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Soil salinization is a leading cause of soil and land degradation, necessitating early 

detection for efficient soil management. This study presents an integrated approach 

combining Remote Sensing and Geographic Information Systems (GIS) to identify salt-

affected soils, employing the support vector machine (SVM). The research focuses on 

the town of Ballari in Karnataka, India, an area highly susceptible to soil salinization 

with severe consequences. To evaluate, monitor, and implement remedial measures, 

Ballari was selected as the study area. Data inputs for the SVM model were extracted 

from nine raster layers derived from the 2011 Landsat 9 imagery and DEM SRTM data. 

These layers include the Digital Elevation Model (DEM), Topographic Roughness 

Index (TRI), Topographic Position Index (TPI), Aspect, Slope, Normalized Differential 

Salinity Index (NDSI), Normalized Differential Vegetation Index (NDVI), Normalized 

Differential Moisture Index (NDMI), and Normalized Differential Built-up Index 

(NDBI). Topographical parameters, such as slope, aspect, and other metrics derived 

from DEM, were found to be instrumental in identifying salt-affected soil due to their 

ability to indicate land surface texture. Spectral indices NDSI and NDVI, computed 

using Red and NIR bands, along with the SWIR band, were identified as highly 

effective in delineating salt-affected soils. Following the layer stacking of these nine 

layers to form a multiband composite image, the data set was divided into a 70:30 ratio 

for training and testing, respectively. The model demonstrated an overall accuracy of 

89.59% and a Kappa coefficient of 0.84, underlining the efficacy of this approach in 

predicting soil salinity. 
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1. INTRODUCTION

Soil Salinization, a phenomenon notably prevalent in arid 

and semi-arid regions, involves the accumulation of water-

soluble salts such as chlorides and sulphates [1]. This process 

detrimentally impacts plant growth and, in turn, agricultural 

yield by limiting the soil's quality and the plant's water 

absorption capabilities, leading to plant toxicity and nutrient 

deficiency. It is thus essential to map and monitor salt-affected 

soil distributions to maintain soil quality and maximize 

agricultural productivity. 

In addition to its direct impact on plant life, soil salinization 

also contributes to soil degradation, thereby diminishing soil 

quality and further reducing crop productivity [2]. Such 

outcomes negatively affect the economy, particularly in 

regions where arid and semi-arid climates facilitate salt 

deposition on the soil surface. Compounding this issue are the 

poor quality of groundwater and unscientific irrigation 

practices, both of which exacerbate soil salinization. 

Land and soil degradation due to salinity and sodicity has 

affected approximately 6.73 million hectares of land, resulting 

in a loss of 16.84 million tons of agricultural productivity [3]. 

In response to such widespread degradation, precision 

farming-based strategies offer an effective solution for 

generating thematic maps to reclaim degraded land and 

conserve soil resources, thereby preventing further 

degradation. 

Both primary and secondary factors contribute to soil 

salinization. Primary factors encompass arid and semi-arid 

climatic conditions, groundwater quality, the presence of 

water tables, lithological aspects, mineralogical factors, and 

topographical features. Secondary causes include unscientific 

irrigation practices and improper leaching and drainage 

methods. 

Estimating environmental variables such as soil pH, 

Electrical Conductivity (EC), and Exchangeable Sodium 

Percentage has been found to aid in predicting soil salinity. 

Traditional methods of estimating and predicting soil salinity 

through in-situ soil analysis have been deemed time-

consuming, expensive, and impractical, especially for larger 

study areas and depending on the season. 

Visual indicators initially identify salt-affected soil, but this 

qualitative method requires laboratory analysis for 

quantitative assessment. Soil testing, a weather-dependent 

process, involves sample collection, testing, and analysis, 

proving to be labor-intensive, time-consuming, and costly. 
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Moreover, the process requires skilled labor and may be 

challenging depending on the climate, weather conditions, and 

the terrain of the study area. 

Spatial and temporal soil analysis is required for sustainable 

management. Several studies have been conducted to correlate 

spectral soil characteristics with EC. Soil spectral 

characteristics' analysis through mapping and modeling is 

essential for efficient usage, conservation, and sustainability. 

