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Advancements in EEG biometric technologies have been hindered by two persistent 

challenges: the management of large data sizes and the unreliability of data resulting from 

various measurement environments. Addressing these challenges, this study introduces a 

novel methodology termed 'Cube-Code' for cognitive biometric authentication. As a 

preliminary step, Automatic Artifact Removal (AAR) leveraging wavelet Independent 

Component Analysis (wICA) is applied to EEG signals. This step transforms the signals into 

independent sub-components, effectively eliminating the effects of muscle movements and 

eye blinking. Subsequently, unique 3-Dimensional (3-D) Cube-Codes are generated, each 

representing an individual subject in the database. Each Cube-Code is constructed by 

stacking the alpha, beta, and theta sub-band partitions, obtained from each channel during 

each task, back-to-back. This forms a third-order tensor. The stacking of these three sub-

bands within a Cube-Code not only prevents a dimension increase through concatenation 

but also permits the direct utilization of non-stationary data, bypassing the need for fiducial 

component detection. Higher-Order Singular Value Decomposition (HOSVD) is then 

applied to perform a subspace analysis on each Cube-Code, an approach supported by 

previous literature concerning its effectiveness on 3-D tensors. Upon completion of the 

decomposition process, a flattening operation is executed to extract lower-dimensional, task-

independent feature matrices for each subject. These feature matrices are then employed in 

five distinct deep learning architectures. The Cube-Code methodology was tested on EEG 

signals, composed of different tasks, from the PhysioNet EEG Motor Movement/Imagery 

(EEGMMI) dataset. The results demonstrate an authentication accuracy rate of 

approximately 98%. In conclusion, the novel Cube-Code methodology provides highly 

accurate results for subject recognition, delivering a new level of reliability in EEG-based 

biometric authentication. 
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1. INTRODUCTION

Researches on authentication systems have gained 

momentum due to the increased demand for both their 

comfortable use by disabled people and the intensified security 

in internet-enabled commercial applications. An 

authentication procedure can be comprised of three main 

principles: (i) what the person knows (password/personal 

identification number), (ii) what the person has (key, smart 

card, etc.), and (iii) who the person is (fingerprint, face, etc.). 

The systems based on what the person knows and/or owns 

have the disadvantage in case of personal information 

forgetting. On the other hand, the “who the person is” systems, 

known as traditional biometric systems, is based on the 

physiological (face, fingerprint, palm, retina, etc.) and 

behavioral (signature, voice, etc.) characteristics of 

individuals. The existence of these universal, permanent, time-

invariant, collectable, and distinctive characteristics for all 

individuals makes biometric systems even more important in 

emerging technology. 

Fingerprint is the first biometry preferred in traditional 

biometric systems in the literature [1-8]. Besides, face [9-12], 

retina [13], iris [14-16], hand geometry [17-20], finger 

geometry [21], palms [22, 23], ear shape [24-26], hand vein 

[27], palm vein [28], and finger vein [29] as well as some 

behavioral characteristics such as signature [30, 31], voice 

[32], eye movements [33-35], and keystroke dynamics [36, 37] 

are also frequently used for biometric systems. Furthermore, 

biometric systems performed by collaborating more than one 

biometrics, are also mentioned in the literature [38-41]. 

Although these biometrics gain fabulous popularity by 

satisfying more security than the what the person knows and 
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what the person has policies, they can easily be falsified due 

to malicious technology usage [42]. Besides, verification of 

the person’s aliveness is another problem that the 

authentication systems face [43]. Due to these reasons and the 

motivation from the “Pass-Thoughts” principle [44], research 

on cognitive biometric authentication systems has come to the 

fore [45]. These systems investigate the electroencephalogram 

(EEG), which is a noninvasive electrical recording method for 

monitoring brain activity [46], signals based on “what the 

person thinks” [47]. The EEG biometry is a measure of brain 

activity collected during cognitive or emotional stimulus; and 

provides an advantage over the aforementioned shortcomings 

due to its anti-spoofing capability, privacy compliance, 

shoulder-surfing resistance, and inherent verification of the 

person’s aliveness [42, 44, 45, 48, 49]. Besides the forgery 

circumvention, the sensitivity of EEG signals to 

environmental conditions also provides the advantage of 

access security to cognitive biometrics by preventing the 

access of the high-stress-detected user who is forced to enter 

the system [50]. 

An EEG-based biometric system, like all biometric systems, 

consists of an enrollment and a recognition phase while the 

recognition phase can be operated in two modes based upon 

the application: Verification or identification. In an enrollment 

phase, any individual is registered by constructing a relation 

between itself and its biometric characteristics. In the 

verification mode of the recognition phase, one-to-one 

comparisons are accomplished to validate the identity that an 

enrolled user claims to be, in order to prevent multiple user 

match with the same identity. On the other side, the 

identification mode tries to recognize an enrolled user via one-

to-many comparisons. 

