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In efforts to refine the digital measurement accuracy of steel truss bridge rods, a novel 

methodology was proposed, integrating laser point cloud technology with advanced image 

processing. Point cloud data, derived from stationary and handheld scanners, was 

meticulously fused with image datasets to produce precise rod models. Specialised 

algorithms tailored for point cloud data segmentation, edge detection, and geometric feature 

extraction were employed to derive accurate geometric attributes of the rods. Furthermore, 

deep learning techniques were harnessed for image segmentation and feature extraction, 

predicting potential deformations and delineating damage areas, significantly enhancing the 

accuracy of feature recognition. Through finite element analysis, errors introduced from 

non-fixed deformations during the scanning phase were meticulously rectified. Validations 

suggest that this innovative digital measurement approach, blending laser point cloud and 

sophisticated image processing, notably outperforms conventional methodologies in terms 

of precision and efficiency, offering promising avenues for subsequent research and 

applications in the realm of digital measurements.  
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1. INTRODUCTION

In this digital and information-driven era, the expansion and 

diversification of digital image processing techniques have 

been observed. These techniques now permeate various 

sectors, encompassing medical diagnostics, aerospace, 

industrial inspection, and notably, urban infrastructure 

maintenance [1-4]. Within this realm, bridges - crucial 

components of urban transport networks - play an 

indispensable role. Their structural health is intrinsically 

linked to traffic safety and efficiency, bearing broader 

ramifications for life and property safety [5]. Yet, the 

burgeoning urbanisation process has heralded a proliferation 

in the quantity and diversity of bridges, thereby intensifying 

societal scrutiny over their health and safety parameters. 

Traditionally, bridge health evaluations were 

predominantly facilitated through manual surveys. Such 

approaches, however, have been fraught with numerous 

pitfalls. It has been noted that manual evaluations are not only 

time-intensive but also laden with subjectivity, wherein 

outcomes hinge considerably upon the inspector's proficiency 

and judgment. Additionally, certain bridge zones, especially 

those in challenging environments, are deemed inaccessible, 

further curtailing the thoroughness of these manual 

assessments. In the face of these limitations, the need for 

leveraging advanced technological interventions to bolster 

bridge inspection efficacy and precision became an 

overarching theme in both academic and engineering arenas. 

The emergence of digital image processing methodologies 

has been perceived as a beacon of hope in this context. 

Through the acquisition and scrutiny of high-definition bridge 

images, not only has the inspection process been expeditiously 

streamlined, but a substantial uplift in the objectivity and 

fidelity of the outcomes has also been recorded [6]. More so, 

these innovative techniques have been pivotal in facilitating 

evaluations of previously inaccessible bridge segments, thus 

heightening the inspection's comprehensiveness. 

However, it is recognised that the domain of digital image 

processing, despite its prodigious potential, is not without 

challenges. Paramount concerns, encompassing the 

enhancement of image resolution, proficient handling of 

extensive image data, and the refinement of algorithmic 

accuracy and robustness, are yet to be fully addressed. Given 

these intricacies, concerted efforts by scholars and 

practitioners worldwide are ongoing, all in pursuit of 

uncovering more adept methods for bridge assessment. 

Through a meticulous examination of the present landscape 

and its inherent challenges in bridge evaluation, digital image 

processing techniques have been identified as potentially 

transformative agents. Their role in the future of bridge health 

monitoring and maintenance is anticipated to be pivotal. Their 

integration is not merely forecasted to augment the efficiency 

and veracity of bridge assessments, but also to herald 

significant advancements in bridge health surveillance 

methodologies. Such advancements are set to be instrumental 

in fortifying bridge security and enhancing urban vehicular 

throughput. 

2. LITERATURE REVIEW

Since the twilight of the 20th century, the deployment of 

digital image processing technology has been extensively 

witnessed, most notably within the realm of bridge health 

monitoring. Historically, the evaluation of bridge health was 

largely contingent on visual inspections or rudimentary 
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mechanical tests [7]. Such methodologies, it was observed, 

were significantly influenced by the discernment and expertise 

of engineers and technicians, thereby engendering potential 

subjectivity and inconsistencies in their findings. 