Machine learning approaches have recently been deployed in 

Digital Soil Mapping for increased accuracy and optimality, 

with the training process being a critical factor in determining 

model accuracy. Optimization algorithms must be 

implemented to identify the exact combination of 

hyperparameters. 

An integrated approach involving Remote Sensing and GIS 

statistical analysis of environmental variables has proven 

useful in predicting soil salinity. Machine learning algorithms 

such as regression, Artificial Neural Networks (ANN), support 

vector machines (SVM), Decision Trees (DT), and Random 

Forest (RF) have been deployed for performance assessment 

and soil salinity prediction, with the choice of algorithm 

depending on the application and study area. 

 

 

2. LITERATURE REVIEW 

 

Support vector machines (SVM) extend the original input 

data space, transforming non-linear data into a high-

dimensional feature space. Compared to non-parametric 

classifiers, such as Neural Networks and the Nearest 

Neighbour algorithm, SVM has demonstrated higher accuracy 

and improved parameter setting. It was discovered that when 

integrated with multi-source data, SVM-based classification 

provided superior accuracy. In this context, the Radial Basis 

kernel was employed in SVM classification. Further, it was 

established that combining SVM-based classification with 

textural features generated the most accurate results. 

Regression-based machine learning approaches, including 

Multiple Linear Regression, binary weighted regression, and 

Random Forest (RF) regression, have been employed in 

estimating soil salinity. The northern irrigated plain of the 

Yinchuan oasis, a region characterized by a semi-arid climate, 

was selected as the study area. A total of 64 environmental 

variables were evaluated using Landsat 8 imagery from both 

dry and wet seasons. The research involved determining 

optimal environmental variables for estimating soil salinity, 

conducting performance analysis of the three regression 

models for predicting soil salinity, and mapping its spatial 

distribution in the area of interest. An attempt was made to 

correlate image indices with soil EC values. Image textures 

were extracted from the Grey Level Co-occurrence (GLCM) 

Matrix, which utilised a 3×3 window size. Indices extracted 

during the dry season exhibited a higher correlation than those 

of the wet season. The Normalised Differential Salinity Index 

(NDSI) displayed the highest correlation with EC and was 

found to be a significant determinant of soil salinity. Among 

the models tested, the RF approach showcased superior 

accuracy, while multiple linear regression produced the largest 

error. The study concluded that an analysis combining spectral 

indices and topographical factors was effective in estimating 

soil salinity. The study serves as a performance comparison of 

three models: Random Forest Regression, Multiple Linear 

Regression, and Binary Weighted Regression, and provides 

substantial evidence for the inclusion of topographic attributes 

in predicting soil salinity [4]. 

A different approach incorporated the firefly algorithm and 

the Multi-Layer Perceptron algorithm (MLP-FFA) to predict 

soil salinity. The selected study area was Miandoab city, 

situated in north-west Iran. Landsat 8 images of the study area, 

with a 10m spatial resolution, were used in the processing. The 

MLP-FFA, a biologically inspired meta-heuristic algorithm, 

was employed for the optimization of neurons with respect to 

their weights and biases, aiming to minimize the root mean 

square error. The firefly algorithm initiates with the 

Initialization phase, followed by the Generation phase, 

Computation of Fitness value phase, Updation phase, and 

concludes with the Optimum solution phase. During the 

Initialization phase, the population size, maximum iteration, 

dimension, and upper and lower bound values are established. 

The position can be updated using the relation in Eq. (1). 

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 (𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 −
𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑).∗ 𝑟𝑎𝑛𝑑 (1, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)  

(1) 

 

The light intensity value or the Fitness Function or the 

Objective Function can be computed using the relation Eq. (2). 

 

𝐹(𝑥𝑖) = ∑  (𝑥𝑖 − 1)𝑛
𝑖=1   (2) 

 

Update the position of each of the fireflies. The random 

movement of the firefly can be traced by adding the current 

position with the step size. The distance between any two 

fireflies can be computed using the distance formula. 

Firefly algorithm can be implemented as a solution dynamic 

problem, to optimize non-linear problems, fault detection and 

feature selection. 

Calibrating and validating of the MLP-FFA has been done 

on the study area along with identifying the most efficient 

environmental variables which are suitable to estimate soil 

salinity has been the main objective of this research. The study 

concludes by making a performance assessment with the 

MLP-FFA with standalone MLP. A number of indices were 

provided as features from which EC was the extracted output. 