In the literature, Thorpe et al. recorded and processed brain 

signals using a brain-computer interface, so-called “Pass-

Thoughts” using the P300 method. They state that a thought 

which belongs to an image, an imagined movement, an 

emotion or a reminiscence can be used as a biometric 

characteristic, if the recording and processing of collected 

brain signals is precise and repeatable [44]. In the 

implementation of the “Pass-Thoughts” protocol proposed in 

[44, 45], the brain signals of 15 people are recorded under 

various tasks with the Neurosky MindSet headset, which 

includes an EEG sensor measurement system from the left-

frontal lobe [45]. These tasks are stated as breathing, thinking 

about finger movements, thinking about a repetitive sports 

movement, singing a song or thinking about reading a passage, 

moving eye with music, counting colors and thinking about a 

code. In these given tasks, alpha and beta sub-bands were 

selected from the recorded EEG signals and these sub-bands 

were compressed to obtain spatially one-dimensional signals. 

The percentage difference values for self-similarity and cross-

similarity metrics were expected to be equal to or greater than 

a certain threshold value, and finally 99% authentication 

accuracy is achieved. Ishikawa et al. followed the same 

approach, and they obtained a maximum accuracy of 98.2% 

for the EEG signals collected from the 12 electrodes of 16-

electrode BioSemi medical EEG headset [51]. 

Marcel and del Millan [52] took EEG measurements from a 

32-electrode BioSemi medical EEG headset under three tasks: 

thinking of repetitive movement of left hand, thinking of 

repetitive movement of right hand, and generating words with 

the same random letter. They extracted power spectral density 

features from noise-removed signals by Laplace filtering, and 

the identification was performed with the Gaussian modeling 

with the largest posterior adaptation. Sohankar et al. [53] 

performed a feature extraction step from EEG signals 

measured on a single channel from 15 people without 

preprocessing. As a result of Naive Bayes classification of 

alpha sub-bands, an authentication accuracy of 80% was 

provided. On the other hand, Riera et al. [54] performed two-

channel EEG measurement in the resting state of 40 people 

and extracted two different feature groups. The first group of 

these features is the autoregression and Fourier transform 

coefficients while the other group was the measure of mutual 

information, consistency, and correlation. It was stated that an 

accuracy of 79.2% was obtained from the features classified 

by Fisher Linear Discrimination Analysis (FLDA). 

Ruiz-Blondet et al. [48] discussed that the sensitivity of 

biometric verification can be improved as a result of 

combining the measurements taken from many channels and 

checking the cognitive status of individuals instead of using a 

single-channel EEG signal. They made measurements using 

26 electrodes from 56 people while showing pictures of black-

white sinus grids, low-frequency words, food, and famous 

faces. Wu et al. [50] recorded 16-channel EEG measurements 

from 40 person by showing one of their own faces and nine of 

familiar or unfamiliar face images. Besides, Zeng et al. [55] 

used person's own face and other different faces for EEG 

stimulation. In a recent study for EEG biometrics, Goudiaby 

et al. [56] performed multi-channel verification using the 

Emotiv Epoc system, and Zeynali and Seyedarabi [57] 

classified single channel signal recordings using ANN, 

Support Vector Machine (SVM) and Bayes classifier. Orrú et 

al. [58] showed that an effective EEG-based verification can 

be made by using a smaller number of sensors, and they 

confirmed that the gamma sub-band contains the best 

distinguishing data in person verification. 

Despite its advantages, EEG biometrics also has its intrinsic 

problems: (1) large data size, and (2) sensitivity of EEG 

signals to environmental conditions [59, 60]. Projection of 

high-dimensional data into a lower-dimensional space is 

proposed in the literature to overcome the large data size 

problem [59]. Kumar et al. [61] proposed a new approach for 

modelling multi-channel EEG data as biometric signatures 

regardless of task/condition by using the fundamentals of 

subspace-based text independent speaker verification. They 

applied the high dimensional statistics EEG signals, then 

projected them into a lower dimensional subspace. The 

authentication accuracies of 86.4% and 35.9% are obtained by 

their proposed approach on datasets with 30 and 920 subjects, 

respectively.  

Although the affectability of the EEG signals due to the 

changing conditions is able to provide access security, it may 

also disable to construct a robust model since the EEG signals 

measured via different sensors and/or under different tasks 

drastically differ [59]. He proposed an independent 

component-based approach for the feature extraction process 

on EEG signals measured from several sensors [59] while 

Rahman et al. [62] proposed a novel multimodal biometric 

system that is a hybrid of EEG and keystroke dynamics. The 

main idea is to overcome the deficiency of being sensitive to 

different psychological and physiological conditions of EEG 

biometrics with the higher accuracy of a key-stroke dynamic 

based system.  

The motivation of this paper is to hit the two major problems 

of EEG biometrics with one arrow by the proposal of a Cube-

Code methodology. The proposed methodology was verified 

on the EEG signals composed of different tasks on PhysioNet 
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EEG Motor Movement/Imagery (EEGMMI) dataset [63], in 

this paper. In the proposed methodology, first of all, an 

effective Automatic Artifact Removal (AAR) algorithm was 

applied on EEG signals. An EEG signal comprises of five 

frequency components which are Delta (𝛿) [0.5 - 4Hz], Teta 

(𝜃) [4 – 8 Hz], Alfa (𝛼) [8 – 14 Hz], Beta (𝛽) [14 – 30 Hz], 

and Gama (𝛾) [ > 30 Hz] [47]. Being the major ones, the theta, 

alfa, and beta sub-bands are thought to be critically important 

for authentication. Analyzing these three sub-bands separately 

may cause information loss due to the neglection of their 

mutual complementary relationships and require detecting 

fiducial components such as P300 or N400 on the signals. 

