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Non-invasive acquisition and analysis of human brain signals play a crucial role in the 

development of brain-computer interfaces, enabling their widespread applicability in daily 

life. Motor imagery has emerged as a prominent technique for the advancement of such 

interfaces. While initial machine and deep learning studies have shown promising results in 

the context of motor imagery, several challenges remain to be addressed prior to their 

extensive adoption. Deep learning, renowned for its automated feature extraction and 

classification capabilities, has been successfully employed in various domains. Notably, 

recent research efforts have focused on processing and classifying motor imagery EEG 

signals using two-dimensional data formats, yielding noteworthy advancements. Although 

existing literature encompasses reviews primarily centered on machine learning or deep 

learning techniques, this paper uniquely emphasizes the review of methods for constructing 

two-dimensional image features, marking the first comprehensive exploration of this 

subject. In this study, we present an overview of datasets, survey a range of signal-to-image 

conversion methods, and discuss classification approaches. Furthermore, we 

comprehensively examine the current challenges and outline future directions for this 

research domain.  
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1. INTRODUCTION

Electroencephalography (EEG) is a neuroimaging method 

for measuring, recording, and examining the brain activity. It 

has been used in brain-computer interfaces (BCIs), consumer 

neuroscience, psychiatry, diagnosis, rehabilitation, and 

treatment. The most common use case is BCIs, which establish 

a communication and control environment without muscles 

and peripheral devices. Some examples include limb motor 

imagery, controlling unmanned aerial vehicles, virtual drones, 

robotic arms, and virtual reality environments. Motor imagery 

(MI) is a universal way to develop such BCIs, where actions

are performed by mentally simulating the motor action in the

brain without using the motor system. Researchers have

proposed various machine/deep learning techniques, but the

flourishing applications of MI-BCIs still need to be improved.

Some difficulties encountered include noise and artefacts,

non-stationarity, nonlinearity, inconsistency, being distorted,

session-to-session and subject-to-subject variability, trade-

offs between training time and performance, and the time-

consuming calibration. The problems become even tougher

when considering non-invasive real-time MI-EEG systems.

Nowadays, deep learning (DL) has become very popular 

due to its success in automatic feature extraction and 

classification capabilities, which differs from classical 

machine learning. It has been used to classify different data 

types and has demonstrated great success. Most deep learning 

research on MI-EEG has used one-dimensional time series 

data. However, further studies are needed to investigate the 

processing of MI-EEG signals in deep learning aspects. For 

example, some deep learning studies used 2D inputs and 

processed them in 2D instead of 1D time series MI-EEG 

signals or features. These approaches have increasing 

applications and successful results have been achieved. In this 

respect, examining studies on this subject is highly important. 

So far, most reviews have focussed only on machine learning 

or deep learning. In this paper, we mainly focus on a review of 

the techniques for converting MI-EEG signals to images. This 

is important because the processing of MI-EEG signals, 

especially in deep learning, is a significant issue. In the 

literature, only some researchers have investigated this topic. 

This present study will contribute to this gap in the literature. 

The basic research questions are: (1) What are the signal-to-

image conversion methods for MI-EEG signals? (2) What are 

the classification techniques using these image features? and 

(3) What are the challenges and future directions in the

classification of MI-EEG signals?

The MI-EEG datasets used for model development and 

testing are detailed in Sec. 2. The signal-to-image conversion 

and classification methods are analysed in Sec. 3. The last 

sections of this article present challenges, future directions, 

and conclusions. 

2. DATASETS

Supervised datasets are essential for the learning models. 

Compared to data sets in other fields, the number of MI-EEG 

data sets is restricted. Because it is challenging to collect large-

scale and high-quality data due to the strict conditions for 
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subjects and experimental environments. Also, simulating the 

motor action in the brain is difficult. Most machine learning 

studies attempting to classify MI with image features have 

generally been conducted on similar datasets. These data sets 

were usually recorded from healthy subjects sitting in 

comfortable armchairs with armrests. They are shown in Table 

1, where studies, number of subjects, recording channels and 

MI tasks categories are given. 

BCI Competition datasets have been used most to validate 

signal processing and classification methods. They presented 

new challenges, such as small training sets, classification of 

continuous MI-EEG data without trial structure and 

classification of MI-EEG signals affected by eye movement 

artefacts, etc. DS1 (BCI Competition II dataset III [1]) is one 

of the first instances. The data set consists of recordings from 

a normal subject. Its objective is to provide a continuous 

output that could be used as BCI feedback. The challenge is to 

control a feedback bar in one dimension using MI of left or 

right-hand movements. It was recorded from C3, Cz, and C4 

locations. It includes seven runs (conducted on the same day) 

with 40 trials each, resulting in 280 trials. The EEG was 

sampled with 128Hz and filtered between 0.5 – 30Hz [1]. DS2 

(BCI Competition III dataset IIIa [2]) is a four-class (left hand, 

right hand, foot, or tongue) cued dataset. The data set consists 

of recordings from three subjects. It includes 60-channel EEG 

data sampled with 250 Hz and filtered between 1 – 50 Hz with 

a Notch filter. The experiment consists of several runs (at least 

six) with 40 trials each [2]. DS3 (BCI Competition III dataset 

IVa [2]) is a two-class cued dataset recorded from five subjects 

using 118 electrodes. This dataset was developed to reduce 

calibration times. While the number of training samples is high 

for subjects “aa” and “al”, there are very few samples available 

for subjects “av”, “aw”, and “ay”. It addresses the challenge of 

getting along with only a small amount of training data. The 

signals were band pass-filtered between 0.05 – 200 Hz and 

digitized at 1000 Hz. There are 280 trials for each subject [2]. 

DS4 (BCI Competition IV dataset 1 [3]) is an asynchronous 

dataset. This dataset presents the challenge of applying 

classifiers to continuous MI-EEG signals without cue. This 

dataset includes two different sub-datasets. The first one 

involved four healthy participants. In the whole session, the 

MI was performed without feedback. For each participant, two 

classes of MI were selected from the three classes left hand, 

right hand, and foot. The signals were recorded from 59 

electrode locations. They were band-pass filtered between 

0.05 and 200 Hz and then digitized at 1000 Hz. The session 

was divided into two parts: training and testing recordings. In 

the first two runs, arrows pointing left, right, or down were 

presented as visual cues and training data was recorded. Each 

run consists of 50 trials of each of the chosen two classes that 

have been presented, resulting in 200 trials. In the next four 

runs, the MI tasks were cued by acoustic stimuli and test data 

was recorded. Each run consists of 30 trials for each class that 

has been recorded. Thus, a total of 240 trials were performed. 

The second sub-data set was artificially generated, designed to 

test machine learning methods to see if MI-EEG signals with 

specific characteristics can be artificially generated. The 

artificial MI-EEG signals were constructed using the linear 

combination of background noise, baseline drifts, etc. DS5 

(BCI Competition IV dataset 2a [3]) is composed of four 

classes (left-hand, right-hand, both feet and tongue) of data 

collected from nine subjects. It was recorded in two sessions 

on separate days using a cue based BCI paradigm, and no 

feedback was provided during the execution of the MI. The 

training and test sets were created with data from these distinct 

sessions. It includes the challenge of session-to-session 

transfer. The classifier model constructed using the training 

session should generalize on unseen data recorded on different 

day. Each session contains about 288 trials (artefacted trials 

were marked by an expert). EEG was recorded monopolarly 

from 22 electrode locations, sampled with 250 Hz and 

bandpass filtered in the 0.5–100 Hz. A 50 Hz notch filter was 

also used to reduce line noise. Approximately five minutes of 

EEG recording (2 min with eyes open, 1 min with eyes closed, 

and 1 min with eye movements) was also made at the 

beginning of each session to assess the effects of EOG. The 

other challenge is how eye movement artefacts could affect 

classification performance. Due to this, data from 3 EOG 

channels were recorded in addition to the EEG channels [3]. 