High resolution Google Earth (GE) imagery was used to 

identify the sampling points and around 80 samples were 

collected for ground truth verification process [5]. 

The study area chosen is El Outaya plain for the purpose of 

mapping soil salinity. The study area falls under the arid 

climatic zone and the imagery were acquired for the month of 

July as it is the hottest month of the year. Landsat 8 OLI 

imagery were used to develop the spectral indices. 

Comparison of prominent machine learning algorithms such 

as SVM, simple Kriging, CoKriging (SCOK) and Multilayer 

Perceptron Neural Networks (MLP-NN) has been summarized 

in this study. Overall, 136 soil samples were collected from the 

study area from which EC values were analysed. The samples 

were segregated in the ratio 80:20 for training and later on for 

testing phases. MLP-NN exhibited highest accuracy with 

lower values of errors [6]. 

Conditional Hypercube Sampling approach was 

implemented for soil sampling for which the pH, EC and 

Sodium Absorption Ratio (SAR) were calculated. The training 

dataset for the RF model was developed by correlating the 

sampling points with the generated environmental covariates 

derived from spectral indices. The primary goal of this 

research was to predict the pH, EC and SAR of soil in order to 

identify salt affected soil in the study area. Ghorveh region, 

Kurdistan Province, west of Iran has been considered as the 
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area of interest. The study area falls under arid climate and a 

total of 295 soil samples were collected. Topographic factor 

such as quality of ground water, distribution of vegetation and 

lithology are critical in accurately predicting salt affected soils. 

Landsat 8 OLI and Sentinel-2A images were used in this study. 

Ground water table maps, Physiographical categorical maps, 

geology and land use of the study area were also used to 

optimally identify salt affected soils. Varied combinations of 

Genetic algorithm (GA), RF, Bat algorithm and Particle 

swarm optimization (PSO) algorithms were used for 

optimization. Out of these it was found that the RF and PSO 

produced highest accuracy with least error values [7]. 

Monitoring of soils degraded due to salinization by making 

use of hyperspectral remote sensing technology has been the 

main focus of this research work. The SVM and Principal 

Component Analysis (PCA) based regression algorithms 

exhibited optimal performance and hence were chosen to be 

implemented. This research work experimented to understand 

the possibility of deploying hyperspectral remote sensing in 

mapping the spatial extent of salt affected soils. The study 

focused on to assess the soil properties quantitatively such as 

to correlate the spectral reflectance of soil with that of its salt 

concentration. The study concluded by stating that the spectral 

reflectance of soil decreased with increase in levels of soil 

salinity [8]. 

Geostatistical analysis of the Ghaghar basin in India has 

been performed for the purpose of delineating salt affected 

soils. Mapping of Gypsum requirement for reclamation of the 

salt affected land for reducing the plant and soil stress caused 

by sodicity has been the main objective. Overall, 354 soil 

samples were collected using stratified random sampling 

technique during the April-May pre-monsoon seasons. PCA 

was implemented to reducing the dimensions of the dataset as 

well as to identify the minimum dataset required for 

processing; thus, PCA acts as a data reduction technique [3]. 

Flooding has caused land degradation within the Pantanal 

wetland. The mineral diversity of the samples suggests that the 

change in clay minerals occurs gradually through mixed-

layering processes rather than through total breakdown and 

subsequent precipitation. Fresh water inclusion further 

increases the extent of salinity levels which hampers the 

concentration of clay minerals. As cation leaching and 

progressive acidification advance in the impacted soil systems, 

the sequential processes result in the creation of transient 

phases among the various clay types [9]. 

The exchangeable sodium percentage (ESP) is the best 

indicator of soil sodicity, although calculating this index 

requires a lot of work and time. As an alternative, a less 

complex indicator called the sodium adsorption ratio (SAR) is 

frequently employed to calculate soil sodicity. This study aims 

to calculate the ESP using four different methods such as 

assessing the SAR using the saturated paste, evaluating a 

conversion factor represented as a function of percentage of 

saturation, electrical conductivity and implementing 

Generalised Regression Neural Networks (GRNN). While the 

technique lessened the impact of the data on the predictive 

model’s capacity, GRNN models can precisely forecast the 

ESP based on simple soil characteristics. These models offer a 

potentially useful tool for landscapes management which are 

at a risk of degradation. They provide a quick and accurate 

estimate of soil sodicity [10]. 