Besides, analyzing the sub-bands separately results in further 

increment on data size. On the contrary, a novel 3-

Dimensional (3-D) Cube-Codes were created by jointly 

combining the theta, alfa, and beta sub-bands of EEG signals 

of a person to separately represent each person (subject) in 

database, in this paper. 3-dimensionalization of these critically 

important sub-bands instead of concatenating them, prevents 

the further increment of the data dimension. In addition, using 

the 3-D Cube-Code representation rather than the 1-

dimensional signal measured on any task from any sensor 

enables the direct usage of the non-stationary data. Thus, the 

necessity of fiducial component detection is eliminated; 

therefore, both time consumption for the detection and 

performance loss due to possible false detection are prevented. 

The generated Cube-Codes are essentially 3-D tensors, and 

these tensors are constructed on each signal measured from 

each sensor during each task, as shown in Figure 4. Direct use 

of these tensors in the feature extraction process still causes 

dimensionality problems, and also the system becomes task-

dependent this way. Motivated by the proven performance of 

Higher-Order Singular Value Decomposition (HOSVD) on 3-

D tensors [64], the HOSVD on these Cube-Codes was attained. 

After this decomposition procedure, a matricizing (also 

referred to as flattening) operation was accomplished in order 

to extract the lower-dimensional, and task-independent feature 

matrices of a person. Finally, five different well-celebrated 

deep learning architectures are separately applied on these 

feature matrices, and approximately 98% biometric 

authentication accuracy rates were attained. The proposed 

novel approach, named as Cube-Code, provides fairly 

satisfactory results for subject recognition.  

This paper is organized as follows: In the next section of 

this paper, HOSVD of 3-D tensors and the deep learning 

architectures utilized to perform the authentication process are 

explained in detail. In the third section, the EEG data 

acquisition including the database information, pre-processing, 

Cube-Code generation procedures, and the revealed results are 

elaborately given. Ultimately, all of the conclusions and future 

work are presented in the last section.  

 

 

2. MATERIALS AND METHODS 

 
2.1 Database 

 
The EEGMMI dataset [63], a popular benchmark dataset 

publicly available in PhysioNet [65], is used for the 

verification of the proposed method. This database consists of 

one- and two-minute EEG recordings of 109 subjects collected 

during 14 experimental runs (tasks) from 64 electrodes 

distributed over the scalp according to the international 10-10 

configuration and sampled at 160 Hz. The first two 

experimental runs are one-minute baseline runs with eyes open 

and eyes closed, respectively. The rest 12 experiments are 

performed during two-minute runs under different motor 

movement/imagery tasks of: (1) opening and closing of left or 

right fist, (2) imagination of opening and closing of left or right 

fist, (3) opening and closing of both fists or both feet, (4) 

imagination of opening and closing of both fists or both feet. 

 

2.2 Higher-order singular value decomposition (HOSVD) 

 
The traditional Singular Value Decomposition (SVD) of a 

matrix is a very beneficial stage in the classification problems 

[64]. Since any real-valued matrix F is given as 

 

𝑭 ∈ ℝ𝑀×𝑁 and M≥N (1) 

 

the matrix F can be decomposed into three different matrices 

by SVD, such that: 

 

𝑭 = 𝑼Ʃ𝑽𝛵 (2) 

 

where, the matrix U spans the row space of F, the matrix V 

spans the column space of F and Ʃ is a diagonal matrix of 

singular values. Alternatively, F is expressed in terms of the 

n-mode products: 

 

𝑭 = Ʃ ×1 (𝑼) ×2 (𝑽) (3) 

 

where, ×1 is 1-mode product and ×2 is 2-mode product. 

HOSVD can be considered as one type of generalization of 

the matrix singular value decomposition (SVD) which is pretty 

successful and preferred decomposition method especially in 

machine learning, signal processing and computer vision [66]. 

In other words, it is multilinear algebraic version of SVD, and 

it is used for “n” dimensional data. The “n” dimensional data 

is also termed as “nth – order” tensor that has “n” indices. Since 

the three prominent and important EEG sub-bands (theta (θ), 

alpha (α), and beta (β)) constitute a 3-D shape thoroughly 

explained in the experimental study section, a multilinear 

counterpart of the classical SVD methodology, HOSVD, is 

favored for the feature extraction process from 3-D sub-band 

structures. Therefore, a third order tensor is formed for each 

class, and “n” equals to 3 in this paper. The singular values 

have a very close relationship with eigenvalues. Since 

eigenvalues explicitly indicate the inherent scattering of data, 

the singular values, which are nonnegative, also give the 

characteristic and dimension-based properties of a tensor.  