DS6 (BCI Competition IV dataset 2b [3]) includes two-class 

(left hand, right hand) data from nine subjects. The whole 

dataset for each subject contains five sessions, whereby the 

first two sessions contain MI-EEG data without feedback, and 

the last three sessions were recorded with feedback. All the 

training and test sets were recorded on five separate days. Due 

to this, the session-to-session differences must be taken into 

consideration. As for DS5, a recording of about 5 minutes was 

performed at the start of each session to gauge the effect of 

EOG. The bipolar recording was made from C3, Cz, and C4 

positions with a sampling frequency of 250 Hz. EEG signals 

were bandpass filtered between 0.5 Hz to 100 Hz, and a notch 

filter at 50 Hz was enabled. EOG data was recorded during all 

sessions with three monopolar electrodes to facilitate artefact 

processing. This data set focuses on classifying MI-EEG data 

affected by eye movement artefacts. The first two sessions (six 

runs per session) were performed without feedback on two 

days. Each session consisted of six runs with ten trials each 

and two classes of imagery, which resulted in 120 trials per 

session (60 for the left hand and 60 for the right hand). The 

three other sessions with smiley feedback consist of four runs. 

Each type of MI task has twenty trials in each run. The first 

three sessions are for training, and the last two for testing [3]. 

The other datasets are as follows. Most of these are freely 

available benchmark datasets. DS7, DS09, and DS10 are 

another open dataset. DS8 and DS11 are used only in specific 

studies. DS7 (PhysioNet - EEG Motor Movement/Imagery 

Dataset [4, 5]) is another benchmark dataset with the largest 

number of subjects. It contains MI-EEG signals for opening 

and closing the left fist, right fist, both fists, and both feet MI 

tasks. This dataset also includes baselines and the signals 

generated when tasks are performed using the motor system. 

EEG was recorded from 64 electrodes with a rate of 160 

samples per second [4, 5]). DS8 [6] comprises two-class (left 

hand, right hand) data collected from five subjects. EEG was 

recorded from C3, C1, Cz, C2, and C4 electrodes, sampled 

with 250 Hz. There are a total of 400 trials for each subject [6]. 

DS9 [7] is a two-class (left hand, right hand) dataset recorded 

from 52 subjects using 64 EEG positions with a sampling 

frequency of 512 Hz. EMG signals were simultaneously 

recorded to check hand movements [7]. DS10 [8] is a large 

dataset collected during the development of a BCI. Data was 

collected from 13 subjects using 19 EEG inputs. The dataset 

involves 60 hours of data, 75 recording sessions, 201 

individual EEG BCI interaction session segments, and motor 

imageries of the left hand, right hand, left leg, right leg, and 

tongue [8]. DS11 [9] is a four-class (left hand, right hand, feet, 

tongue) dataset. MI-EEG and monocular vision were used to 

realize the UAV indoor space target searching for a BCI 
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system. The data set consists of recordings from twelve subjects. It contains 15-channel data sampled with 250 Hz [9]. 

 

Table 1. Summary of the datasets used for evaluating MI-EEG BCIs 

 
Dataset Study # of Subjects Channels MI Tasks 

DS1 [10, 11] 1 3 channels (C3, Cz, C4) left hand, right hand 

DS2 [12, 13] 3 64 channels left hand, right hand, foot, and tongue 

DS3 [14] 5 118 channels right hand, foot 

DS4 [15-17] 7 59 channels 
left hand, right hand, foot (side chosen by the 

subject; optionally also both feet) 

DS5 [12, 18-22] 9 22 channels left hand, right hand, both feet and tongue 

DS6 [6, 10, 15, 16, 18, 21, 23, 24] 9 3 channels (C3, Cz, C4) left hand, right hand 

DS7 [21, 25-27] 109 64 channels 
opening and closing left fist, right fist, both fists, 

both feet 

DS8 [6] 5 
5 channels (C3, C1, Cz, 

C2, C4) 
left hand, right hand 

DS9 [12] 52 64 channels left hand, right hand 

DS10 

 
[12] 13 19 channels left hand, right hand, left leg, right leg, tongue 

DS11 [9] 12 15 channels left hand, right hand, feet, tongue 

 

 

3. SIGNAL-TO-IMAGE CONVERSION METHODS 

AND CLASSIFICATION 

 

The conversion of MI-EEG signals to 2D images has 

usually performed by time-frequency representation 

approaches. They transform MI-EEG signals into 2D time-

frequency images, i.e., spectrograms or scalograms. Many 

other characteristic methods have also been researched 

extensively. Earlier studies on the classifications of MI-EEG 

signal images were mostly conducted with deep learning. It is 

mainly due to their recent success, where they work well for 

automatic feature extraction and classification. Apart from 

deep learning, several traditional machine learning approaches 

have also been engaged. Deep learning models need large 

sample data sets to achieve good performance. Nevertheless, 

collecting large-scale and high-quality MI-EEG data is 

difficult due to the strict requirements for subjects and 

experimental environments. Deep transfer learning and data 

augmentation are promising candidates to solve these 

problems. They have much potential; nonetheless, the number 

of studies in this field is limited. 

A comprehensive review of the classification and signal-to-

image conversion methods is shown in Table 2. Studies are 

first grouped according to the data sets. In some studies, 

specific MI categories were classified, while in others, 

additional categories were constructed. Consequently, the 

classified MI tasks are given in the third column. The next 

column gives the signal-to-image conversion and 

classification methods, respectively. Important features 

specific to the application of these methods are also 

emphasised. In the last column, performance results are given 

regarding accuracy or Kappa. It also explains how the results 

are obtained. For example, some studies use the original 

training and test sets, some use only the training or test set, and 

some use k-fold cross-validation. 

 

 

Table 2. An extensive review of the classification and signal-to-image conversion methods 

 
Dataset Study MI Tasks Methods Results and Experiment Details 

DS1 

[10] 2 (left/right hand) STFT + CNN-SAE 
Acc: 90.0% and Κ: 0.8; using original training/test 

sets 

[11] 2 (left/right hand) CWT + AlexNet 
Acc: 96.43% and K: 0.93; using original 

training/sets 

DS2 

[12] 4 (left/right hand, foot, and tongue) STFT + EEGNet + VMD Acc: 91.37%±2.12%; 10-fold CV 

[13] 
4 (left/right hand, foot, and tongue) AAG + SIFT+ BoW + 

kNN 

Acc: 97.99%; using original training/test sets 

2 (left/right hand) Acc: 96.50%; using original training/ test sets 

DS3 [14] 2 (right hand and right foot) 
CWT + CNN Acc: 99.35% and Κ: 0.9869 

STFT + CNN Acc: 98.7% and Κ: 0.9798 

DS4 

[15] 2 (left/right hand) 

STFT + CNN without DA 
Acc: 74.5±4.0% and Κ: 0.4018±0.048; 10-fold CV; 

data of b, d, e, g subj 

STFT + CNN-DCGAN 
Acc: 83.2±3.5% and Κ: 0.4679 ± 0.050; 10-fold CV; 

data of b, d, e, g subj 

[16] 
2 (left hand and both feet for subj a and f, left 

hand and right hand for subj b and g) 
STFT + PCNN 

Acc: 84.5±1.5% and Κ: 0.690±0.029; 5×10-fold 

CV; data of a, b, f, g subj 

[17] 
2 (left hand and foot for subj a and f, left hand 

and right hand for subj b and g) 