This research work contributes in assessing the quality of 

soil which has been affected by salinity for optimizing crop 

yield. Soil Quality Indices (SQI) were evaluated and assessed 

for the coastal regions in the west of India. A total dataset 

(TDS) and a minimal dataset (MDS) were used to generate the 

SQIs. An MDS was created using PCA and correlation 

analysis, The linear weighted and non-linear weighted SQI 

based on MDS that were successful in evaluating the SQ of 

acid soils impacted by salt had substantial and adverse 

correlations with EC of 0.83 and 0.70 (p 0.01), respectively. It 

is evident that the SQ significantly decreases when soil salinity 

rises. The ability of the MDS-based SQIs to distinguish 

between various soil salinity classes were superior to that of 

the TDS. Therefore, utilising MDS, linear scoring and the 

weighted technique of the soil quality indexing to evaluate the 

SQ of salt-affected acid soils could be economical [11]. 

This research outlines an attempt to categorise salt-affected 

soil using an enhanced SVM classifier. In this study, thematic 

data for soil damaged by salt using a support vector machine 

using texture features were extracted. The SVM method was 

contrasted with the suggested SVM method. The findings 

showed that identification of salt affected soil for the Yinchuan 

Plain may be successfully extracted using the SVM classifier 

method here. In particular the accuracy was 84.6974% and 

Kappa coefficient obtained was 0.8202, demonstrating its 

robustness to different techniques of classification. Texture 

features will be helpful in identifying objects when their 

spectral features are comparable. Combining textural features 

and spectral features will aid in increasing the accuracy of 

classification in the absence of significant prior knowledge. It 

has been demonstrated that SVM classification using texture 

characteristics produced classification results exhibit higher 

accuracy than compared to other features. The outcomes of 

these tests show that the GLCM offers a reliable way to 

compute the texture features that are capable of accurately 

describing the spatial distributions and structural traits of the 

neighbouring pixels. However, in order to reduce run time and 

enhance accuracy, the texture feature must be chosen while 

employing an SVM [12]. 

This study aims to assess the extent of land degradation 

taking into account human-induced causes, biophysical 

parameters, and climate parameters. Geospatial analysis 

employs a hierarchy-based indexing mechanism. According to 

a study, 27% of the land area is considered to be moderately 

vulnerable, while 67% of the land area is classified as high 

susceptibility. This study supports in urban planning and helps 

to avert further deterioration of land and soil by planning land 

reclamation strategies. According to the validation using 

MODIS Land Surface Temperature (LST) and NDVI datasets, 

the results exhibited an increase in surface temperature 

between 2001 and 2019 and no change in NDVI [13]. 

In the study [13], three distinct regions of Catalonia, Poland, 

and Romania, Sentinel-2 and Landsat 8 satellite pictures were 

used to evaluate classification accuracy. SVM and RF 

algorithms were compared for their performances and 

accuracy parameters. Using randomised training, test, and 

verification pixels iteratively helped to reduce classification 

bias. Reproducing the results and making them comparable is 

made easy by the simplicity of implementation. The findings 

indicate that RF is the second-best classifier, followed by an 

SVM with a radial kernel. It specifies the high accuracy classes 

that can be updated and the classes that need to be redefined 

[14]. 

In the study [15], research work focused on extracting green 

cover using satellite images for the urban towns of Croatia [15]. 

In the study [16], the research work performs change 

detection of urban areas and their assessment for the study area 
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Ballari city, located in Karnataka, India for the duration 1989 

to 2010. NDVI values were computed for all the images to 

analyse the changes in land cover during the period of study. 

Initially the False Color Composite (FCC) was generated 

using the green, red and NIR bands of the dataset. During the 

training phase, GPS data was collected and then verified with 

GE images, after which the training polygons were generated. 

The dataset was divided into 60:40 for training and testing 

operations respectively. Gaussian maximum Likelihood 

Classifier was implemented to classify the study area into 

following classes: urban areas, water bodies, vegetation and 

others [16]. 