A third order tensor 𝔗 can be written as: 

 

𝕿 = (𝜹) ×1 (𝑼) ×2 (𝑽) ×3 (𝑾) (4) 

 

where, δ is called as core tensor and U, V, and W are the 

orthogonal matrices. Also, ×1 is 1-mode product, ×2 is 2-mode 

product and ×3 is 3-mode product. The restructuring of the 

elements for a tensor is referred to as flattening of a tensor. 

The “mode-n flattening” of a tensor 𝔗 is an operation in which 

the tensor 𝔗 is converted into matrices based upon its 

dimension “n”, denoted as 𝕿(𝑛). The HOSVD of a tensor 𝔗 

can be performed by separately computing the orthogonal 

matrices U, V, and W which can be calculated by applying 

three distinct SVDs onto each mode-n flattening of tensor 𝔗, 

separately: 
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𝔗(1 )=𝑼Ʃ1(𝒀1)T 

𝔗(2 )=𝑼Ʃ2(𝒀2)T 

𝔗(3 )=𝑼Ʃ3(𝒀3)T 

(5) 

 

where, Yi’s are the right singular matrices of 𝕿(𝑖)’s. Then, the 

core tensor δ is evaluated as: 

 

𝜹 = (𝕿) ×1 (𝑼T) ×2 (𝑽T) ×3 (𝑾T) (6) 

 

Finally, the basis matrices (Xi) of tensor 𝔗 are found as: 

 

𝑿𝒊 = [𝜹(: , : , 𝒊)] ×1 (𝑼) ×2 (𝑽) i =1, 2, …, P (7) 

 

where, P is the value for third dimension of tensor 𝔗 in each 

class. Xi's are orthogonal to each other. The singular values 

corresponding to these basis matrices are non-negative and 

they are calculated as: 

 

𝝈𝒊 = ‖𝜹(: , : , 𝒊)‖𝐹  𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑃 ≥ 0 (8) 

 

2.3 Deep learning network architectures 

 

There are various deep learning network architectures that 

were designed since the last decade. In this paper, five 

prominent architectures were implemented and brief 

information about these architectures is given in the following 

subsections. 

 

2.3.1 MobileNetV2 architecture 

Recently, a team of researchers from Google released an 

architecture MobileNetV2, which is optimized especially for 

mobile devices [67]. MobileNets are small, low-latent, low-

power architectures parameterized in order to satisfy the 

source restrictions of many devices. MobileNetV2 is built on 

a reversed residual architecture where the connections are 

made between the bottleneck layers. The middle extension 

layer uses lightweight convolutions to filter out the features 

resulted from the non-linearity issue. The architecture of 

MobileNetV2 comprises of an initial fully convolution layer 

with 32 filters followed by 19 bottleneck layers. MobileNetV2 

architecture improves the state-of-the-art performance of 

mobile architectures with a spectrum of different model sizes. 

The depth-wise (cross-channel) architecture of MobileNetV2 

with separable convolutions focuses on the reduction of the 

model size and complexity without compromising the 

accuracy when computational power is very limited and input 

data is very complex. This focus attracts the use of this 

network for high-dimensional data such as multi-channel EEG 

signals. 

 

2.3.2 InceptionV3 architecture 

Inception Networks are designed with parallel layers 

instead of deep layers in order to overcome the memory and 

computational cost restrictions of VGGNets [68]. The 

InceptionV3 architecture is an optimized version of its 

predecessors. Factorization of large convolutions in 

InceptionV1 architecture into smaller convolutions and 

applying spatial factorization into asymmetric convolutions 

are major optimizations building the InceptionV2 architecture. 

The InceptionV3 architecture differs from the InceptionV2 

architecture in using auxiliary classifiers, which act as 

regularizers satisfying higher accuracies. Another major 

modification done on the InceptionV3 architecture is reducing 

the grid size by expanding the activation dimension of the 

network filters. Utilization of multiple kernel sizes in the same 

layer enables both local and global feature extraction which is 

very beneficial for complex EEG data. 

 

2.3.3 Xception architecture 

Xception architecture [69] is the upgraded version of 

Inception network architectures. It uses a modified form of 

classic depth-wise separable convolution. The first difference 

between the architectures of Xception and Inception networks 

is that the original depth-wise separable convolutions initially 

accomplish channel-wise spatial convolution and then 

implement 1×1 convolution whereas the modified depth-wise 

separable convolution initially achieves 1×1 convolution and 

then channel-wise spatial convolution. Therefore, the order of 

operations is changed. The second difference is that there is 

non-linearity after the first convolution operation. In the 

Xception architecture, there is no intermediate non-linearity. 

The key advantage of Xception is its consideration of cross-

channel and spatial correlations within each channel separately, 

allowing it to model more complex features in the data. This 

is particularly beneficial for EEG data, which has complex 

spatial and temporal correlations in different channels with 

distinct information. 