Morlet Wavelet + 

3DCNNs + Bi-GRUs 
Acc: 64.93%; 8x8 CV; data of a, b, f, g subj 

DS5 

[18] 4 (left/right hand, both feet and tongue) 
STFT + Deep CNN and 

CutCat DA 
Acc: 75.81% and Κ: 0.678±0.198 

[21] 4 (left/right hand, both feet and tongue) TPCT + mVGG 

Acc: 88.87% and Κ: 0.57; using original 

training/test sets 

Acc: 92.13% and Κ: 0.90; training/test sets are 

merged and evaluated with 10-fold CV 

[12] 4 (left/right hand, both feet and tongue) STFT + EEGNet + VMD Acc: 94.41±2.74%; 10-fold CV 
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Table 2 (continued). An extensive review of the classification and signal-to-image conversion methods 

 
Dataset Study MI Tasks Methods Results and Experiment Details 

DS5 

[20] 
4 (left/right hand, both feet 

and tongue) 

Morlet wavelet + cubic spline 

interpolation + IncepCNN-BGRU 
Acc: 76.62% and Κ: 0.688; 10×10-fold CV 

[22] 

4 (left/right hand, both feet 

and tongue) 
ETR + CNN Acc: 87.66±5.34% and Κ: 0.82±0.081 

5 (left/right hand, both feet 

and tongue tasks, and others) 
ETR + CNN Acc: 85.57±7.08 and Κ: 0.801±0.088 

[19] 
2 (left/right hand) CWT without spatial dropping + CNN Acc: 87.6±5.7% and Κ: 0.75; 10-fold CV 

3 (left/right hand, and foot) CWT with spatial dropping + CNN Acc: 71.2±7.0% and Κ: 0.56; 10-fold CV 

[25] 
4 (left/right hand, both feet 

and tongue) 

STFT + KBIM + PMMCL [Case 1] Acc: 90.13%; 10-fold CV 

STFT + KBIM + PMMCL [Case 2] Acc: 77.33%; 10-fold CV 

DS6 

[6] 2 (left/right hand) STFT + CNN-VAE Κ: 0.564±0.065; 10×10-fold CV 

[15] 2 (left/right hand) 
STFT + CNN without DA Acc: 80.6±3.2% and Κ: 0.4789±0.077; 10-fold CV 

STFT + CNN-DCGAN Acc: 93.2±2.8% and Κ: 0.671±0.067; 10-fold CV 

[23] 2 (left/right hand) 
STFT + pre-trained VGG-16 CNN + 

target CNN 

Acc: 74.2%; ten runs on training/testing sets with 

80/20% splits using only first three sessions 

[24] 2 (left/right hand) STFT + CapsNet Acc: 78.44%; using original training/test sets 

[16] 2 (left/right hand) STFT + PCNN 

Acc: 83.0±3.4% (with 2.4 inter subj std. dev) and Κ: 

0.659±0.067 (with 0.048 inter subj std. dev.); 5×10-

fold CV 

[18] 2 (left/right hand) STFT + Shallow CNN + CutCat DA Acc: 78.44% and Κ: 0.569; 10-fold CV 

[10] 2 (left/right hand) STFT + CNN-SAE 

Acc: 77.6±2.1% (with 8.1 inter subj std. dev.) and Κ: 

0.547±0.083 (with 0.161 inter subj std. dev.); 10×10-

fold CV on 3 sessions in training set 

[21] 2 (left/right hand) TPCT + mVGG 

Acc: 96.82% and Κ: 0.94; training and test sets are 

merged and evaluated with 10-fold CV 

Acc: 96.48% and Κ: 0.93; 10-fold CV on training set 

DS7 

[25] 

5 (opening & closing left fist, 

right fist, both feet, both fists, 

and eye closed) 

STFT + KBIM + PMMCL [Case 1] Acc: 99.64%;10-fold CV 

STFT + KBIM + PMMCL [Case 2] Acc: 97.42%; 10-fold CV 

[26] 
3 (left/right hand or rest 

classes) 
ST + triplet network Acc: 0.647 

[27] 
2 (open & close left or right 

fist) 

FFT + azimuthal equidistant 

projection + Deep CNN 
Acc: 90.52% and Κ: 0.81; 10-fold CV 

[21] 2 (both fists and both feet) TPCT + mVGG 
Acc: 88.62% and Κ: 0.77; 10-fold CV; data from all 

subj are merged 

DS8 [6] 2 (left/right hand) STFT + CNN-VAE 
Κ: 0.568±0.068 with 3 electrodes; 10×10-fold CV 

Κ: 0.603±0.067 with 5 electrodes; 10×10-fold CV 

DS9 [12] 2 (left/right hand) STFT + DeepConvNet + VMD Acc: 88.51±10.64%; 10-fold CV 

DS10 [12] 
5 (left/right hand, left/right 

foot, and tongue) 
STFT + EEGNet + VMD Acc: 90.20±4.34%; 10-fold CV 

DS11 [9] 
4 (left/right hand, feet, and 

tongue) 
STFT + CNN 

Acc: 88.06% for calibration, 88.95% for indoor 3D 

space target searching 

 

Some acronyms are as follow: STFT (Short-time Fourier 

transform), CWT (continuous wavelet transform), FFT (fast 

Fourier transform), ETR (EEG topographical representations), 

TPCT (Clough-Tocher interpolation-based imaging), ST 

(Stockwell Transform), AAG (angle-amplitude graph), CNN 

(convolutional neural network), SAE (Stacked Autoencoders), 

VAE (Automatic Variation Encoder), VMD (variational mode 

decomposition), PCNN (parallel CNN), 3DCNNs (three-

dimensional CNNs), modified visual geometry group network 

(mVGG), BGRU/Bi-GRUs (bidirectional gated recurrent 

units), (PMMCL) parallel multimodule CNN and long short-

term memory network, DCGAN (deep convolutional 

generative adversarial network), SIFT (scale-invariant feature 

transform), BOW (bag-of-words), kNN (k-nearest neighbour 

algorithm), DA (data augmentation), KBIM (key band 

imaging method), CV (cross-validation), (K) Kappa, subj 

(subject). 

 

3.1 Time-frequency image representation methods 

 

The human brain is a complex nonlinear system that 

produces non-stationary EEG oscillations [28]. Conventional 

Fourier-based methods are successful in investigating the 

spectrum of stationary signals. However, they often fail in MI-

EEG, where the spectrum changes with time [29]. Time-

frequency image representation (TFIR) methods have been 

used in the literature to comprehend which frequency 

components exist in different time intervals and how they vary 

over time. They transform 1D signals into 2D time-frequency 

representations and provide information about local frequency 

variations [30]. Short-time Fourier transform (STFT), and 

Continuous wavelet transform (CWT) are widespread 

examples applied to numerous problems [14]. TFIR especially 

has constraints in dealing with fast varying instantaneous 

frequencies [30], and one of the problems is finding suitable 

time-frequency resolution [29]. For instance, traditional STFT 

with invariable window width provides a constant resolution 

over the entire spectrum [14], and therefore, it suffers poor 

resolution [29]. Compared to STFT’s constant resolution over 

the entire spectrum, CWT can provide a higher resolution [14]. 

On the other hand, CWT can also fail because its window 

dilation rule is not signal-dependent [29]. In the literature, 

STFT, CWT and Stockwell transform has been employed as 

TFIR for MI-EEG signals. 
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3.1.1 Short-time Fourier transform-based methods 

STFT have been one of the most used methods to convert 

MI-EEG signals into spectrums. In some studies, these 

spectrums were given to the classifiers as image input directly 

and without processing, while in others, sub-images of the 

spectrum were extracted and combined. Thus, useful MI-EEG 

information was used together. In many studies, to capture 

event-related desynchronization and synchronization, μ and β 

bands were extracted and combined. In such combinations, 

sub-images related to frequency bands were usually resized to 

the same size to ensure similar effects for all bands. If STFTs 

from different electrodes were to be combined, the electrodes 

neighbouring information were also considered. Thus, STFT-

based time-frequency and electrode location information was 

fused. STFT-based approaches are summarized in Table 3. 