In pursuit of enhanced accuracy and efficiency, endeavours 

were made to incorporate digital image processing technology 

into the diagnostics of bridge health. Preliminary studies were 

characterised by comparisons between bridge images captured 

over varying temporal intervals, with the primary objective 

being the discernment of structural alterations and emergent 

damages [8]. 

Subsequent technological evolutions catalysed the advent of 

more nuanced methodologies. Feature extraction from images 

via advanced image processing technologies emerged as a 

prominent strategy. Information gleaned from these processed 

images has been shown to be instrumental in facilitating 

engineers in the meticulous identification of damage locales, 

gauging damage severity, and thus, proffering calibrated 

remediation advisories [9, 10]. 

In the recent epoch, deep learning and machine learning 

paradigms have witnessed an ascendancy, and their integration 

into bridge health diagnostics has been noted. By leveraging 

these deep learning architectures, it was found that extensive 

image repositories could be processed autonomously, 

engendering prompt and precise identification and localisation 

of structural damages. This modus operandi heralded a 

paradigm shift in bolstering the efficiency and precision of 

assessments [11, 12]. 

However, despite the promising vistas opened by deep 

learning, challenges in its seamless integration into bridge 

diagnostics remain rife. Acquiring copious labelled data, 

imperative for the efficacious training of deep learning models, 

has been identified as a significant hurdle [13]. Furthermore, 

issues spanning the assurance of model robustness, adept 

management of voluminous image repositories, and real-time 

damage detection in pragmatic scenarios have been areas of 

fervent academic endeavour [14]. 

In the backdrop of these antecedent studies and extant 

technological impediments, a novel bridge health assessment 

framework, intertwining digital image processing and deep 

learning algorithms, is delineated in the ensuing study. An 

adaptive, image-based detection architecture is elucidated, 

imbued with the capacity to autonomously discern, categorise, 

and evaluate a spectrum of bridge structural damages. This 

modality seeks to transcend the constraints of prevailing 

methodologies and to augment the rigour of bridge health 

diagnostics. It is posited that this research will unveil novel 

vistas in bridge health surveillance and provide a sturdy 

scaffold for subsequent scholarly explorations. 

 

 

3. ADVANCED PROCESSING OF ROD POINT CLOUD 

MODELS 

 

Three-dimensional laser scanning technology, founded 

upon the principles of laser measurement and reflection, 

facilitates the generation of point cloud data. This affords 

timely and precise 3D model representations, pivotal in 

contemporary architectural and engineering realms [15]. Yet, 

during practical implementation, it has been observed that the 

inherent point cloud data can be compromised by 

environmental interferences and instrumental inaccuracies, 

necessitating the intervention of advanced image processing 

techniques for data rectification. 

In the context of this investigation, tripod-based scanners, 

specifically those of FARO and Z+F pedigrees, were 

employed to assimilate comprehensive point cloud data of 

steel truss rods. Although these apparatuses boast the 

capability to rapidly amass a multitude of data points, their 

inherent fixed incidence angles have been noted to impede the 

capture of intricate details, such as bolt holes. To circumvent 

this limitation, additional scans were conducted, leveraging 

handheld scanner technology [15]. 

Following data accrual, an array of image processing 

algorithms was deployed to enhance and distil pivotal data 

attributes: 

• Data Filtering: Noise, inadvertently introduced either by 

instrumentation or ambient conditions, was mitigated through 

the application of Gaussian and median filtering techniques. 

• Point Cloud Densification: Endeavours were undertaken 

to procure a more granular model by embracing point cloud 

interpolation techniques. Through this modality, estimations 

regarding the position and characteristics of proximate points 

were formulated, serving to augment point density. 

•  Feature Extraction: The prowess of deep learning 

networks, predominantly Convolutional Neural Networks 

(CNN), was harnessed to autonomously discern and cull 

salient features, such as bolt holes. Complementary strategies, 

including edge detection and morphological operations, were 

additionally employed to accentuate feature visualisation and 

detection. 