In the study [17], Landsat 8 OLI imagery of Dan City, China 

has been used to estimate soil salinity by using a combination 

of Regression algorithm with other machine learning 

algorithms such as Cubist, SVM, RF and Extreme Gradient 

Boosting. The study focuses on developing 15 salinity indices, 

3 vegetation indices and a brightness index to map the spatial 

distribution and extent of soil salinity as well as to correlate 

the changes in land cover with that of soil salinity. 

Performance analysis of machine learning algorithms have 

been done to control the effects of land degradation. It has been 

seen that only continuous variables could be used in 

Regression models. The study proved that the performance of 

SVM based regression depended on the value of sample points. 

RF seemed to be more ideal as it was found to be immune to 

noise effects and speedy processing of a large number of 

independent variables. The Cubist model based with 

Regression is recommended for higher degrees of soil salinity 

[17]. 

 

 

3. MATERIALS AND DATASET 

 

Landsat 9 imagery of Ballari town, Ballari district of 3rd 

February 2023 was downloaded from Earth Explorer Portal. 

The image was downloaded during the summer season with 

cloud cover less than 5% [18]. Out of the 11 bands of Landsat 

9, 6 bands as shown in Table 1 which were of 30m resolution 

were layerstacked to obtain the multiband composite image to 

form the input dataset. 

Generally during the month of February, the land would be 

dry and the images were acquired in the beginning of summer 

season so that there would be no water content in soil. 

The band representations with respect to their frequencies 

are as shown in Table 1. 

 

Table 1. Landsat 9 bands 

 
Band 

Number 
Band Name 

Frequency Range in 

µm 

Resolution in 

m 

Band 2 Visible blue 0.450-0.51 

30 

Band 3 Visible green 0.53-0.59 

Band 4 Visible red 0.64-0.67 

Band 5 
Near infrared 

(NIR) 
0.85-0.88 

Band 6 

Short wave 

infrared-1 

(SWIR) 

1.57-1.65 

Band 7 
Short wave 

infrared-2 
2.11-2.29 

 

3.1 Study area 

 

Ballari districyt is identified at the eastern side of Karnataka 

state in south of India. The district lies between the co-

ordinates 14°30’ and 15°50’ north latitude and 75°40’ and 

77°11’ east longitude. Raichur, Chitradurga, Davangere form 

the neighboring districts of Ballari. It houses a total area of 

8447 sq. km. There are a total of seven taluks viz. Ballari, 

Sandur, Siruguppa, Hadagali, Hospet, Kudligi, H.B. Halli, 

Ballari taluk. Ballari town occupies an area of 180.7 sq. kms. 

This district receives an average rainfall of 639mm during the 

months August to October. Agriculture has become the main 

occupation of this district as over 70% of the total labor force 

is dependent on agriculture for their livelihood. The study area, 

Ballari is a town in Ballari taluk and occupies an area of 92.7 

sq kms with latitude 15.15 N and longitude 76.93 E. Black 

cotton is the most prominent type of soil amidst arid climatic 

zone. Ballari Hills and the Kumbara Gudda hills are spread 

around the city. The average temperature of the city is 34.1℃. 

Ballari, a district belonging to Karnataka, experiences 

frequent droughts due to arid climate and scanty rainfall. 

Under the United Nations Convention to Combat 

Desertification (UNCCD) programme, this district had been 

taken up as a pilot project for assessing the desertification 

process. This project mapped the desertification status of the 

district after which soil reclamation programmes were initiated. 

While extensive mining activities were one of the causes for 

land degradation in the entire district, soil salinization and 

alkalinization caused deterioration in the soil quality. It was 

found that the soil salinization and alkalinization processes 

dominantly occurred in black soils and which adversely 

affected agricultural yield. Thus, it became crucial to identify 

salt affected soil for land and soil conservation [19]. 

Within the study area, the process of salinization has 

significantly deteriorated the quality of soil thus resulting in 

land becoming barren and desertified. Hence it is of immediate 

concern to formulate methodologies to identify and delineate 

salt affected soil so that reclamation measures could be taken 

up. 

Conventional methods of estimating soil salinity involve 

soil sample collection and laboratory analysis through which 

the EC of soil is measured. It has been found that presence of 

EC is a direct indicator of salt affected soil. This method is 

tedious and time consuming. 