The table shows the data sets, EEG channels, STFT parameter 

values (signal length, window size, time-lapse, overlap), and 

frequency bands from which MI information was obtained. 

Tabar and Halici [10] combined time, frequency, and 

electrode location information to create a new input form for 

MI-EEG signals. They used it in CNNs, with one 1D 

convolutional and one max-pooling layer. First, they applied 

STFT to MI-EEG signals and calculated 257×32-sized 

spectrum images. After that, to capture and use event-related 

desynchronizations and synchronizations, they extracted 

16×32 and 23×32-sized sub-images related to μ and β 

frequency bands, respectively. To ensure similar effects of 

both bands, they resized the 23×32-sized sub-images to 15×32. 

After that, they vertically combined sub-images of β and μ 

bands, respectively, and constructed 31×32-sized images for a 

one-channel MI-EEG signal. Lastly, they vertically combined 

images of C3, Cz, and C4 channels while preserving 

neighbouring information and formed a 93×32-sized final 

input image, as shown in Figure 1. Thus, they used MI signals' 

time and frequency properties to design network input. The 

experiments were conducted on DS1 and DS6 to classify 

left/right-hand tasks. This study combined the CNN and 

stacked autoencoders (SAE), and the features extracted in 

CNN were classified through the deep network SAE. The 

STFT + CNN-SAE approach showed 90.0% accuracy with a 

kappa of 0.8 on DS1 and 77.6±2.1% with a kappa of 

0.547±0.083 on DS6. The results for DS6 are from nine 

subjects and are slightly lower as they include data from 

different sessions. However, the proposed method achieved a 

9% improvement over the competition winner.  

 

 
 

Figure 1. A sample input MI-EEG image where STFT 

spectrums are extracted, resized, and fused [10] 

The same paradigm was used differently, where spectrum 

images were extracted, resized, and combined. For example, 

Dai et al. [6] used the electrode location, time, and frequency 

information and defined new multidimensional input features. 

They extracted sub-images for β and μ frequency bands from 

257×32-sized spectrums. The sub-images were resized to 

15×32 to establish the similar effects of both bands. After that, 

these sub-images were combined vertically, and 31×32-sized 

images were constructed per channel. In the last stage, images 

from different channels were vertically combined while 

preserving the electrodes' neighbouring information. They 

presented a new classification framework that uses an 

Automatic Variation Encoder (VAE) after CNN to deal with 

artefacts, noise, channel correlation, and high-dimensionality 

problems. The STFT + CNN-VAE method showed an average 

kappa of 0.564 on DS6 with a 3% improvement. Furthermore, 

their dataset DS8 achieved the best average kappa of 0.568 

with three electrodes and 0.603 with five electrodes. 

Xu et al. [23] investigated an STFT-based preprocessing 

procedure based on time-frequency images. After converting 

MI-EEG signals to spectrums, they extracted 20×32 and 

33×32-sized sub-images for 4–14 Hz μ and 16–32 Hz β bands, 

respectively, and resized each of these sub-images to 112×224. 

Then, they combined them and generated 224×224-sized 

spectrums. Finally, a 224×224×3-sized input image was 

created by combining spectrum images converted from three 

EEG channels. After that, to solve the insufficient labelled data 

problem and enhance the training efficiency of the CNN, they 

adopted a VGG-16-based deep transfer CNN framework. The 

model was pre-trained on ImageNet, and the parameters of the 

VGG-16 CNN were directly transferred to the target CNN. It 

shares the same structure as VGG-16 except for the softmax 

output layer. In the target model, the front-layer parameters 

were frozen, while later-layer parameters were fine-tuned by 

the target dataset. For the classification of left/right-hand tasks 

on DS6, the proposed framework achieved 74.2% accuracy, 

better than most known approaches like standard CNN and 

support vector machines. 

Chaudhary et al. [14] introduced a new deep convolutional 

neural network for classifying right-hand and right-foot tasks. 

They applied time-frequency techniques to convert MI-EEG 

signals into images. In this paper, they obtained spectrograms 

using the Hamming window, resized them to 227×227×3 and 

used them as input. After that, they employed a transfer 

learning strategy to fine-tune the pre-trained Alexnet DCNN. 

In this network, the last two layers were replaced with new 

ones to discover features unique to the dataset. The proposed 

STFT + CNN approach acquired 98.7% accuracy with a kappa 

of 0.98. In the same study, CWT showed a slightly better result 

than STFT. Ha and Jeong [24] transformed MI-EEG signals 

into 2D images and gave them to the capsule network 

(CapsNet). They formed 3×65×14-sized images by separately 

applying STFT to three channels. After selecting β and μ 

bands, they constructed three channel 14×14-sized 2D 

spectrum images as the initial input. They mainly focused on 

solving the problems of distorted and inconsistent MI-EEG 

signals by automatic feature learning and determined the 

optimal network architecture by analysing various CapsNet 

configurations. Experiments were conducted on DS6 to 

classify two-class left/right-hand MI tasks. The STFT + 

CapsNet approach showed an average accuracy of 78.44%, 

higher than CNN-based methods (ShallowNet et al.) and 

various conventional machine learning techniques (SVM et 

al.). On the other hand, for some subjects, the network 
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architecture failed to capture better features and patterns, and 

due to this, some of the CNN-based approaches outperformed 

the proposed method.  

Zhang et al. [15] decoded MI-EEG signals based on deep 

neural networks. They created STFT images of C3, Cz, and C4 

channels and mosaicked them into an image while preserving 

the channel's neighbouring information. They investigated 

data augmentation methods for classifying spectrogram 

images. For this purpose, they generated artificial MI-EEG 

data using five data augmentation methods, i.e., geometric 

transformation, noise addition, generative model, 

autoencoder, variational autoencoder, and deep convolutional 

generative adversarial network (DCGAN). Among them, 

DCGAN performed better than traditional methods. It showed 

17% and 21% accuracy improvements for DS4 and DS6, 

respectively, for the classification of left/right-hand tasks. The 

proposed CNN-DCGAN showed high consistency and 

outperformed the other methods, with average kappa values of 

0.564 and 0.677 for these datasets. The results indicated that 

the data augmentation using operations like rotation may have 

adversely affected the MI-EEG information. 

Al-Saegh et al. [18] employed the raw time-series MI-EEG 

signals to train a deep end-to-end CNN. They used STFT and 

converted MI-EEG signals to 2D images in this approach. 

These images preserve event-related desynchronisation and 

synchronisation-related information. They applied STFT to 

capture power spectral density and constructed 250×67-sized 

images per channel. After that, as with previous studies, μ and 

β band-related sub-images were extracted, resized, and 

concatenated. Finally, 96×67-sized final images were formed 

by combining the electrodes' location information. This paper 

also presented an augmentation method and enlarged the MI-

EEG dataset to solve the same data scarcity problem. It 

generated trials from inter and intra- subjects and trials. The 

generated images were then input to the shallow and deep 

CNNs. The STFT + Deep CNN and CutCat data augmentation 

showed 75.81% accuracy with a kappa of 0.68 for a four-class 

(left/right hand, both feet and tongue) problem on DS5. 

Besides, the STFT + Shallow CNN + CutCat data 

augmentation acquired 78.44% accuracy with a kappa of 0.57 

for a two-class (left/right hand) problem on DS6. Thanks to 

the favourable augmentation method for small-scale datasets, 

the improved MI-EEG decoding and implemented networks 

achieved good results compared to the state-of-the-art.