• Point Cloud Data Registration: The ICP (Iterative Closest 

Point) algorithm found application in ensuring harmonious 

alignment between datasets amassed by both handheld and 

tripod-based scanning mechanisms, thereby buttressing the 

coherence and precision of the resultant model. 

Figure 1 elucidates the juxtaposition of point cloud data, as 

garnered on-site through disparate scanning methodologies, 

with the refined exemplar post the incorporation of 

sophisticated image processing techniques. 

 

 
 

Figure 1. On-site point cloud data: Raw vs. refined 

 

 

4. PCL-BASED GEOMETRIC FEATURE 

EXTRACTION AND IMAGE PROCESSING OF POINT 

CLOUD MODELS 

 

The Point Cloud Library (PCL) is recognised as an open-

source algorithm library specifically tailored for point cloud 

processing operations [16]. The focus of this section is the 

exploration of methods to extract geometric features from 

point cloud models via PCL, integrated with state-of-the-art 

image processing techniques, especially those centred on 

geometric morphology. 

 

4.1 Geometric feature-based model segmentation and 

image augmentation 

 

For the appraisal of point cloud data quality, several image 
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enhancement techniques were employed as a preliminary step. 

Among these were histogram equalisation, sharpening, and 

noise reduction, which were instrumental in elevating the 

accuracy of the ensuing operations. Given the intrinsic traits 

of structural members, plane fitting for rods was undertaken 

using RANSAC (Random Sample Consensus). Through 

RANSAC, parameters for a coherent mathematical model 

were ascertained via a stochastic sampling approach [17]. This 

procedure not only aided in capturing planar features of the 

rods but also paved the way for the extraction of geometric 

features from the identified planes. 

In the current study, the deployment of the algorithm 

comprises two primary phases, both being iteratively executed: 

To commence, the input data was analysed, from which the 

minimum required elements were drawn, subsequently 

dictating the parameters of the mathematical model. 

Specifically, parameters in the equation x+By+Cz+D=0 were 

discerned to yield optimum simulation outcomes. Thereafter, 

elements were categorised based on these parameters. 

Elements surpassing the set distance threshold were deemed 

outliers; those within were tagged as inliers. This iterative 

process persisted until the model with the maximum inliers 

was selected as the final segmentation. The results of this 

segmentation were then exported and removed from the point 

cloud data. Following this, the dataset underwent updates, and 

the extraction was reiterated until the specified number of 

planes intended for extraction was achieved. 

 

4.2 Boundary detection and augmentation 

 

Post model plane segmentation, the Alpha Shapes algorithm 

was employed to delineate the perimeters of each segmented 

plane [18]. This served to eliminate point cloud data within the 

plane that lacked geometric feature representation, thereby 

streamlining the subsequent geometric feature extraction 

process. Contingent on the model's volume and point cloud 

density, a parameter α was established. Using α as a radius, a 

duo of points from the point cloud data was selected to 

formulate a circle. When α attained a specific magnitude, it did 

not permeate the interior of the point set, indicating no other 

point cloud resided within that circle. Instead, it traversed the 

boundary of that point set, ensuring precise positioning and 

categorisation, as depicted in Figure 2. 

 

 
 

Figure 2. Depiction of the Alpha Shapes algorithm 

mechanism 

 

4.3 Geometric feature extraction and image segmentation 

 

For the extraction of lines and bolt holes from the model, 

RANSAC was utilised to facilitate line fitting. The model was 

formulated as: 

 

0 0 0x x y y z z

m n p

− − −
= =  

In this equation, coordinates (x0, y0, z0) represent a point on 

the spatial line, while m, n, p are indicative of the direction 

vectors associated with the line. 

For the effective extraction of lines, parameters were 

defined in the following manner: 

(1) The objective function was designated as the spatial line 

fitting model, with an associated distance threshold, aiming to 

identify the parameter model encompassing the maximum 

inliers. 

(2) The minimum sampling value was determined based on 

the fewest point clouds present in the extracted line, ensuring 

the prevention of redundant data. 