 

2.3.4 ResNet50 architecture 

Residual Network (ResNet) architectures are introduced by 

Microsoft intending to solve the vanishing gradients and 

degradation problem exposed by adding shortcut connections 

in the residual blocks of the network [70]. These connections 

create shortcut paths for the gradient to flow through by 

skipping one or more layers that hurt the performance of the 

architecture. Therefore, the ResNet architecture is 

satisfactorily trained by deeper networks with a minimized 

error percentage. This is beneficial for EEG-based 

authentication since an EEG signal often contains complex 

and subtle patterns that generally deeper networks may capture 

better. The ResNet50 architecture is a variant of ResNets 

which has 48 Convolution, one Maximum Pool and one 

Average Pool layers.  

 

2.3.5 EfficientNet–B0 architecture 

EfficientNet architecture scales up the depth, width, and 

resolution of the networks uniformly using a fixed set of 

coefficients of d, ω, and r, respectively, which is defined by a 

compound coefficient ∅ [71]. 

 

𝑑 = 𝛼∅ 𝜔 = 𝛽∅ 𝑟 = 𝛾∅

𝑠. 𝑡. 𝛼 ∙ 𝛽2 ∙ 𝛾2 ≈ 2

𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1

 (9) 

 

The constants α, β, and γ in Eq. (9) indicate how to assign 

the computational resources to the network depth, width, and 

resolution, respectively, while the number of these resources 

are controlled by the compound coefficient ∅ . Different 

models of EfficientNets are obtained by using different ∅ 

values. The EfficientNet–B0 Architecture uses the values of 

α=1.2, β=1.1, and γ=1.15 with ∅ = 1 . The efficiency of 

uniform scaling of all dimensions, for multi-channel EEG 

signal, and less computational cost acquiring similar accuracy 

to other complex models make it worth comparing the 

functionality of EfficientNet-B0 in EEG-based authentication 

systems. 
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Table 1. Dataset description 

 
Task Code Task Description Dimension of Data Duration 

T01 Baseline run while eyes are open 9760×64 for all subjects 61 seconds for all subjects 

T02 
Baseline run while eyes are 

closed 
9760×64 for all subjects 61 seconds for all subjects 

T03 Open and close left or right fist 
20000×64 for S001, S003, and S007 

19680×64 for other subjects 

125 seconds for S001, S003, and S007 

123 seconds for other subjects 

T04 
Imagine opening and closing left 

or right fist 

20000×64 for S001, S003, and S007 

19680×64 for other subjects 

125 seconds for S001, S003, and S007 

123 seconds for other subjects 

T05 
Open and close both fists or both 

feet 

20000×64 for S001, S003, and S007 

19680×64 for other subjects 

125 seconds for S001, S003, and S007 

123 seconds for other subjects 

T06 
Imagine opening and closing both 

fists or both feet 

20000×64 for S001, S003, and S007 

19680×64 for other subjects 

125 seconds for S001, S003, and S007 

123 seconds for other subjects 

T07 Open and close left or right fist 
20000×64 for S001, S003, and S007 

19680×64 for other subjects 

125 seconds for S001, S003, and S007 

123 seconds for other subjects 

T08 
Imagine opening and closing left 

or right fist 

20000×64 for S001, S003, and S007 

19680×64 for other subjects 

125 seconds for S001, S003, and S007 

123 seconds for other subjects 

T09 
Open and close both fists or both 

feet 

20000×64 for S001, S003, and S007 

19680×64 for other subjects 

125 seconds for S001, S003, and S007 

123 seconds for other subjects 

T10 
Imagine opening and closing both 

fists or both feet 

20000×64 for S001, S003, and S007 

19680×64 for other subjects 

125 seconds for S001, S003, and S007 

123 seconds for other subjects 

T11 Open and close left or right fist 
20000×64 for S001, S003, and S007 

19680×64 for other subjects 

125 seconds for S001, S003, and S007 

123 seconds for other subjects 

T12 
Imagine opening and closing left 

or right fist 

20000×64 for S001, S003, and S007 

19680×64 for other subjects 

125 seconds for S001, S003, and S007 

123 seconds for other subjects 

T13 
Open and close both fists or both 

feet 

20000×64 for S001, S003, and S007 

19680×64 for other subjects 

125 seconds for S001, S003, and S007 

123 seconds for other subjects 

T14 
Imagine opening and closing both 

fists or both feet 

20000×64 for S001, S003, and S007 

19680×64 for other subjects 

125 seconds for S001, S003, and S007 

123 seconds for other subjects 

 

All the extracted feature matrices are reshaped into 

corresponding matrix sizes for each deep learning network 

architecture so that they are properly treated in the layers of 

architectures. The number of epochs is preferred as ten by 

carefully tracking the convergence of the loss function for each 

architecture. 

 

 

3. EXPERIMENTAL STUDY 

 
The proposed biometric identification system in this paper 

consists of two major phases: enrollment and recognition. The 

initial step of this system is the data acquisition. The EEGMMI 

dataset [63] is used for the verification of the proposed system. 

The enrollment phase of the system is responsible for the 

registration of individuals performing feature extraction after 

several pre-processing steps applied to the EEG signals. On 

the recognition side, identification is realized using these 

features in the classification. The performance of the proposed 

system is evaluated based on the recognition phase findings. 

