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Hyperspectral remote sensing images (HRSI) comprise three-dimensional image cubes, 

containing a single spectral dimension alongside two spatial dimensions. HRSI are presently 

among the foremost essential datasets for Earth observation. The task of HRSI classification 

is intricate due to the influence of spectral mixing, leading to notable variability within 

classes and resemblances across classes. Consequently, the field of HRSI classification has 

garnered significant research attention in recent times. Convolutional Neural Networks 

(CNNs) are harnessed to address these issues, enabling both feature extraction and 

classification. This study introduces a novel approach for HRSI classification called the 

hybrid 3D-2D depthwise separable convolution network (Hybrid DSCNet), which leverages 

multiscale feature integration. Within the Hybrid DSCNet, diverse kernel sizes contribute 

to an enriched feature extraction process from HRSI. The conventional 3D-2D CNN, while 

effective, comes with a computational load. Instead of using the standard 3D-2D CNN, this 

study adopts the 3D-2D DSC architecture. This approach partitions the conventional 

convolution into two components: pointwise and depthwise convolution, yielding a 

substantial reduction in trainable parameters and computational complexity. To evaluate the 

proposed method, the Indian Pines dataset along with WHU-Hi subdatasets (LongKou-LK, 

HanChuan-HC, and HongHu-HH) were employed. Employing a 5% training sample, 

impressive overall accuracy scores were achieved: 94.51%, 99.78%, 97.06%, and 97.27% 

for Indian Pines, WHU-LK, WHU-HC, and WHU-HH, respectively. Comparative analysis 

of the proposed approach with cutting-edge techniques within the literature reveals its 

superior performance across the four HRSI datasets. Notably, the Hybrid DSCNet attains 

enhanced classification accuracy while maintaining lower computational overhead. 
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1. INTRODUCTION

Hyperspectral remote sensing images (HRSI) are 

represented as 3D (one spectral-two spatial) hypercubes. 

These images consist of hundreds of spectral bands compared 

to RGB and multispectral images [1]. Moreover, they 

encompass abundant spectral characteristic data. This wealth 

of spectral feature information enhances the precision of 

identifying and categorizing terrestrial objects [2]. Thus, it is 

frequently used in applications such as astronomy, agriculture, 

military surveillance, land fire monitoring and cover analysis, 

crop monitoring [3-7].  

The abundant spectral feature information of the original 

HRSI causes spectral redundancy. This reduces the HRSI 

classification (HRSIC) performance. To address this challenge, 

techniques for reducing dimensionality are applied to the 

initial HRSI data. Methods like Linear Discriminant Analysis 

(LDA), Incremental Principal Component Analysis (IPCA), 

Independent Component Analysis (ICA), Principal 

Component Analysis (PCA), Locally Linear Embedding (LLE) 

and Kernel PCA are employed for this purpose [8-10]. The 

most commonly used method among these DRMs is PCA. 

PCA is an unsupervised and linear DRM. It can remove large 

amounts of excess spectral information from HRSI data while 

preserving the spectral information of the principal 

components (PCs) with a larger contribution of variance. After 

PCA, the number of spectral dimensions decreases and the 

computational cost reduces [11].  

Due to the importance and complexity of classification in 

HRSI, HRSIC has attracted significant research attention. 

Traditional HRSIC methods such as support vector machine 

(SVM) [12], logistic regression [13] and k-nearest-neighbors 

(KNN) [14] usually rely on using many spectral features 

information for HRSIC. Nevertheless, due to the presence of 

both spectral band redundancy and strong inter-band 

correlations within HRSIs, these traditional classifiers often 

exhibit inadequate performance. In addition, these traditional 

HRSIC classifiers, which use only spectral features, cannot 

acquire important spatial information, thus reducing their 

classification accuracy. The most straightforward approach to 

enhance classification outcomes involves the creation of 

classification techniques that jointly utilize spatial-spectral 

characteristics. Spatial features are combined with spectral 

features in HRSIC using methods such as morphological 

profiles [15], multiple kernel learning [16], superpixel [17] 

and sparse representation [18]. The use of spectral feature 
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information together with spatial feature information increases 

the classification performance. Nonetheless, the majority of 

conventional classifiers for HRSIC tend to manually extract 

features that combine spatial and spectral features. 