 

Table 3. Literature review of STFT-based TFIR approaches 

 
Study Dataset Length of Signal Channels STFT Parameters Frequency Bands 

[10] 
DS6 2 s (500 samples) C3, Cz and C4 window size: 64 / time lapse: 14 μ: 6–13 Hz 

β: 17–30 Hz DS1 2s (256 samples) C3, Cz and C4 window size: 32 / time lapse: 7 

[6] 
DS6 2 s (500 samples) C3, Cz, and C4 

window size: 64 / time lapse: 14 
μ: 6–13 Hz 

β: 17–30 Hz DS8 2 s (500 samples) C3, C1, Cz C2, and C4 

[23] DS6 2 s (500 samples) C3, C4, and Cz window size: 64 / overlap size: 50 
μ: 4–14 Hz 

β: 16–32 Hz 

[14] DS3 - - window size: 120 / overlap: 100 - 

[24] DS6 2 s (500 samples) C3, Cz, and C4 window size: 140 / overlap size: 100 8–31 Hz 

[15] 
DS4 4 s (400 samples) C3, Cz, and C4 window size: 128 

8–30 Hz 
DS6 4 s (1000 samples) C3, Cz, and C4 window size: 256 

[18] 
DS5 

4 s (1000 samples) C3, Cz, C4 window size: 64 / overlap size: 50 
μ: 6–13 Hz 

β: 17–30 Hz DS6 

[25] 
DS7 2 s (320 samples) 64 channels 

window size: 128 / time lapse: 50% of the window 
α: 8–13 Hz 

β: 13–30 Hz DS5 2 s (500 samples) 22 channels 

[12] 

DS2 5 s (1250 samples) 

C3, Cz, C4 window size: 200 ms / overlap: 75% of the window 
delta, theta, 

alpha and beta bands 

DS5 5 s (1250 samples) 

DS9 4 s (2048 samples) 

DS10 1 s (200 samples) 

[16] 
DS6 2 s (500 samples) C3, Cz, C4 

window size: 64 / time lapse: 14 
μ: 6–13 Hz 

β: 17–30 Hz DS4 5 s (500 samples) 59 channels 

[9] DS11 3 s (750 samples) 15 channels windows size: 0.5 s / overlap size: 97% of the window 
1–100 Hz and 

8–30 Hz 

 

Some other studies, e.g., [9, 12, 16, 25], have sought to 

increase the performance of MI-EEG systems using different 

STFT-based approaches. In these studies, STFT was generally 

used with different techniques, e.g., common spatial patterns 

or spectrum fusion methods. For instance, Han et al. [16] 

combined spatial filtering and frequency band extracting to 

create a new image form for the raw MI-EEG signal 

representation. They used STFT both to obtain MI-related 

frequency bands and describe MI-EEG signals. They applied 

STFT after a regularised common spatial pattern (RCSP) and 

proposed a new method called RCSP-STFT. It has the 

advantage of combining spatial projection and time–frequency 

analysis. As in previous studies, sub-images of μ and β bands 

were extracted, resized (using neighbour interpolation 

method), and combined vertically in this study. For a single 

trial, 30 representation images were calculated with the help 

of 30 pairs of two regularisation parameters. These images 

were fed to a parallel convolutional neural network (PCNN) 

architecture. In addition to the usual 2D kernel, 1D kernels for 

both frequency channel and time were added to optimise the 

PCNN and sufficiently capture features from the 2D images. 

Batch normalisation and dropout strategies were also engaged 

to optimise the network's performance. The proposed STFT + 

PCNN method yielded an average accuracy of 83.0% with a 

kappa of 0.66 on DS6 to classify left/right-hand tasks. It 

outperformed the state-of-the-art by at least 5.2% accuracy and 

20.5% kappa improvements. 

MI-EEG has high time resolution and frequency-spatial 

characteristics. Because of the nature of the MI-EEG, the 

features of α and β frequency band features might not fully be 

extracted by neural networks. Considering these and for 

automatic classification, Li et al. [25] constructed two key 

band image sequences containing temporal-spectral-spatial 

features. They constructed time-frequency images with STFT 
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and then extracted sub-images of α and β bands. Afterwards, 

they fused the sub-images from all electrodes for α and β 

bands. Lastly, each band was arranged to the electrode 

coordinate using the nearest neighbour interpolation. In this 

paper, they further investigated the performance of different 

interpolation methods. They applied α and β band image 

sequences to a hybrid deep neural network, i.e., parallel 

multimodule CNN and long short-term memory network 

(PMMCL) network, to extract and fuse spatial-spectral and 

temporal features of key band image sequences. In the hybrid 

DNN, parallel multimodule CNNs were used to 

simultaneously acquire the global features of frequency band 

image sequences. LSTM was used to extract the temporal 

features among key band image sequences. A sliding window 

technique was also employed to expand the dataset. The 

proposed STFT + KBIM + PMMCL method showed 77.33% 

accuracy on DS5 for a four-class MI problem and 97.42% on 

DS7 for a five-class MI problem, better than the state-of-the-

art. However, computational costs due to data augmentation 

and networking should be reduced. Keerthi Krishnan and 

Soman [12] aimed to generate spectrum images for 

preprocessing and inputting to CNNs. For this purpose, they 

decomposed MI-EEG signals into four variational mode 

decomposition (VMD) modes and applied STFT to each. 

Then, they combined the STFT of each VMD mode by 

stacking and formed the final spectrum image. This study used 

ConvNet, EEGNet, AlexNet, and LeNet CNN architectures. 

ConvNet and EEGNet were modified with three channel 

layers as the RGB spectrum images. AlexNet and LeNet 

adopted a network without layer modifications and fine-tuned 

these CNN architectures for spectral image input. The STFT + 

EEGNet + VMD framework showed average accuracies of 

91.37% and 94.41% for the four-class problems on DS2, DS5, 

respectively, and 90.20% for the five-class problem on DS10. 

Furthermore, the STFT + DeepConvNet + VMD acquired an 

accuracy of 88.51% for a two-class problem on DS9. These 

results reveal the potential of VMD-STFT in the recognition 

of MI-EEG signals. 

Shi et al. [9] investigated a BCI that uses monocular vision 

and MI-EEG for unmanned aerial vehicle (UAV) indoor space 

target searching. In this BCI, the navigation subsystem offers 

the precise, 3D-space-feasible flying direction to the decision 

subsystem. The decision subsystem first filtered raw MI-EEG 

signals with two fifth-order Butterworth band-pass filters. 

After that, common spatial patterns were applied to realise the 

spatial transformation. Then, spatially filtered signals were 

converted to images using stacked spectrograms and data 

augmentation. These spectrograms were inputted into a single 

convolutional layer CNN for feature extraction and 

classification. The proposed method yielded a calibration 

accuracy of 88.06% and an indoor 3D space target searching 

accuracy of 88.95% for a four-class (left/right hand, feet, and 

tongue) problem on DS11. The BCI system showed good 

adaptability and control stability for indoor 3D space target 

searching. 