Thus, technically advanced methods such as integrated 

approaches involving Remote Sensing and GIS are adopted for 

the purpose of soil and land conservation. In this paper, GIS 

has been effectively used to identify salt affected soil within 

the study area. 

 

3.2 Methodology 

 

The objectives of this research work are to: 

1. Generate an optimal feature set which includes a 

combination of topographical variables and spectral 

indices for predicting soil salinity. 

2. Implement SVM to predict soil salinity. 

Topography refers to the shape of the Earth’s surface and its 

characteristic features [20]. TRI, TPI and Aspect were 

evaluated from DEM SRTM 2011 data of the study area [2]. 

Table 2 refers to the Spectral Indices and band ratios that were 

calculated. 

Aspect ratio of an image is defined as the ratio of the image 

width to its height. The image in Figure 1 shows the aspect 

ratio of input dataset. Inclusion of the aspect ratio as a raster 

input layer in the training phase for the SVM model ensures 

efficient object detection as well as training process. Low and 
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high aspect ratios ranged between-9999 and 359.657 

respectively. 

Figure 2 and Figure 3 shows the DEM and NDBI of input 

dataset. NDBI is evaluated using the ratio of NIR and SWIR 

bands of the input dataset as shown in Table 2. It was observed 

that lower values of NDBI represents vegetation while higher 

values represent built-up areas and negative values represent 

water bodies. A value of -0.355 was considered as the 

minimum value of NDBI and 0.137 as the highest value. 

Figure 4 represents the NDMI map of the study area. NIR 

and SWIR bands have been used to generate the NDMI map 

as these two bands produce the combined effect of removing 

variations from the internal structure of the leaf along with the 

dry matter content present within the leaf. This ensures that the 

moisture content present in the vegetation has been 

represented optimally. A value of 0.355 was considered as the 

maximum value of NDBI and -0.137 as the minimum value. 

To mitigate the effects of soil moisture on the reflectance, it is 

required to generate a model which is insensitive to soil 

moisture which acts as a foundation in identifying salt affected 

soil [21]. 

 

Table 2. Spectral indices 

 
Spectral Function Band Ratios 

NDSI (R–NIR)/(R+NIR) 

NDVI (NIR–R)/(NIR+R) 

NDMI (NIR–SWIR)/(NIR+SWIR) 

NDBI (SWIR–NIR)/(SWIR+NIR) 

 

 
 

Figure 1. Aspect ratio map 

 

 
 

Figure 2. DEM map 

 
 

Figure 3. NDBI map 

 

 
 

Figure 4. NDMI map 

 

Figure 5 represents the NDVI map of the study area. It is the 

most popular and significant vegetation index. It has been 

observed that healthy green vegetation absorbs 

electromagnetic radiation in the visible region of the spectrum. 

The presence of chlorophyll enables the absorption of blue and 

red frequencies while it reflects the green radiation. Since 

healthy vegetation exhibit high reflectance in the NIR region 

and high absorption in the red region, these two bands are used 

to evaluate the NDVI. While NDVI values ranging from 0.6 to 

1.0 indicate thick vegetation, 0.2 to 0.5 indicate shrubs, -0.1 to 

0.1 indicate barren rocks or sand and -1 to 0 indicate water 

bodies. A value of -0.056 has been the minimum value and 

0.481 maximum value of NDVI. This range of NDVI values 

indicate that the study area consists of shrubs which are 

randomly scattered with no traces of vegetation and the land 

seems to be barren. NDVI values assists in estimating the 

developing stages of the vegetation and also indicates the 

amount of greenness within the pixel. 

 

 
 

Figure 5. NDVI map 
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SVM is a supervised machine learning classification 

algorithm very popularly used for mapping changes in LULC. 

In this approach a hyperplane is developed which separates the 

data points into a number of classes. In this research work, 

SVM has been implemented to find the distribution and extent 

of soil salinization by classifying the study area into the 

following classes: water bodies, low saline, medium saline, 

high saline and no salinity. The hyperplanes are constructed 

such that the distance between the classes is maximum and that 

classes are homogeneous. Training process plays a key role in 

determining the accuracy of the algorithm [22]. 