Over the past few years, approaches founded on deep 

learning (DL), particularly Convolutional Neural Networks 

(CNNs), have emerged and gained extensive application 

within the realm of HRSIC [3]. Unlike traditional HRSIC 

methods, features are extracted automatically with deep 

learning-based methods. These features are then used in 

classification [19]. Because CNN provides more distinctive 

features in HRSIC, it has pretty good feature learning. In order 

to analyze classification problems more easily, the learned 

features should be distinctive [20]. This significantly increases 

classification performance. Because of this rationale, 

techniques that rely on CNNs are considered some of the most 

robust methodologies applied in HRSIC for the extraction of 

more intricate spatial-spectral features. These methods are 

widely used in studies by most researchers as they increase the 

accuracy of HRSIC.  

Roy et al. [1] formulated an efficient S3EResBoF (spectral–

spatial squeeze and excitation residual bag-of-feature) 

learning approach tailored for HRSIC. S3EResBoF integrates 

residual learning blocks for both spatial and spectral 

enhancement, thus elevating the classification performance. 

Furthermore, a squeeze and excitation (SE) network succeeds 

each residual block. The S3EResBoF methodology's efficacy 

was assessed using the Pavia University (PU), Salinas (SA) 

and Indian Pines (IP) datasets. In the case of IP, 30 PCs were 

selected through PCA, while for SA and PU, 15 PCs each were 

chosen. The method's applications involved a 10-20% training 

sample ratio and a 15×15 window dimension. The achieved 

Overall Accuracy (OA) values at different training sample 

sizes for SA, PU, and IP were as follows: at 20% training 

sample, 100%, 99.97%, 99.87% for SA, PU, and IP 

respectively; and at 10% training sample, 99.49%, 99.77%, 

99.98%, respectively. Cao and Guo [5] propose an innovative 

HRSIC network that combines 3D and 2D aspects. This 

network leverages hybrid dilated convolution to construct 

high-dimensional residual networks, facilitating the extraction 

of spectral as well as spatial features. Applications were made 

on IP, Kennedy space center (KSC) and PU without using any 

DRM. The OA values in the applications using 7×7 window 

size, 20% for IP and KSC,10% for PU training sample were 

obtained as 99.89% for KSC, 99.81% for PU and 99.46% for 

IP. Roy et al. [21] introduced the A2S2K-ResNet (Attention-

based adaptive spectral–spatial kernel ResNet) technique 

tailored for HRSIC. A2S2K-ResNet adopts 3D convolutional 

kernels that blend spatial and spectral attributes, and these 

kernels automatically adjust their receptive field dimensions 

through end-to-end training. From the chosen 3D kernel 

feature maps, spatial-spectral features are typically extracted 

using specially crafted Residual Blocks. Notably, each 

Residual Block is succeeded by an efficient mechanism for 

feature recalibration, a step aimed at augmenting the 

discriminative potency of convolutional feature maps. 

Applications were made using KSC, IP and PU datasets 

without using any DRM. The OA values in the applications 

using 9×9 window size and 10% training sample were 

obtained as 99.34% for KSC, 99.85% for PU, and 98.66% for 

IP. Roy et al. [22] formulated the HybridSN (Hybrid 

SpectralNet) technique for HRSIC, which seamlessly 

integrates both 2D and 3D CNN components. Within this 

approach, 2D CNN is employed for capturing spatial features, 

while 3D CNN is utilized for extracting spectral-spatial 

characteristics. The method's efficacy was evaluated through 

applications conducted on the IP, SA, and PU datasets. Using 

PCA, PCs were selected 30 for IP, and 15 for SA and PU. The 

applications encompassed a window size of 25×25 and a 30% 

training sample. Employing HybridSN yielded impressive OA 

results: 100%, 99.75%, and 99.98% for SA, IP, and PU, 

respectively. In Ahmad's study [23], a novel approach named 

FC3D CNN was developed to enhance classification accuracy, 

relying solely on 3D CNN. Furthermore, the IPCA technique 

was employed to diminish spectral band redundancy. Through 

IPCA, the count of spectral bands was reduced to 20, a value 

that was also adopted for the applications. Testing on the SA, 

IP, and PU datasets, with a training sample size of 10% and a 

window size of 11×11, yielded OA outcomes of 98.06%, 

97.75%, and 98.40%, respectively. Roy et al. [24] devised the 

FuseNet technique, featuring a bilinear fusion mechanism 

applied to distinct squeeze variants like maximum and global 

pooling. In the FuseNet approach, the merged squeeze and 

excitation network is integrated with a residual block. During 

the applications, PCA was employed with 30 PCs for IP and 

15 PCs for both SA and PU. Utilizing a 20% training sample 

and a window size of 15×15, the achieved OA figures were 

99.01%, 99.42%, and 99.68% for PU, SA, and IP, 

respectively. Iyer et al. [25] introduced an approach for HRSCI 

that leverages Inception modules. Subsequently, they 

incorporated both Inception Residual Network and HybridSN 

components into their developed Inception module. The 

applications, conducted with a window size of 25×25, a 

training sample size of 30%, and using 30 PCs for IP and 15 

PCs for both SA and PU, yielded impressive OA outcomes: 

100%, 100%, and 99.76% for PU, SA, and IP, respectively. 