 

3.1.2 Wavelet-based methods 

Wavelet-based methods are another means of extracting 

time-frequency patterns and converting MI-EEG signals to 

images. As in STFT-based methods, Wavelet-based TFIR has 

been constructed in different ways. In some studies, these 

images were given as input directly and without processing to 

the classifiers, while in others, some MI-related parts were 

extracted and fused. In most of them, electrode neighbouring 

information was considered, and topographic interpolation 

approaches were used. Chaudhary et al. [14] analysed non-

stationary MI-EEG signals in time-frequency domains using 

CWT because of higher time-frequency resolution compared 

to the constant resolution of STFT. They applied CWT to MI-

EEG signals, constructed scalograms, resized them to the size 

of 227×227×3, and used them as DCNN inputs. This paper 

also investigated a deep convolutional neural network 

(DCNN) based technique for classifying two-class tasks 

(right-hand and right-foot). A transfer learning strategy was 

employed to fine-tune the pre-trained Alexnet DCNN. The 

proposed STFT+CWT approach achieved 99.35% accuracy 

with a kappa of 0.99. In the same study, STFT showed slightly 

worse results. Collazos-Huertas et al. [19] created an input 

image set for CNNs. They calculated CWT coefficients and 

TFIR with the help of a complex Morlet wavelet. The 

representations were extracted within each time window, 

generating an image containing temporal, spectral, and spatial 

information. Besides, a topographic interpolation technique 

was used to project multi-channel data and preserve the spatial 

knowledge of electrodes. The performance was tested using 

MI-related different spectral bandwidths. Four combining 

scenarios of µ and β rhythms were further evaluated, showing 

that CWT is more suitable for the non-stationary data 

decomposition compared to power spectral density. In this 

paper, a CNN approach based on non-sequential Wide&Deep 

neural networks was proposed. A spatial dropping technique 

was also employed to eliminate the learning weights reflecting 

the not engaged localities. This paper focused on the improved 

interpolation of spatial neural patterns and acquired good 

performance values on DS5. The CNN architecture was tuned 

for discriminative MI, and the spatial dropping algorithm was 

evaluated. CWT without spatial dropping + CNN approach 

showed 87.6% accuracy with a kappa of 0.75 for a two-class 

problem, and CWT with spatial dropping + CNN showed 

71.2% accuracy with a kappa of 0.56 for a three-class problem. 

The results showed that the CWT-based vectors were 

preferable for interpretation, learned weights were less 

sensitive to overtraining, and the CWT-based weights 

smoothly changed over time. Wei et al. [11] used a wavelet 

transform threshold denoising and a finite impulse response 

filter to eliminate extraneous signals and artefacts from MI-

EEG recordings. They used CWT to create 2D images 

containing time, scale, and amplitude. They adopted the 

Morlet wavelet as the base function, which has the feature of 

equal variance in time and frequency, and employed the 

wavelet transform threshold denoising. Ultimately, they 

horizontally combined CWT images of the C3 and C4 

electrodes. In experiments, a deep transfer learning strategy 

was developed for a small MI-EEG data set. The final layers 

of Alexnet were fine-tuned, and transfer learning was used to 

train the pre-trained AlexNet CNN. The experiments were 

conducted on DS1, and the proposed CWT + AlexNet 

approach achieved 96.43% accuracy with a kappa of 0.93 for 

the classification of the left/right hand MI tasks. Qiao et al. 

[20] offered a novel feature learning and preprocessing 

approach. They studied multi-channel MI-EEG signals and 

represented them while preserving spatial and temporal 

information. They used Morlet wavelet and cubic spline 

interpolation in preprocessing and constructed spectral frames. 

Lastly, they used an interpolation technique to transform each 

spectral irregularity map into a rectangle, which was given as 

input to the CNNs. They proposed a spatial-temporal hybrid 

deep learning model combining IncepCNN and bidirectional 
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gated recurrent unit (BGRU) in classification. The proposed 

CNN structure was abbreviated as IncepCNN and used to learn 

and extract spatial features. After that, the output of IncepCNN 

was used as the input of BGRU to learn the temporal 

information existing in MI-EEG. The proposed method 

achieved 76.62% accuracy with a kappa of 0.69 for the 

classification four-class MI task on DS5, encouraging the 

problem of inter- and intra-class variations. Wei and Lin [17] 

sought to solve the problems of poor performance, low 

efficiency and weak robustness using a multi-dimensional 

fusion features-based classification. They used an improved 

Morlet wavelet algorithm to extract stable features from the 

frequency spectrum, especially for nonlinear and non-

stationary signals. After applying Morlet, spectral power maps 

from 1 Hz to 40 Hz were obtained with frequency bands of 1 

Hz. After that, a cubic spline interpolation method was used to 

convert each spectral map to the corresponding rectangular 

spectrum energy map. Finally, the entire EEG trial was 

sampled into time slices, and the temporal-spatial-frequency 

event-related spectral power features were extracted due to the 

changes in event-related desynchronisation/synchronisation 

over time. This paper used a three-dimensional convolutional 

neural network (3DCNNs) model to extract features. They 

were subsequently put into the bidirectional gated recurrent 

units (Bi-GRUs) models to extract the spatial-frequency-

sequential multi-dimensional fusion features. The proposed 

Morlet Wavelet + 3DCNNs + Bi-GRUs method achieved 

64.93% accuracy on DS4 for some two-class MI problems. 

The experiment was also conducted for action observation and 

action execution tasks. The proposed method also achieved 

stable classification results in dealing with these tasks. 

 

3.1.3 Stockwell transform 

Stockwell Transform (ST) is another method to transform 

MI-EEG signals from time to the frequency domain. Due to 

this, it has been used to convert 1D EEG signals to 2D images. 

However, there are very few studies with ST compared to 

STFT and CWT. For example, Alwasiti et al. [26] introduced 

a triplet network to categorise MI-EEG signals for the first 

time. Unlike the state-of-the-art approaches, in this paper, log-

scaling provided better spectrograms and emphasised the μ 

and β rhythms more. Due to this, they used the log-scaled 

frequency range of 2-78 Hz in the TFIR. Besides, according to 

experiments, incorporating a larger frequency range improved 

the accuracy of deep metric learning. In this paper, ST was 

applied to each channel of single-epoch signals, and 64 

spectrograms were generated, as shown in Figure 2.  

 

 
 

Figure 2. (a) ST spectrograms of 64 electrodes placed 

according to the 10-10 system, (b) 512×512-sized fused 

image generated from all spectrograms [26] 

 

After that, the 64 spectrograms were fused on a 512×512-

sized rectangular topogram area. Finally, the image dataset 

was normalised using the mean and standard deviation of the 

pixel values. Using only a small training set, the authors 

developed a triplet deep metric network (DML) to solve a 

three-class problem (left/right hand or rest classes). Thanks to 

this network, the distance between the embeddings of different 

labelled images was increased while the distance between the 

embeddings of spectrograms of the same class was minimised. 

The experiments were conducted on DS7, which has 109 

untrained subjects, and an average accuracy of 0.647 was 

achieved. It meant the DML could converge with and obtain 

good results even using a small number of training data. 

Furthermore, the Stockwell transform consistently 

outperformed STFT in almost all subjects. Due to these 

successful results, the techniques used with STFT and CWT 

for classifying MI-EEG signals should also be evaluated with 

Stockwell Transform. At the same time, more successful MI-

EEG systems can be developed by combining the outputs of 

all these TFIR methods. 