 

3.1 Data acquisition 

 

A subset belonging to the first 20 subjects of the EEGMMI 

dataset is used in this paper. This subset includes EEG 

recordings collected from each of 64 channels during 14 

experimental runs. Table 1 gives a brief description of the 

tasks in experiments and indicates the duration and dimension 

of data per task for each of the 20 subjects [63]. The data per 

channel is constructed by column-wise concatenation of EEG 

signal samples for each channel. Subjects 1-20 and 

experiments 1-14 are coded as S001-to-S020 and T01-to-T14, 

respectively in the rest of the paper. As a sample of the dataset, 

the 10-second-EEG recordings of S001, collected from FP1 

sensor during each experiment and from the FP1, TP7, and 

Po8 during T01, are plotted in Figures 1 and 2, respectively.  

3.2 Pre-processing 

 

The following operations are applied on the recorded EEG 

signals in the pre-processing stage: 

(1) Signal Standardization: The per-subject EEG recordings 

collected during 14 experimental runs from different channels 

are fused for the proposed authentication system. The analysis 

of Figures 1 and 2 reveals that these recordings exhibit 

heterogeneity generated either from they are measured from 

the same channel during different experiments or from 

different channels during the same experiment. Hence, these 

recordings should be transformed into a common domain 

before fusion. Therefore, the z-score normalization [72] is 

applied on the collected signals to standardize the data in this 

study. Mathematical representation of z-score normalization 

of any data X is given as Xstandard in Eq. (10) where μX and σX 

refer to the mean and standard deviation of X, respectively. 

The rest of the pre-processing steps are thereafter realized on 

the computed data as Xnew. 

 

𝑿𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 =
𝑿 − 𝝁𝑿

𝜎𝑿

 (10) 

 

𝑿𝑛𝑒𝑤 =
𝑿𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

‖𝑿𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑‖
 (11) 

 

(2) Sub-band Decomposition: The simultaneous usage of 

three EEG sub-bands instead of utilizing raw EEG recordings 

from skull measurement locations not only gives us a very 

thorough analysis of an EEG recording but also combines the 

information lying under different EEG frequency ranges 

obtained in distinct brain conditions of a person. Thus, the 

need for the exhaustive determination and calculation of EEG 

fiducial components in an EEG processing stage can be 

removed. Thus, the standardized data is decomposed into theta 
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(θ), alpha (α), and beta (β) sub-bands using Chebyshev Type 

II band-pass filter. The order of the filter is specified as n=4, 

and it is employed by the MATLAB function ‘cheb2ord’ with 

the input parameters given in Table 2. 

(3) Data Partitioning: The EEG recordings utilized in this 

paper have a huge number of data points, as given in Table 1, 

for a feasible artifact removal and feature extraction scheme. 

So, a data partitioning operation is applied on each sub-band 

via a sliding window technique with a fixed-window size of 

10 seconds. This operation results in 1600×1–sized partitions 

for each sub-band decomposed from each channel for each 

subject. The number of partitions for experiments T01 and T02 

is six for each subject whereas it is twelve for the rest of the 

experiments. 

(4) Artifact Removal: The related studies in the literature 

point out that the most challenging issue for EEG 

interpretation is the noise caused due to non-physiological 

effects such as electrode impedance changes, and 

physiological activities such as eye blinking, muscle 

movements, or cardiac effects [73-80]. Consequently, an 

automatic artifact removal process is implemented on each 

partition segmented in the previous stage via Wavelet 

Decomposed Independent Component Analysis (wICA) to get 

rid of the ocular and muscular artifacts using the EEGLAB 

platform [81, 82]. The independent components of the 

partitions are computed by the FastICA algorithm [82, 83], and 

the artifact-removed partitions are concatenated. Finally, the 

artifact-removed theta, alpha, and beta sub-bands are 

segmented into 2-second, 320×1–sized parts with an 

overlapping rate of 25 percent. Ultimately, the pre-processing 

stage is concluded with 39 partitions for T01 and T02 tasks, 

whereas 79 partitions for the tasks T03-T14 for each sub-band 

signal obtained from each channel. A simple illustrative 

flowchart of the pre-processing stage on a sample EEG 

recording is given in Figure 3. 

 

 
 

Figure 1. Sample EEG recordings of S001 measured from the channel Fp1 during 14 tasks 

 

 
 

Figure 2. Sample EEG recordings of S001 measured from three different channels during T01 
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Table 2. Parameters for sub-band decomposition  

 

𝒏 = 𝒄𝒉𝒆𝒃𝟐𝒐𝒓𝒅(𝑾𝒑, 𝑾𝒔, 𝑹𝒑, 𝑹𝒔) (MathWorks) 

Parameter Definition  𝜽-band 𝜶-band 𝜷-band 

𝑊𝑝 passband edge frequency ⟶ 
[4 8]

𝐹𝑠 2⁄
 

[8 14]

𝐹𝑠 2⁄
 

[14 30]

𝐹𝑠 2⁄
 

𝑊𝑠 stopband edge frequency ⟶ 
[3.5 8.5]