Xu et al. [26] enhanced the Multiple Spectral Resolution 3D 

CNN for HRSIC by integrating several elements: the multiple 

spectral resolution module, spectral dilated convolutions, 3D 

convolution, and residual connections. As a preprocessing 

step, PCA is applied to the HRSI data, followed by 

applications with 100 PCs representing spectral bands. The 

evaluations were conducted on the Botswana (B), SA, PU, and 

IP datasets using a 10% training sample and a window size of 

9x9. The achieved OA values for these applications were 

98.80%, 99.96%, 99.62%, and 98.10%, respectively. Gao et 

al. [27] devised an innovative multi-scale ResNet strategy 

intended for HRSIC. This multi-scale ResNet framework 

integrates DSC as the initial step. Subsequently, the 

conventional DC within the DSC is substituted with mixed 

DC, amalgamating diverse kernel sizes. Lastly, this mixed DC 

is incorporated into the residual block, yielding a multiscale 

residual block. The method's efficacy was assessed through 

applications employing the SA, Pavia Center, and PU datasets. 

During training, 20 random samples were drawn from each 

class within the datasets. Applying PCA, 15, 10, and 10 PCs 

were selected for SA, PU, and Pavia Center, respectively, 

followed by conducting the applications. The window size was 

set at 15×15 for both PU and SA, and 9×9 for Pavia Center. 

As a result of these applications, the obtained OA figures were 

98.69%, 96.50%, and 96.84% for Pavia Center, PU, and SA, 

respectively. Fırat et al. [28] enhanced a hybrid approach 

aimed at HRSIC, which fuses the potential of 3D CNN and the 

2D DSC process. Within their proposed framework, 

evaluations were executed employing 30, 15, and 15 PCs for 

IP, PU, and SA, respectively, following a PCA preprocessing 

step. A window size of 11×11 and training samples accounting 

for 20%, 10%, and 10% were employed for IP, PU, and SA, 
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respectively. Through these applications across the three 

datasets, the attained OA values stood at 99.90% for SA, 

99.83% for PU, and 99.32% for IP. Zheng et al. [29] 

introduced a hybrid CNN approach, enhanced with covariance 

pooling, for HRSIC. The method's initial stage entails 3D 

CNN for the extraction of both spectral and overall features, 

which is followed by 2D CNN for spatial feature extraction. 

Furthermore, the method leverages the covariance pooling 

technique to precisely capture quadratic details from spatial-

spectral feature maps. Employing a window size of 25×25 and 

a 30% training sample, the applications conducted on the PU, 

SA, and IP datasets yielded impressive OA figures: 99.85% 

for PU, 100% for SA, and 99.58% for IP. Sun et al. [30] 

improved a spatial-spectral attention network (SSAN) for 

HRSIC. SSAN method primarily consists of spatial and 

spectral modules consisting of simple 3D CNN layers. Then, 

the attention module was added to specific locations of the 

spatial spectral modules to extract more distinctive features of 

the HRSI hypercubes. In performed applications with IP, PU 

and SA without any preprocessing, OA values of 95.49%, 

98.02% and 96.81% were acquired, respectively. Gong [31] 

devised an approach featuring a multi-scale SE pyramid 

pooling network. This method comprises components such as 

a SE block, a multi-scale 3D CNN, and pyramid pooling 

modules incorporating 2D CNN. By applying this technique 

to the PU, SA, and IP datasets, with training samples of 0.5%, 

0.5%, and 5%, respectively, the achieved OA values stood at 

96.56% for PU, 97% for SA, and 96.09% for IP. Additionally, 

when the proposed method was employed on the high spatial 

resolution WHU-LK dataset with a 0.1% training sample, an 

OA value of 97.31% was obtained. Ge et al. [32] enhanced a 

profound network architecture centered on multi-branch 

feature integration for the task of HRSI classification. The 

proposed hybrid strategy combines both 2D CNN and 3D 

CNN, employing varying kernel sizes across distinct branches. 