 

3.2 Other characteristic methods 

 

Converting MI-EEG signals to images has not been carried 

out with only TFIR approaches. Unlike the TFIR methods 

discussed above, several studies have used different 

techniques. For example, the true electrode location 

information can be lost when converting MI-EEG signals to 

images, decreasing the classification performance. For this 

purpose, Li et al. [21] investigated the time domain power and 

Clough-Tocher interpolation-based imaging (TPCT) to 

construct 64x64-sized time-frequency-space features-based 

TPCT images, where each electrode's real positions were used 

to locate time-frequency characteristics. In this method, a fast 

Fourier transform (FFT) was first applied to each time window 

for each channel. The 8-30 Hz frequency range was divided 

into three sub-bands, i.e., 8-13 Hz, 13-21 Hz and 21-30 Hz, 

respectively. Then, an inverse FFT was applied, and the 

average power of the time domain was calculated 

independently for each of the three sub-bands. After that, a 

64×64-sized grid system was established, time-frequency 

features were placed in a 2D space using the Clough-Tocher 

algorithm, and final MI-EEG input images were constructed, 

respectively. This study also modified the visual geometry 

group network (VGG) to MI-EEG BCIs and proposed a new 

deep CNN abbreviated mVGG. In this network, the 

convolution layer was used instead of max pooling, and 

average pooling was used instead of the fully connected layer 

for efficient recognition. The convolution kernel size was also 

modified, and the layers were deepened. The proposed TPCT 

+ mVGG approach achieved 92.13% accuracy on DS5 for a 

four-class problem and 96.82% on DS6 for a two-class 

problem when evaluating with a 10-fold CV. The effectiveness 

of the imaging method, which had lower class skew and error 

costs, was also demonstrated by kappa values and ROC 

curves. Wang and Li [27] aimed to decode MI-EEG tasks 

using a deep parallel CNN (pDCNN) in an efficient way. They 

used 8-13Hz, 13-21 Hz and 21-30 Hz sub-bands by redividing 

μ and β bands. They divided the raw data into segments, 

transformed each time segment into a frequency domain using 

FFT, and calculated the average power of three sub-bands. 

They calculated the 2D positions of 64 3D electrode locations 

using an azimuthal equidistant projection and constructed 
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three MI-EEG spatial-frequency images using the Clough-

Tocher interpolation. In this paper, the authors aimed to 

overcome the insufficient spatial-frequency feature extraction 

for MI-EEG signals. Due to this, they extracted three groups 

of features corresponding to the three sub-bands and fused 

them using pDCNN. The methods were evaluated on DS7, 

including 109 subjects, and 90.25% average accuracy with a 

kappa value of 0.81 was achieved for classifying two-class MI 

tasks (open & close left or right fist). 

Finding a reliable approach to support high-dimensional 

MI-EEG data with poor signal-to-noise ratios is a difficult 

problem. Xu et al. [22] investigated a new EEG topographical 

representations (ETR) approach to address this problem and 

efficiently learn brain activities. They produced ETR 

topologies that could be functional and correct for spatial 

location, temporal onset, and stability. The proposed ETR data 

structure was also designed to be useful for dimension 

reduction and reflecting intrinsic brain activity connections. In 

the last stage, ETR data-based spectral-spatial inputs were 

given to an ETR-based CNN (ETRCNN) learning framework. 

The performance of ETR + CNN was evaluated on DS5, and 

the framework achieved 87.66% accuracy (with a kappa of 

0.82) for a four-class and 85.57% (with a kappa of 0.801) for 

a five-class problem. These results showed that the framework 

could accomplish multi-period and multi-object recognition. 

Yilmaz et al. [13] used an angle-amplitude transformation 

technique, a simple signal-to-image transformation approach 

for the MI-EEG and MEG signals and formed angle-amplitude 

graph (AAG) images. Then, they employed scale-invariant 

feature transform (SIFT)-based bag-of-words (BOW) features 

to extract image features. These features were then inputted 

into the k-nearest neighbour algorithm for classification. The 

experiments were conducted on DS2, and the proposed AAG 

+ SIFT+ BoW + kNN approach showed an average accuracy 

of 97.99% for four-class and 96.50% for two-class MI 

problems. This study used a straightforward method for 

classification compared to other methods using deep learning. 

 

 

4. CHALLENGES AND FUTURE DIRECTIONS 

 

Several problems and challenges have been encountered in 

classifying images of MI-EEG data. Some important ones are 

discussed in this section to provide an overview of the 

potential ability of systems. They can be categorised into three 

main groups: (i) MI and EEG-related, (ii) signal-to-image 

conversion-related, and (iii) deep learning-related factors. 

 

4.1 Motor imagery and EEG-related factors 

 

Non-invasive MI-EEG signals are recorded from electrodes 

attached to the scalp surface, and EEG is a weak signal in a sea 

of noise and artefacts. For example, eye-blinking, muscle 

movement, and cardiac pulsation artefacts affect and suppress 

the useful information in MI-EEG signals [6, 18]. Therefore, 

the signals must be cleaned of all such artefacts in the 

preprocessing. However, EOG or EMG signal information 

would be needed. The human body has a complex nervous 

system, so the human brain produces non-stationary and 

nonlinear MI-EEG signals. In particular, the non-stationary 

nature is a significant problem that needs to be solved. 

EEG signals are simultaneously recorded from many scalp 

electrode locations. It causes problems like channel correlation 

and high dimensionality that complicate the design of MI-EEG 

systems [6]. In addition, volume conduction through the scalp, 

skull, and other brain layers compromises spatial resolution 

[31]. In the literature, C3, CZ, and C4 channels have been 

primarily used in classifying MI-EEG signals, but different 

channels can be successful in different MI tasks. Even 

neighbouring channels other than these channels can be more 

successful. Inter- and intra-subject variability is another major 

challenge. Because MI-EEG signals can be inconsistent and 

significantly distorted even in the same subject [24], these can 

happen in the same session or different sessions on the same 

day. Besides, the MI-EEG data vary subject to subject, leading 

to poor transfer learning for subject independence [32].  

Capturing EEG signals that carry most of the discriminative 

information for any MI tasks is another big problem [32]. 

Specific frequency bands, i.e., alpha (μ) and β, hold useful MI 

activity information, and the performance of these bands can 

vary depending on the application [18]. For instance, 

Collazos-Huertas et al. [19] used just one rhythm (μ or β) and 

achieved unsatisfactory results. Compared to it, Alwasiti et al. 

[26] achieved best results with more detailed β sub-bands. In 

the same study, the combination of bands could not 

considerably improve the performance. On the other hand, 

Alwasiti et al. [26] introduced a deep metric learning approach 

incorporating a more extensive frequency range. They 

improved the performance with a rate of 5% without choosing 

the frequency of interest. Therefore, further study is needed to 

investigate the MI application-related frequencies. 

Several approaches have been proposed in the literature for 

extracting useful information and solving the above problems. 

Deep learning-based approaches can allow end-to-end 

learning without feature engineering, which are excellent 

opportunities to eliminate some problems. For example, Ha 

and Jeong [24] presented a new CapsNet-based architecture in 

which various features from inconsistent MI-EEG signals 

were automatically learned, and good decoding results were 

achieved. Tayeb et al. [33] developed three DL models and 

decoded MI movements directly from raw EEG signals 

without manual feature engineering. They used a long short-

term memory, a spectrogram-based CNN model, and a 

recurrent convolutional neural network (RCNN). Similarly, 

Hwaidi and Chen [34] used a variational autoencoder to 

remove noise from signals and increase the generalization 

capacity of MI-EEG classifiers. To overcome such problems, 

EOG recording, or an eye-blink detection technique is 

necessary for the majority of artefact reduction technologies. 

These methods should be able to work in real-life applications. 

For example, Sawangjai et al. [35] proposed a framework 

based on generative adversarial networks (GANs) and aimed 

to remove ocular artifacts using a data-driven assistive tool. 

EEG signals of subjects with poor MI execution performance 

should also be improved. To solve this problem, MI 

performance-based artefacts under poor skill must be removed 

as in Tobón-Henao et al. [36]. The large number of channels 

affects both performance and practical applications. Huang 

and Wei [37] investigated a tensor decomposition-based 

channel selection method to solve this problem. One of the 

most critical problems is inter and intra-subject variability, and 

transfer learning techniques are essential for addressing this. 