(3) The condition for ceasing iterations was expressed as: 

 

( )
ln(1 )

ln 1 N

P
m

l

−


−
 (1) 

 

In this condition, p=1-(1-tN)m and t denote the inlier 

probability. The iteration was designed to guarantee that, 

under a set confidence level of P (99% in this context), at least 

one instance of sampling would contain N points from the 

subset classified as inliers. Here, t is typically perceived as the 

inlier probability within the entire dataset. As the iteration 

count augments, the proportion of maximum inliers can 

exhibit growth. The value for t is chosen in light of the most 

unfavourable anticipated proportion of inliers. 

Subsequent to this step, the region-growing algorithm, a 

tool of image processing, was incorporated for the extraction 

of bolt holes. A neighbour search centred on the KD-tree was 

employed, with particular emphasis on the utilisation of 

Euclidean clustering [19] for the classification of geometric 

features in models post edge extraction. 

The applications of the KD-tree's nearest neighbour search 

can be primarily bifurcated into two categories. Initially, a 

search radius r, centred around point q, was designated to 

locate points encapsulated by the circle defined by this radius. 

Following this, a criterion was established for the count of 

nearest neighbours, K, with the aim to identify the K points in 

closest proximity to q within the defined circle. 

During the clustering procedure, given the stipulated search 

radius r and the range of nearest neighbour count, the KD-tree 

nearest neighbour search was applied to the point q within the 

input dataset Q, yielding the dataset Pi. If the point cloud data 

within the dataset ceased to grow in number, Pi was then 

documented as output. The residual point cloud data was 

subsequently recharacterised as Q for further iterative 

operations. If not, a new point within Pi was selected as q, and 

the search method outlined above was reiterated. 

 

 

5. TESTING AND ANALYSIS OF THE ALGORITHM 

 

In the undertaken research, a filtering treatment was applied 

to the point cloud model representing rod members. 

Conventional image enhancement techniques, such as 

histogram equalisation and bilateral filtering, were integrated, 

resulting in a clearer representation of the point cloud data. For 

the purpose of testing the algorithm, a rod member point cloud 

model, consisting of a data magnitude in the millions, was 

selected, as illustrated in Figure 3. 

The rod member model used for testing was first subjected 

to plane segmentation. Here, the spatial equation for the 

segmented plane was determined. Otsu's method [20], among 
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other classical image segmentation techniques, was 

incorporated to refine the segmentation outcome. Given the 

project's stringent precision requirements of up to two decimal 

places, a distance threshold was set at 0.01mm. The criterion 

for plane extraction was stipulated to be no less than 0.1 times 

the quantity of the rod member point cloud. To differentiate 

between segmented planes, varying colours were employed, as 

evident in Figure 4, wherein the red portion denotes the 

unsegmented plane. 

 

 
 

Figure 3. Depiction of the point cloud model of bridge 

members 

 

 
 

Figure 4. Depiction of plane segmentation results 

 

Following this, edge detection was executed on the planes 

extracted. Morphological edge detection [21] was employed to 

enhance the edges, aiming to ensure a comprehensive 

extraction of the bolt hole edges while preserving the integrity 

of the plane. In the determination of the α value, the internal 

point cloud density was considered, ensuring it remained 

marginally smaller than the bolt hole radius of the rod member, 

an approximate of 10-12mm. Subsequent to the extraction of 

rod member plane edges and bolt hole edges, visual 

enhancements were carried out, with results captured in Figure 

5. 

 

 
 

Figure 5. Display of edge extraction results 

 

For the detection of lines on the extracted edges, the Hough 

Transform [22] was utilised. Adhering to the project's 

precision standards, a distance threshold of 0.01mm was 

chosen, with an upper limit set for iteration count at 1000. In 

this phase, four unique edges of the rod member plane were 

discerned, each delineated by a distinct colour. The results of 

this phase were articulated in Figure 6. Linear equations 

corresponding to these edges were then derived. Incorporating 

Connected-component analysis from image processing, the 

extracted plane edges underwent Euclidean clustering [23].  

 

 
 

Figure 6. Line extraction results 

 

With a pre-defined search diameter of 25mm, adjustments 

were made to both the upper and lower bounds of the point 

cloud clustering. This process culminated in the results 

presented in Figure 7. 