Initially the scheme of classification is to be determined. In 

this work as mentioned earlier, the study area is classified into 

5 classes which are water bodies, low saline, medium saline, 

high saline and no salinity. 

The two critical factors that decide the performance of a 

classifier are selecting a model and determining an appropriate 

feature sub-space to carry out the classification. 

SVMs can be described as a binary classifier with 

supervised learning mechanism where the training set consists 

of a set of vectors V, from a feature space S whose dimension 

is d. 

Each of the vectors vi can be represented as in Eq. (3): 

 

𝑣𝑖 ∈ 𝑅𝑑(𝑖 = 1,2, . . . , 𝑉) (3) 

 

In the linear mode, SVM algorithm classifies the dataset 

into two classes with the help of a hyperplane. In case of non-

linear datasets, the SVM transforms the input dataset into a 

high dimensional feature space Φ (S) by using the kernel 

method as in Eq. (4). 

 

𝛷 (𝑆) ∈ 𝑅𝑑′(𝑑′ > 𝑑) (4) 

 

If f(x) represents the discriminant function which is 

associated with the hyperplane in the transformed feature 

space, then it is given by the expression as in Eq. (5). 

 

𝑓(𝑥) = 𝑧∗. 𝛷 (𝑥) + 𝑎∗ (5) 

 

It is to be noted that z* represents the optimum hyperplane, 

where, z*∈Rd' and a* which is the bias ∈R [21]. 

In research works [23, 24], a robust model was developed 

using SVM which was integrated with biophysical factors for 

the quantitative assessment and monitoring of soil salinity 

within the study area Yanqi Basin, Xinjiang, China. The 

performance of SVM showed highest accuracy when 

compared to ANN. In this research work the performance of 

the algorithms were compared with the EC values in the 

validation phase. It proved that SVM showed optimal results 

in predicting soil salinity. 

In the study [25], SVM, a supervised learning classification 

algorithm is found to be robust in handling high dimension 

data. It exhibits high efficiency during the training phase. 

SVMs show higher accuracy to classifying land cover types 

than compared to Maximum Likelihood Classification, 

Decision trees and Multi-layer Perceptron Neural Networks. 

Since training phase is crucial in SVM, the pixels to be trained 

should be of homogeneous nature to attain highest accuracy. 

It was evident that SVM showed much accuracy with 

overall accuracy value being 92% and Kappa Co-efficient 

value being 0.89 while maximum Likelihood classifier 

showed overall accuracy of 87% with kappa coefficient value 

0.83 [25, 26]. 

4. RESULTS AND DISCUSSION 

 

Figure 6 shows the input image being divided in the ratio 

70:30 for training and testing operations respectively. 

Classification is the process of extracting useful information 

from images. SVM which is a supervised classification 

technique has been implemented in this work. 

Making use of the ground truth data, the classified image 

was verified. Figure 7 shows the SVM classified image which 

identified the salt affected areas. 

The study area was delineated based on the different levels 

of salinity as highly saline, medium saline, low saline and no 

salinity regions as shown in Figure 7. 

Confusion matrix was generated which gave the values of 

overall accuracy and Kappa co-efficient which were found to 

be 89.59% and 0.84 respectively. The actual and predicted 

pixel classification percentage has been tabulated in Table 3. 

The accuracy can be further improved by increasing the 

training samples to the model and also by increasing the 

resolution of input dataset. 

 

 
 

Figure 6. Training and testing points 

 

 
 

Figure 7. SVM based classified image 

 

Table 3. Confusion matrix 

 

 High 

Saline 

No 

Salinity 

Medium 

Saline 

Low 

Saline 

Water 

Body 

Unclassified 0 0 0 0 0 

High saline 93.16 0.84 0 0.65 2.54 

No salinity 0.85 93.81 0.38 0.61 7.85 

Medium saline 0 1.55 83.99 1.75 4.39 

Low saline 2.14 0.42 13.94 93.95 26.1 

Water body 3.85 3.38 1.69 3.04 59.12 

Total 100 100 100 100 100 
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This work focussed on how to identify the salt affected soil 

within the study area. Thus, the study area was classified into 

water bodies, low salinity, medium salinity, no salinity and 

high salinity classes so that appropriate reclamation measures 

could be taken up for soil and land conservation. It also serves 

as a basis for farmers and other individuals to plan cultivation 

of salt tolerant crops in the next cycle. 
 

