dimensionless Pressure 

rx , 
Lx  Dimensionless equation of the corrugated surface 

right and left 

sx  The dimensionless displacement of the fin 

hc  Local Heat flux coefficient  

x , y  X , 

Y  

Space coordinates ( )m   Dimensionless space 

coordinates 

 

Greek symbols 

 

  Thermal diffusivity
2( / )m s  

  Dimensionless Deplacement structure 

  Thermal expansion coefficient (1/ )K  

1  Dimensionless amplitude in wavy surface 
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2  Non-dimensional amplitude of the fin 

  Frequency of the wavy cavity ( )m  

  Strain 

  Dimensionless temperature 

  Dynamic viscosity ( / )Kg s  

  Kinematic viscosity 
2( / )m s  

  Density
2( / )Kg m  

*σ s  Stress tensor
2( / )N m  

* fσ  The total Cauchy stress tensor 
2( / )N m  

  Dimensionless period of oscillation 

   Non-dimensional stream function 

 

Subscripts 

 

c  Cold 

f  Fluid 

h  Hot 

r  The solid to the fluid property ratio 
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