 

 
 

Figure 7. Exhibition of bolt hole extraction results 

 

In the succeeding step, the RANSAC algorithm was 

employed, supplemented by image fitting techniques, for the 

spatial circle fitting of the bolt holes that had been extracted. 

Consistency was maintained with a distance threshold set at 

0.01mm and the iteration count capped at 1000.  

The synergistic combination of point cloud and image 

technology was harnessed to present the algorithm's output. 

Within the predefined precision range, all geometric features 

were successfully extracted. This extraction of both spatial 

linear and spatial circle-associated features in the rod member 

model provided a robust foundation for subsequent geometric 

feature value computations. 

 

 

6. DERIVATION OF GEOMETRIC FEATURE 

VALUES 

 

In the process of calculating geometric features of the rod 

member, methods encompassing traditional three-dimensional 

spatial geometry were utilised, and integration with image 

processing techniques was seen, notably in determining 

geometric attributes such as corner coordinates and bolt hole 

diameters. 

For a more nuanced identification of the rod member's 

corners, algorithms for edge detection and corner detection, 

exemplified by the Harris corner detection [24], were 

employed. Such techniques were instrumental in facilitating 

key point discernment. From these identified corners, 

intersections between lines were deduced. By fitting lines 

adjacent to the segmented plane edge, parameters for each line 

were outputted, leading to the formulation of the spatial 

equation for the fitted line. Intersections between the lines 

were subsequently computed using a specified formula: 

 

1 1 1

1 1 1

2 2 2

2 2 2

x x y y z z

m n p

x x y y z z

m n p

− − −
= =




− − − = =


 (2) 

 

Upon resolving these equations, corner coordinates (a1, b1, 

c1) were derived. In a parallel fashion, another set of corner 

coordinates (a2, b2, c2) was determined. The subsequent step 

involved utilising the derived distance formula: 

 

( ) ( ) ( )
2 2 2

1 2 1 2 1 2d a a b b c c= − + − + −  (3) 

 

From these equations, the length of the rod member, along 

with the cover plate width and spacing, were ascertained. 
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In the domain of bolt hole detection, the RANSAC circle 

fitting was complemented by the integration of circle detection 

algorithms derived from image processing, notably the Hough 

Transform for circle detection [25]. Such amalgamations 

enhanced the precision in determining bolt hole diameters and 

coordinates of the circle's centre. 

The term 'extreme edge hole spacing' is defined as the 

distance between centres of the bolt holes located at the 

furthest edges of the rod member. Through the application of 

image processing techniques, RANSAC and the Hough 

Transform were engaged to pinpoint two bolt hole centre 

coordinates, denoted as (x1, y1, z1) and (x2, y2, z2). The formula 

governing three-dimensional spatial distance was then enacted 

to gauge the distance between these coordinates, yielding the 

extreme edge hole spacing for the rod member. 

The marriage of image processing techniques with age-old 

three-dimensional spatial geometry calculations was observed 

not only to enhance computational accuracy but also to fortify 

the robustness and stability of the employed algorithms. 

 

 

7. RECTIFICATION OF MEASUREMENT 

DISCREPANCIES IN ROD MEMBERS 

 

In the endeavour to scan rod members and derive their 

geometric feature values, image processing and computer 

vision techniques have been regarded as indispensable. Such 

techniques were leveraged with the intent of attaining a more 

refined perception of the rod members' geometric structure 

while also addressing potential anomalies. 

 

7.1 Ascertainment of deformation factors 

 

Deformations in rod members during scanning might have 

been perceived for myriad reasons. Factors such as self-weight 

induced deformations, contingent upon the placement of 

support points, or exogenous influences including temperature 

variations and exposure to sunlight, could have affected the 

rod member's surface temperature, consequently leading to 

deformation. 

Such deformation elements were quantified using image 

processing, which entailed feature detection, edge detection, 

and evaluating the repercussions of temperature on pixel 

intensity. Algorithms designed for edge detection, for instance, 

Sobel or Canny [26], were integrated for delineating the rod 

member's contours. Meanwhile, feature point matching 

algorithms, including SIFT or SURF [27, 28], were 

instrumental in tracking deformations across different 

temperature gradients. 