 

5. CONCLUSIONS 
 

In this investigation, salinity maps were constructed for the 

study area, utilising multi-spectral characteristics and textural 

features as data sources for the SVM classification. SVM, a 

robust and potent tool used for both classification and 

regression tasks, is effective in accommodating high-

dimensional datasets and can be applied to both binary and 

multi-class classification scenarios. A hyperplane is 

constructed, positioned such that it maximises the distance 

between the classes, with support vectors representing the 

points closest to the hyperplane. The SVM strives for margin 

maximisation, where the margin is defined as the distance 

between two classes. 

The technique of Band ratioing was employed in this study 

to evaluate the Spectral indices, wherein nine raster layers 

were analysed and supplied to the SVM model for 

classification, aimed at delineating salt-affected soils. A 

prevalent challenge in the classification of salt-affected soil 

was the identical reflectance values exhibited by sand and salt-

affected soil, leading to misclassification. To counter this, a 

combination of spectral indices was selected and evaluated to 

enhance the classification accuracy. 

The feature selection and extraction process play a pivotal 

role in Land Use/Land Cover (LULC) classification and 

change detection studies. LULC Maps serve as a foundation in 

land planning and urban development [27]. In this work, a 

combination of topographic features and spectral indices were 

chosen to optimise the identification of salt-affected soil. 

Topographic features, including aspect, slope, Terrain 

Ruggedness Index (TRI), and Topographic Position Index 

(TPI), were extracted from the Digital Elevation Model 

(DEM). Selected spectral indices included Normalised 

Differential Salinity Index (NDSI), Normalised Differential 

Moisture Index (NDMI), and Normalised Differential Built-up 

Index (NDBI), thereby enhancing the classification accuracy. 

The SVM classification algorithm used in this study yielded 

an overall accuracy and Kappa co-efficient of 89.59% and 0.84, 

respectively, indicating that approximately 89% of the 

classification results were consistent with ground truth values. 

Notably, there were no unclassified pixels in this method. 

To further enhance classification accuracy, the inclusion of 

the Normalised Differential Nitrogen Index (NDNI) may 

prove beneficial, as it represents soil alkalinity, where lower 

levels signify higher salinity. NDNI assesses soil nitrogen 

content using the Near-Infrared (NIR) and Red bands. Higher 

NDNI values denote a higher concentration of nitrogen, 

reflecting increased chlorophyll levels and, by extension, 

vegetation quantity. Nitrogen content indirectly influences soil 

salinity, as salinity levels alter the soil structure. Hence, 

nitrogen-based irrigation practices can aid in maintaining plant 

growth and soil structure. To mitigate soil salinity effects and 

balance overall soil nutrient concentration, nitrogen-based 

fertilisation could be a potential solution. 

The identification and classification of salt-affected soil can 

underpin reclamation programmes, whereby remedial actions 

can be undertaken by individuals or organisations to maintain 

and monitor soil quality. Such measures, including the 

cultivation of salt-tolerant crops, well-planned irrigation 

practices, and judicious use of fertilisers, can contribute 

significantly to land and soil conservation. 
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NOMENCLATURE 

 

DEM digital elevation model 

SRTM shuttle radar topography mission 

SVM support vector machine 

TRI Topographic Roughness Index 

TPI Topographic Position Index 

NDSI normalised differential salinity index 

NDVI normalised differential vegetation index 

NDMI normalised differential moisture index 

NDBI normalised differential built-in index 

ANN artificial neural networks 

DT decision trees 

GPS global positioaning system 

GIS geographic information system 

MLP-FFA multi layer perceptron-fire fly algorithm 

GLCM grey level co-occurrence matrix 

SCOK simple kriging, cokriging 

SAR sodium absorption ratio 

OLI operational land imager 

PSO particle swarm optimization 

PCA principal component analysis 

GRNN generalised regression neural networks 

SQI soil quality indices 

MDS minimal dataset 

LST land surface temperature 

TDS total dataset 

FCC false color composite 

GE google earth 

UNCCD 
united nations convention to combat 

desertification 

EC electrical conductivity 
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