Additionally, in contrast to the ReLU activation function, 

which has been commonplace in prior studies, the Mish 

function was adopted. When applied to the IP, SA, PU, and B 

datasets with a training sample size of 5%, the classification 

accuracy was determined to be 96.07% for IP, 99.94% for SA, 

99.52% for PU, and 96.44% for B. Yang [33] introduced an 

innovative CNN known as Synergistic Convolutional Neural 

Network (SyCNN) for the purpose of HRSIC. SyCNN 

encompasses a blend of both 3D-2D CNN and data interaction 

modules, facilitating the fusion of spatial-spectral feature 

insights. Additionally, a 3D attention mechanism is presented, 

which effectively filters out any interfering information and 

features prior to reaching the fully connected layer. Employing 

a randomized 30% training sample, the attained classification 

accuracy values for the IP, KSC, and B datasets were 97.31%, 

98.92%, and 99.79%, respectively. Taking into account the 

existing research in this domain, it becomes evident that there 

remains a requirement for the advancement of DL-driven 

approaches aimed at enhancing the precision of HRSIC. This 

serves as the impetus behind our undertaking. 

CNN offers a superior classification accuracy while 

extracting insights from spatial-spectral feature information. 

In this context, it has demonstrated its significance as a 

prevalent technique in the realm of HRSIC compared to 

alternative DL approaches. However, the CNN approach does 

have its drawbacks. For instance, during the gradient descent 

procedure, it's prone to converging to local minima, and the 

pooling layer often leads to a loss of valuable information. In 

HRSIC, it's imperative to consider not only spatial features but 

also spectral features. Over the past years, CNN has been 

widely employed in HRSIC to extract spatial features, spectral 

features, and even spectral-spatial features in tandem. 

Utilizing 2D CNN, researchers can capture spatial features 

while struggling to acquire spectral information. Given that 

HRSI possesses a three-dimensional structure, its spectral 

attributes hold great importance. Employing 3D CNN enables 

the extraction of spectral-spatial features, albeit at the expense 

of increased computational demands. Furthermore, relying 

solely on 3D CNN can potentially lead to reduced 

classification accuracy, particularly when distinct classes in 

HRSIs exhibit similar textures across numerous spectral bands. 

To mitigate these challenges, hybrid CNN methodologies, 

which blend the application of 2D and 3D CNN, offer a 

solution. The integration of hybrid CNN methodologies 

effectively leverages both spatial and spectral feature insights, 

yielding a beneficial impact on the classification performance. 

Additionally, the incorporation of 3D and 2D CNN approaches, 

each employing distinct kernel sizes, facilitates the 

amalgamation of diverse features. Furthermore, the adoption 

of a multi-scale network architecture imparts a heightened 

enrichment to the feature extraction process from HRSI. In this 

scenario, the potent feature extraction capacity exhibited by 

the combined 3D-2D CNN, complemented by multi-path 

feature fusion, endows the network with the ability to operate 

effectively even with a limited amount of training data. These 

considerations underscore our rationale for introducing a 

hybrid 3D-2D CNN model that hinges on multi-path feature 

fusion to enhance HRSIC. An additional driving force for the 

proposed multi-path hybrid methodology is the integration of 

3D-2D DSC alongside 3D and 2D CNN blocks. The inclusion 

of 3D DSC and 2D DSC blocks is strategically aimed at 

reinforcing the classification robustness and maximizing 

accuracy within the proposed hybrid framework. The 

contributions of the method introduced in this study are 

outlined as follows: 

1. We've introduced a hybrid CNN approach that hinges on 

the fusion of multiscale features to enhance HRSIC. Within 

this proposed methodology, we amalgamate features that are 

derived from diverse kernel sizes, thus facilitating the 

incorporation of more comprehensive feature insights from 

HRSI. Moreover, the adoption of a multiscale network 

architecture serves the central objective of augmenting the 

richness of extracted features from HRSIs. 

2. Within the existing body of literature, the prevailing 

approach for HRSIC typically involves the utilization of 2D 

DSC. However, it's important to note that, akin to the 

functioning of 2D CNN, 2D DSC is primarily geared towards 

the extraction of spatial features. Given that our HRSI data is 

inherently three-dimensional and spectral attributes carry 

significant weight, we have opted to integrate 3D DSC in 

conjunction with 3D CNN. This amalgamation enables the 

extraction of spatial-spectral feature insights from the data. It's 

true that the application of standard 3D convolution incurs an 

elevated computational cost. Nonetheless, the introduction of 

3D DSC serves to bifurcate the conventional convolution 

process into two distinct operations: DC and PC. This 

deliberate segmentation results in a substantial reduction of the 

total number of trainable parameters and subsequently curbs 

computational expenses. An additional motive underpinning 

this study is the pursuit of diminished trainable parameters 

alongside improved classification outcomes. To address this 

aim, we have adopted the approach of incorporating both 3D 

DSC and 2D DSC. This strategic inclusion serves a dual 
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purpose of minimizing the number of trainable parameters 

while concurrently enhancing the quality of classification 

results. 