 

7.2 Technical procedure of implementation 

 

(1) Before commencing with the three-dimensional laser 

scanning, the orientation of the rod members was pre-

determined through the application of image processing 

methodologies. Texture analysis coupled with feature 

detection proved valuable in ascertaining the optimal 

positioning and sequence of pads. Concurrent with the 

scanning phase, infrared cameras were utilised to record the 

rod member's surface temperature. This captured data was 

then transmuted into relevant temperature data models via 

image segmentation techniques. 

(2) Subsequent to the procurement of point cloud data, 

image enhancement techniques were deployed for its 

refinement. This enriched data then became the subject of 

digital measurements, conducted through the previously 

mentioned algorithms. 

(3) Upon being imported into Abaqus, algorithms such as 

HOG [29] or those based on Deep Learning methodologies 

[30], were instrumental in ensuring that the point cloud models 

were congruent with the intended design blueprints. 

(4) Within the realm of Abaqus simulations, the application 

of computer vision techniques became pivotal for establishing 

constraint conditions, like identifying support placements 

using image registration methods. 

(5) Deformation simulations, juxtaposed with data from the 

point cloud model, were analysed using image fusion 

methodologies. This comparative study facilitated the 

extraction of accurate measurement outcomes. 

(6) The culmination of the measurement process was also 

enriched with computer vision methodologies. Techniques 

centred on object detection were pivotal in discerning defects 

within the rod members, thereby providing insights into the 

quality of their fabrication. 

Through the meticulous implementation of the 

aforementioned procedures, the geometric feature 

measurements of rod members were not just elevated in terms 

of precision, but inherent measurement discrepancies were 

also aptly addressed. 

 

 

8. APPLICATION EXAMPLES 

 

Image processing techniques played a pivotal role in 

extracting the geometric features of rod members. The ensuing 

discussion elucidates their role during application. 

 

8.1 Extraction of rod member geometric features 

 

The model under examination and the geometric features 

requiring extraction are illustrated in Figure 8. Image 

enhancement techniques [31], such as histogram equalisation 

and filters, were employed to augment the feature points 

within the image. 

 

 

 
 

Figure 8. Schematic diagram of extracting geometric 

features 
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Planar fitting and segmentation were accomplished using 

the RANSAC algorithm [31] and edge detection techniques 

[26]. RANSAC was utilized for estimating planar parameters 

from point cloud data, whilst edge detection techniques served 

to identify the boundaries and features of the rod members. 

The equation for the target plane was given by 

Ax+By+Cz+D=0, with output coefficients for the spatial plane 

equation presented in Table 1. 

Table 1. Space coefficients of plane equations for member 

A B C D 

Plane 1 -0.058 -1.000 0.031 9.014 

Plane 2 0.061 1.000 -0.024 3.556 

Plane 3 0.370 -0.016 0.929 -52.101

Plane 4 0.371 -0.011 0.929 -40.687

Plane 5 -0.056 -1.000 0.037 -484.77

Plane 6 -0.062 -1.000 0.021 -498.89

For extracting edges on the segmented plane, the Sobel 

algorithm [23] and the Canny edge detector [26] were 

employed. Line fitting was achieved using the Hough 

transform [25], and the coordinates of each corner point of the 

rod member were deduced from the intersection points of two 

adjacent lines, as displayed in Table 2. 