𝐹𝑠 2⁄
 

[7.5 14.5]

𝐹𝑠 2⁄
 

[13.5 30.5]

𝐹𝑠 2⁄
 

𝑅𝑝 passband ripple ⟶ 30 dB 

𝑅𝑠 stopband attenuation ⟶ 10 dB 

𝐹𝑠 sampling frequency ⟶ 160 

 

 
 

Figure 3. Flowchart of the pre-processing stage on a sample EEG recording 

 

 
 

Figure 4. The proposed feature matrix construction scheme 

 

3.3 HOSVD of EEG data 

 

The 320×1–sized pre-processed sub-band partitions 

measured from each channel during T03-T14 tasks are then 

individually stacked back-to-back resulting in a third-order 

tensor of size 320×3×12, for each subject. This tensor is called 

as the Cube-Code of a particular subject in this paper. A 

feature extraction process is implemented by applying 

HOSVD onto the Cube-Codes; and 12 basis matrices with a 

size of 320×3 are computed. These basis matrices of each 

Cube-Code are then concatenated side-by-side to form the 

320×36–sized feature matrices. Thus, 5056 task-independent 

feature matrices are constructed for each subject. This process 

is elaborately explained in Figure 4. 

 

3.4 Classification and performance evaluation 

 

The identification problem in this paper is defined as a 20-
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class classification problem and is solved by using the 

MobileNetV2, ResNet50, Xception, InceptionV3, and 

EfficientNet-B0 architectures. The 5-fold cross-validation 

technique is used for the classification which means that these 

networks are trained by 80% of the randomly selected feature 

matrices in each class and tested by the rest 20%. The proposed 

authentication method is trained using the Deep Learning 

Toolbox of MATLAB 2020a in an Intel(R) Core(TM) i7-10750H 

CPU 2.60 GHz with 16 GB of RAM, and Nvidia GeForce 

RTX 2070 GPU with 8 GB VRAM. The stochastic gradient 

descent method with the learning rate of 0.0001 is used to train 

our networks and the cross-entropy is used for the loss 

function. The batch size is chosen as ten and the number of 

epochs is selected as ten by rigorously taking the convergence 

of loss function into consideration for each architecture. The 

performance of the proposed authentication method is 

evaluated in terms of accuracy (𝐴𝐶𝐶), computed as given in 

Eq. (12). The terms TP, TN, FP, and FN are the numbers of 

true positives, true negatives, false positives, and false 

negatives, respectively. 

 

𝐴𝐶𝐶 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (12) 

 

Table 3. The average accuracy values achieved using five 

different network architectures 

 
Name of Deep Network 

Architectures 

Five-Fold Cross Validation 

Accuracy (%) 

MobileNetV2 90.09 

ResNet50 90.99 

Xception 88.76 

InceptionV3 98.08 

EfficientNet-B0 94.96 

 

The average of the obtained ACC values computed for each 

fold is evaluated as the authentication system performance. 

The average ACC values succeeded using the above-

mentioned network architectures are given in Table 3. 

The comparison of the results achieved by the proposed 

study with the prominent and current studies in the literature 

is given in Table 4. 

 

Table 4. Related works using the EEG Motor/Movement Imaginary Dataset for EEG-based biometric authentication 

 

Reference 

Duration of 

EEG 

Segments 

Number 

of Tasks 

Used 

Number 

of Sensors 

Used 

Frequency Bands 

Used 
Architecture/Classifier Accuracy (%) 

[84] 5 sec 

2 

(T01-

T02) 

8 

0-10 Hz 

CNN 

74.20 

10-20 Hz 73.50 

20-30 Hz 72.80 

30-40 Hz 74.90 

40-50 Hz 72.90 

50-60 Hz 68.20 

[85]  1 sec - 
32 

- CNN + Dense 
100 

64 100 

[86] 10 sec 

12 

(T03-

T14) 

64 <40 Hz 
Magnitude Squared 

Coherence 
100 

[87]  12 sec 

1 

(T01) 

64 

𝛿-band (0.5-4 Hz) 

Eigenvector 

11.30 

𝜃-band (4-8 Hz) 7.70 

𝛼-band (8-13 Hz) 15.70 

Low 𝛽-band (13-20 

Hz) 
67.00 

High 𝛽-band (20-30 

Hz) 
81.90 

𝛾-band (30-50 Hz) 96.90 

1 

(T02) 

𝛿-band (0.5-4 Hz) 5.90 

𝜃-band (4-8 Hz) 7.50 

𝛼-band (8-13 Hz) 19.90 

Low 𝛽-band (13-20 

Hz) 
55.80 

High 𝛽-band (20-30 

Hz) 
60.00 

𝛾-band (30-50 Hz) 92.60 

[88]  2 sec 

1 

(T01) 

64 

𝛿-band 

𝜃-band 

𝛽-band 

𝛾-band 

SVM 
with PCA 97.64 

without PCA 96.88 

RF 
with PCA 98.16 

without PCA 95.78 

1 

(T02) 