For example, Sun et al. [38] developed a subject transfer 

neural network to transfer the data distribution from BCI-

friendly subjects to the data from more typical BCI-illiterate 

users and achieved good results for inter-subject variations. 
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4.2 Signal-to-image conversion-related factors 

 

As the problems related to MI and EEG-related factors are 

solved, recognition and classification of MI-EEG signals 

become easier. However, classifying clean MI-EEG data is a 

complex problem in itself. In the literature, most signal-to-

image conversion-based studies have used TFIR methods, 

enabling us to evaluate MI-EEG signals in both time and 

frequency domains [14]. As exhibiting a non-stationary nature, 

when dealing with rapidly varying instantaneous frequencies 

[30], TFIR have limitations in finding applicable time-

frequency resolutions. Therefore, it is necessary to find a 

suitable time-frequency resolution. Besides, the proposed 

algorithms must be efficient regarding computation time and 

complexity. It is becoming more likely thanks to advances in 

computing power and freely available algorithms. 

Additionally, the parameters of TFIR methods, i.e., frequently 

used STFT and CWT for their remarkable properties, must be 

well adjusted. For instance, window and overlapping size, a 

window function (Hanning, Hamming, Kaiser, etc.), and the 

length of the FFT are important for STFT; and Wavelet type 

and scale, etc., are for CWT. Many studies have achieved the 

best results with different parameters, even for the same MI-

EEG dataset. Therefore, it will be more reasonable if they are 

adjusted automatically. Zhong and Huang [29] examined this 

problem and proposed an adaptive short-time Fourier 

transform (ASTFT). They calculated the window width 

without prior signal knowledge and developed a signal-

independent time-frequency analysis technique. Since the 

method is adaptive, it should be designed to achieve more 

accurate results with less computation. 

For handling images differently, novel techniques must be 

investigated to make signal-to-image transformation methods 

more successful. For instance, TFIR approaches can be 

constructed after selecting appropriate frequency bands (or 

sub-bands) for specific MI applications, and then they can be 

combined, etc. Besides, they can be integrated or interpolated 

with other information (i.e., electrode locations). For example, 

combining the TFIR constructed using the electrodes from the 

motor cortex while preserving neighbouring information is a 

good approach. Because the electrode positions are lost in 

combining TFIR and the activation area of MI should be 

considered [21]. Different TFIR methods can also be fused 

because of their distinctive features. By way of illustration, 

CWT provides a higher time-frequency resolution compared 

to the constant resolution of STFT [14]. WT provides an 

alternative to the STFT because WT is of interest for analysing 

non-stationary signals. However, STFT takes the least time 

compared with CWT in processing time [39]. Therefore, better 

results can be achieved by combining the best aspects of 

different methods. In addition to TFIR, new techniques (as in 

Sect. 3.2) must be investigated to convert MI-EEG signals to 

images. In the literature, only a few studies have employed 

deep learning to model the MI-EEG feature representations, 

and nowadays, how to extract more in-depth features and 

abstract representations has become a research topic [20]. 

 

4.3 Deep learning and classification-related factors 

 

The size of the datasets directly affects the performance of 

deep learning models [15]. Therefore, a large amount of data 

is needed to train deep learning models, especially when 

considering practical applications [23]. It limits the use of deep 

learning in the MI-EEG research field due to the need for more 

data [18]. Because collecting large-scale and high-quality MI-

EEG data is very difficult for reasons such as the placement of 

the EEG device, successful acquisition of EEG recordings, 

strict requirements for experimental conditions, insufficient 

number of subjects, subject-to-subject, and session-to-session 

differences, etc. Also, data are usually unlabelled and labelling 

data manually is challenging. To eliminate these problems, 

apart from classical approaches, such as trying to increase 

performance by focusing on classification accuracy, different 

techniques in learning may lead to new solutions. Deep 

transfer learning and data augmentation are the most 

promising candidates, with great potential for MI-based BCIs. 

In transfer learning, the model is not created from scratch. 

Instead, it uses the previously trained networks as a reference 

to create a new model for the current problem [14], i.e., 

transfer learning models from one domain to another. During 

training, it also automatically extracts richer and more 

expressive features [11]. Here, in comparison to the previously 

trained datasets, the new model is trained using the new dataset 

with fewer training images [14]. Transfer learning solves the 

problems encountered in deep learning that are difficult to 

improve because of the insufficient training samples, and it 

also significantly saves the time and cost of retraining the 

model. In the last few years, transfer learning has grown 

significantly in MI-based BCIs [11]. For example, Xu et al. 

[23] improved the training efficiency in limited labelled data 

conditions. The second approach is data augmentation, which 

enriches training data by creating new samples to increase the 

size of the dataset with more general training data [18]. By 

including new samples, data augmentation makes the training 

model more complex and decreases overfitting [15]. For 

instance, Al-Saegh et al. [18] attained augmentation by cutting 

specific time segments from the two trials, which may belong 

to the same or two different subjects, and then concatenating 

those separated time segments. Shi et al. [9] flipped and 

translated the spectrogram's rows and columns for 

augmentation. However, care should be taken to ensure the 

augmentation method suits MI-EEG signals. Because Zhang 

et al. [15] investigated data augmentation methods' 

performance and showed that augmentations like rotation may 

have adversely affected the MI-EEG information. 

As mentioned before, MI-EEG data can be distorted and 

inconsistent even from the same subject [24]. Under these 

conditions, the classification performance is compromised at 

some point, and it is not easy to achieve high performance. 

These problems have been attempted to be solved by applying 

artefact removal methods or decoding with deep learning 

methods. However, these processes require extra costs and 

decoding raw MI-EEG signals is demanding [15]. In addition, 

training a deep learning model from the ground up is 

incredibly time-consuming and computationally expensive 

[23]. Transfer learning can solve these problems, but building 

models from scratch will produce better results. Deep learning 

methods such as CNN work well for image understanding and 

classification, especially in computer vision. However, the 

classification of MI-EEG signals is much more complicated, 

and the search for efficient methods is essential today. 

 

 

5. CONCLUSIONS 

 

This paper reviews the applications of signal-to-image 

conversion for MI-EEG data. It is essential because, with deep 

neural networks' growing popularity and success, converting 
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time-series signals into 2D images has attracted considerable 

attention. Thus, we have searched the studies between 2019 

and 2023 within the scope of non-invasive EEG-based MI 

applications. We first introduced and discussed the use of 

present signal-to-image encoding techniques. After that, the 

datasets, classification methods, challenges, and future 

directions were all discussed to obtain a deeper understanding. 

It was observed that only a few diverse approaches had been 

employed for signal-to-image conversions, where only 

electrode location, time, and frequency information were used 

to diversify methods. STFT is by far the most used method. 

After that, CWT and TPCT have been used a lot recently. As 

can be seen, most of them are TRIR-based approaches. Apart 

from them, a few methods have been reported, such as ETR 

and AAG. Available conversion approaches, although few, 

have great potential to be a solution that can either be used 

directly as input to the deep neural networks or with structural 

modifications. Regarding feature extraction and classification, 

almost all the reviewed articles have employed deep learning 

techniques like CNN. CNN has been used both on its and with 

different variants/combinations such as CNN-SAE, CNN-

VAE, CNN-DCGAN, PCNN, 3DCNNs, IncepCNN, deep 

CNN, Shallow CNN, PMMCL, etc. Besides, some studies 

have used various data augmentation and pre-trained deep 

transfer learning techniques. EEGNet, DeepConvNet, and 

CapsNet are other widely used CNNs to recognise MI-EEG 

data. All these proposed methods have addressed many MI-

EEG problems and achieved successful results. They can also 

be applied to other time series classification problems when 

2D inputs are needed. This paper solely focuses on MI-EEG 

signal-to-image conversion. Further studies are needed to 

investigate the processing of MI-EEG, especially in the signal-

to-image conversion and deep neural networks aspect. In 

addition, future studies should be carried out for systems that 

can operate in real-world scenarios, which should be the goal. 
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