Table 2. Coordinate values of each corner point of the 

member 

Corner 

Point Name 

Coordinate 

Values (x, y, z) 

Corner 

Point Name 

Coordinate 

Values (x, y, z) 

Point 1 
-11673.3, 842.548,

4984.7 
Point 9 

3264.65, 

-721.673,

-998.71

Point 2 
-11846.7, 843.092,

4523.31 
Point 10 

3078.36,

-723.579,

-1457.65

Point 3 
-11673.2, 830.034,

4985.89 
Point 11 

3267.65,

-709.62

-999.59

Point 4 
-11858.2, 830.328,

4523.8 
Point 12 

3081.23,

-710.174,

-1459.7

Point 5 
-11702.7, 338.788,

4992.18 
Point 13 

3298.81,

-218.429,

-1008

Point 6 
-11890.2, 336.914,

4531.91 
Point 14 

3113.34, 

-217.149,

-1470

Point 7 

-11705.01

350.89

4993.59

Point 15 

3297.68, 

-230.153,

-1008.8

Point 8 
-11886.3, 349.999,

4532.69 
Point 16 

3114.39,

-229.897,

-1468.11

Figure 9. Schematic diagram of bolt hole extraction 

For bolt hole extraction, image binarisation techniques [23] 

and morphological operations [32], such as erosion and 

dilation, were initially applied to accurately mark the position 

of the holes. Subsequently, circle detection techniques, 

specifically the Hough transform-based circle detection [33], 

were employed to precisely ascertain the bolt hole's position 

and dimensions. The extraction results for bolt holes on Plane 

6 are depicted in Figure 9, with the coordinates of the centre 

of each bolt hole detailed in Table 3. 

Table 3. Coordinate of the centre of each polar hole in Plane 

6 

Bolt Hole Coordinate Values (x, y, z) 

1 -11787, 827.427, 4584.96

2 -11757.3, 827.365, 4658.41

3 -11669.2,827.3,4881.63

4 -11698.2,827.312,4807.95

5 3108.28, -227.228, -1372.03

6 3136.79, -227.273, -1300.81

7 3225.22, -227.299, -1075.14

8 3197.01, -227.378, -1150.83

8.2 Calculation of geometric feature values and application 

of image processing 

Once the geometric features of the member have been 

extracted from the image data, the ensuing pivotal step 

involves the application of advanced image processing 

techniques to ascertain the accuracy and consistency of the 

extracted data.4 

Upon the completion of the geometric feature extraction of 

the inspected member, initially, the extracted coordinate points 

are subjected to noise filtering. Median filters and Gaussian 

filters are employed to diminish potential measurement errors 

and enhance precision. Subsequently, the coordinate distance 

formula is utilised for the computation of geometric feature 

values. 

To augment the precision of distance calculations, sub-pixel 

accuracy measurement techniques have been employed. This 

allows for the acquisition of more precise coordinate positions 

below the pixel level. According to the measurement criteria 

in this study: 

• The length of the member is determined by calculating the

distance between points 2 and 14. 

• The width of the cover plate is derived from the distance

between points 13 and 14. 

• The gap (left) between cover plates is ascertained by the

distance between points 12 and 14. 

• The gap (right) between cover plates is determined by the

distance between points 4 and 8. 

• The polar hole spacing is established by measuring the

distance between holes 2 and 13. 

Table 4. Point cloud measurement values 

Geometric Feature 

Dimensions 

Point Cloud Measurements 

(mm) 

Length of the Member 16150.74 

Width of the Cover Plate 497.84 

Gap Between Cover Plates 

(Left) 
481.49 

Gap Between Cover Plates 

(Right) 
481.23 

Polar Hole Spacing 16076.04 
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The detailed calculations are presented in Table 4. To 

further validate the accuracy of these measurements, image 

registration techniques have been applied to compare the 

original image with the point cloud model. 

8.3 Analysis of simulated deformation of scanned members 

and application of image processing 

8.3.1 Actual engineering measurement conditions and image 

calibration 

During the scanning of the member, it was supported by 

pads. A pad with a width of 355mm was placed at one end, 

1700mm from the end of the member, and another pad with a 

width of 250mm was placed at the other end, 1980mm from 

the end. 

The theoretical measurement temperature of the member is 

20℃, while the actual measurement environment was 

outdoors at 33℃. To compensate for potential errors caused 

by temperature variations, an infrared thermometer was used 

to measure the temperature of each plane of the member. At 

the same time, thermal image processing techniques were 

applied to analyze the temperature distribution, aiming to 

optimize measurement accuracy. The distribution of data 

collection temperatures is shown in Figure 10. 