SVM 
with PCA 96.02 

without PCA 96.02 

RF with PCA 97.30 

 without PCA 93.21 

[89] 1 sec 

14 

(T01-

T14) 

1 

(T02) 

4 

- 

CNN 94.34 

LSTM 90.36 

1-D Convolution LSTM 94.28 

16 

CNN 98.07 

LSTM 95.94 

1-D Convolution LSTM 99.58 

1990



32 

CNN 98.50 

LSTM 96.71 

1-D Convolution LSTM 99.50 

64 

CNN 98.87 

LSTM 96.39 

1-D Convolution LSTM 99.58 

[90] 1 sec

1 

(T01) 
64 - PLV+Graph CNN 99.97 

1 

(T02) 
99.88 

6 

(T03, 

T05, 

T07, 

T09, 

T11, 

T13) 

99.99 

6 

(T04, 

T06, 

T08, 

T10, 

T12, 

T14) 

100.00 

[91] -

12 

(T03-

T14) 

35 - FPA + β-hill 96.05 

[92] - T01-T02 48 δ-band LSTM-MLP 99.70 

Proposed 

Method 
2 sec 

12 

(T03-

T14) 

64 

θ-band (4-8 Hz) 

CNN 98.08 α-band (8-14 Hz) 

β-band (14-30 Hz) 

4. CONCLUSIONS

Biometric person authentication is a process that is 

implemented with unique feature vectors extracted from the 

inimitable characteristics of a person. Although universality, 

permanency, time-invariance, collectability, and 

distinctiveness of biometric systems overcome most of the 

weaknesses of traditional authentication systems, ongoing 

ease of imitation and incapability of aliveness verification 

motivate researchers to focus on cognitive biometric systems. 

These systems utilizing EEG signals also provide an 

advantage of analyzability of whether a person consents or is 

compelled to authenticate, using the change that occurs in 

EEG signals due to varying stress levels.  

On the other side, the inconsistency of these signals due to 

varying physiological and psychological conditions points out 

the reliability problem of EEG signals under different 

motor/mental tasks. Besides, the large data size of EEG signals 

is another problem [93] for cognitive systems. Therefore, a 

Cube-Code methodology is proposed to overcome these 

problems in this paper. 

The inherent characteristics of an EEG signal are composed 

of three major sub-bands named theta, alfa, and beta, and these 

sub-bands essentially lie in some particular frequency intervals. 

Since they seem to be distinct signals, their contributions are 

separately examined in general. However, the theta, alfa, and 

beta sub-bands are accepted as mutually complementary with 

each other; and therefore, they are merged together in this 

paper so that novel 3-D Cube-Codes are generated for 

separately representing each person. The main idea behind this 

novel methodology is grounded that these three sub-bands 

equally contribute the whole intrinsic characteristics of an 

EEG signal for a person; and thus, the different EEG 

measurement locations (channels) that basically control 

several brain activities, such as speech, problem solving, 

motor control, vision, etc., are not important. Therefore, it can 

be concluded that the primary claim of this article is that EEG 

signals collected from different EEG measurement locations 

can be jointly combined to form a person's Cube-Code. From 

this point of view, 3-D Cube-Code representation of EEG 

signals provides the utilization of the sub-bands directly 

without fiducial component detection. This representation also 

prevents the further increment in large data size of these sub-

bands when they are concatenated; so that, the generated 

Cube-Codes are distinguishable and effectively express a 

person. However, since these Cube-Codes for a person are 

generated for each signal measured from each sensor during 

each task, these codes are task-dependent yet, and large data 

size still poses a problem for feature extraction. Utilization of 

the HOSVD handles these problems by performing subspace 

analysis of the Cube-Codes and results in obtaining lower-

sized and task-independent feature matrices of a person. This 

is another interesting and remarkable aspect of this paper since 

Cube-Codes may neither directly used nor easily treated on a 

simple electronic device. 

The proposed Cube-Code methodology was implemented 

on EEG signals composed of different tasks on PhysioNet 

EEG Motor Movement/Imagery (EEGMMI) dataset, and the 

attained authentication results support the above-mentioned 

claims since approximately 98% authentication accuracy is 

obtained. This noticeably high recognition result also 

motivates a task-independent authentication approach 

although many papers in the literature utilize and propose the 

concept of the importance on task-dependency when they are 

including numerous EEG applications. As a conclusion, the 

proposed methodology has not only advanced identification 
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accuracy but also ensures the way for more efficient and 

reliable biometric person authentication methods. 

The effect of the direct usage for Cube-Codes in deep tensor 

neural networks is left beyond the scope of this paper and 

proposed as a possible extension for future work. Another 

potential area of research could involve the use of other 

frequency bands, like lower-beta, gamma, or delta sub-bands. 

Additionally, hybrid deep learning architectures could be 

explored and compared to further enhance model performance 

for EEG-based biometric identification. Finally, a 

comprehensive comparison between task-independent and 

task-dependent approaches for EEG-based identification 

could offer further insights. This could allow for faster 

authentication with fewer tasks when utmost security is not 

required, which could be more beneficial for real-time 

applications. 
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