Figure 10. Schematic diagram of scanning temperature for 

each plane 

8.3.2 Analysis of member deformation and benefits of image 

processing 

The constraint between the member and the pads is only the 

contact surface. During finite element analysis, the pads were 

simplified as rigid rectangular entities consolidated with the 

ground. The main focus was on the effects of self-weight and 

temperature changes on the deformation of the member. To 

more precisely identify and quantify these deformations, 

image comparison and analysis techniques were used. By 

comparing the original and scanned images, the deformation 

of the member was quantitatively analyzed. The specific finite 

element analysis results are shown in Figure 11. 

Figure 11. Finite element analysis results 

In the end, combined with image processing techniques, 

precise theoretical deformation values at various positions of 

the member were obtained, as shown in Table 5. 

Table 5. Theoretical deformation values 

Geometric Feature 

Dimensions 

Theoretical Deformation Values 

(mm) 

Member Length -7.53

Flange Width 0.22

Flange Spacing (Left) 0.21

Flange Spacing (Right) 0.22

Edge Hole Distance -4.56

8.4 Digital measurement values and error analysis of the 

member 

Image processing techniques have further enhanced the 

accuracy of point cloud data. Initially, by subtracting the 

theoretical deformation values from the point cloud 

measurement values, the final digital measurements of the 

member were obtained. These were then compared with the 

actual measurements of the member. 

Image registration techniques were used to juxtapose the 

point cloud measurements with actual measurements to 

identify and quantify any potential discrepancies. As indicated 

in Table 6, the differences between point cloud measurements 

and actual measurements were minimal, verifying the 

precision of digital measurements. The comparison revealed 

that digital measurements exhibit high accuracy and precision, 

underscoring the benefits of this approach. 

Table 6. Measurement values and errors of the member 

Geometric Feature 

Dimensions 

Theoretical Values 

(mm) 

Allowable Error 

(mm) 

Actual Measurements 

(mm) 

Point Cloud 

Measurements (mm) 

Error 

(mm) 

Member Length 16160 ±5 16158 16158.27 -0.27

Flange Width 500 ±2 498 498.06 -0.06

Flange Spacing (Left) 480 ±2 481 481.28 -0.28

Flange Spacing (Right) 480 ±2 481 481.01 -0.01

Edge Hole Distance 16080 ±1 16080.5 16080.6 -0.10

9. CONCLUSION

(1) Through the integration of stationary and handheld

scanners, a nuanced and precise representation of the 

member's external appearance and hole clusters was attained. 

Notably, with the integration of sophisticated image 

processing methodologies, point cloud data was meticulously 

fused and analysed. This not only ensured the generation of a 

high-calibre point cloud model but also augmented scanning 

efficiency. 

(2) Building upon the PCL open-source library foundation

and taking into account the unique geometric attributes of steel 

truss bridge members, a series of algorithmic enhancements 

and evaluations were undertaken [48]. Through the harnessing 

1979



 

of image processing and pattern recognition methods, a 

pathway for extracting the geometric peculiarities of the 

member was delineated, leading to the successful digital 

assessment of the point cloud model anchored in coordinates. 

(3) The study ventured into understanding the repercussions 

of the flexible nature inherent to steel structural members on 

scanning outcomes, whilst also factoring in practical 

engineering parameters such as temperature variations and 

scanning support scenarios. By melding image analytical 

strategies with finite element analysis tools, theoretical 

deformation values during the scanning phase were discerned, 

permitting the rectification of digital measurement outcomes 

to uphold their veracity. 

(4) Within a critical steel truss bridge initiative, the digital 

measurement methodology elucidated in this research was 

applied for validation purposes. The derived outcomes not 

only corroborated the preservation of measurement precision 

but also underscored the practicality of the proposed technique. 

This serves as an instrumental reference for future research 

endeavours focused on bridge-related digital measurement 

technologies. 

Through this research, invaluable insights into the 

confluence of advanced scanning techniques and image 

processing methodologies were unveiled, emphasising their 

pivotal role in enhancing the accuracy and applicability of 

digital measurement techniques in the realm of bridge 

engineering. 
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