3. By the incorporation of 2D and 3D DSC layers into the 

framework of the Hybrid CNN approach, we proceeded to 

evaluate the resultant classification outcomes across various 

datasets, namely IP, WHU (LK, HC and HH). This 

examination yielded OA measurements of 94.51%, 99.78%, 

97.06%, and 97.27% for the respective datasets of IP, WHU-

LK, WHU-HC, and WHU-HH. An analysis of these accuracy 

values reveals that the inclusion of both 3D and 2D DSC layers 

leads to improved outcomes while also entailing a reduction in 

the number of trainable parameters. 

The subsequent sections of this study are organized as 

follows: Section 2 introduces the proposed multiscale Hybrid 

DSCNet and the theoretical foundation of the Hybrid DSCNet, 

comprising the 3D/2D CNN and 3D/2D DSCNet. The same 

section also encompasses details about the employed datasets. 

Section 3 is dedicated to the presentation of applications 

pertaining to the datasets, along with the corresponding 

classification outcomes. An overall evaluation of this paper is 

provided in Section 4. 

 

 

2. MATERIALS AND METHODS 

 

2.1 3D/2D Convolutional neural networks (CNN) 

 

2.1.1 2D CNN 

CNN designs, a type of DL methods, find common 

application in research for tasks such as categorizing images 

and identifying and localizing objects. The CNN architecture 

draws inspiration from ANNs and possesses the capability to 

acquire comprehensive information seamlessly. Moreover, 

CNN represents a DL strategy wherein ANNs encompass a 

forward processing and a FE layer, in contrast to conventional 

neural networks. The CNN comprises two primary layer. One 

of these layer corresponds to the convolutional layer, while the 

other pertains to the pooling layer. CNNs aspire to capture 

pivotal attributes of the image via fundamental operations 

executed across these dual layers. 

(1) Convolutional layer 

The foundation of DNNs is established by the convolutional 

layer. This layer relies on the movement of compact filters like 

2×2, 3×3, and 5×5 across the entirety of the image. As a result, 

a novel image is generated through the extraction of finer 

details within the image.  

(2) Pooling layer 

The pooling layer constitutes a technique utilized to reduce 

dimensionality within DL methods. In general, actions aimed 

at dimension reduction result in the potential loss of 

information and subsequent performance decline. 

Nevertheless, pooling offers benefits such as preventing model 

overfitting and inducing lower computational burden. This 

procedure is executed using specific classes of filters, similar 

to the convolutional process. These filters traverse the image, 

and pooling is executed by selecting either the highest or 

average values from the pixels within the image. Maximum 

pooling involves the determination of the most significant 

value among the pixel values contained within the filter's 

spatial extent. Average pooling operates on the principle that 

the summation of pixel values encompassed by the filter area 

is divided by the dimensions of the filter window. 

(3) Activation layer 

Within CNNs, a crucial procedure involves the integration 

of the activation function. ReLU stands as the prevailing 

choice for activation functions in methods constructed upon 

DNNs. As demonstrated in Eq. (1), a pivotal attribute of this 

layer is its ability to nullify negative values within the input 

data. This approach accelerates network learning through the 

utilization of the ReLU function. 

 

𝑅𝑒𝐿𝑈 (𝑡) = {
0  𝑖𝑓 𝑡 < 0
𝑡  𝑖𝑓 𝑡 ≥ 0

 (1) 

 

(4) Normalization layer 

The Normalization layer is employed to standardize the data 

derived from layers constructed using CNNs. This procedure 

ensures that the input data conforms to a specific range, 

leading to a beneficial impact on network performance. 

(5) Fully connected (FC) layer 

The FC layer constitutes a unidimensional matrix that 

establishes connections with all neurons within the preceding 

layer. Typically positioned towards the conclusion of the CNN 

structure, these layers serves to enhance class scores. 

Furthermore, the count of these layers can differ within DL-

based methods. 

(6) Dropout layer 

Within CNNs, the Dropout layer serves to avert overfitting 

in FC layer or the network's excessive retention of data. This 

layer operates by excluding specific nodes via defined 

threshold values. In this manner, the network's efficacy is 

enhanced by discarding superfluous and less influential data. 

(7) Classification layer 

The final layer in the CNN method is the classification layer, 

where the classification operation takes place. The output 

values of this layer correspond to the quantity of classes, which 

is determined by the count of objects for recognition. Within 

DL methods, the softmax classifier is extensively applied 

within this layer. The softmax classifier produces probabilities 

ranging from 0 to 1 for every class. Consequently, the class 

predicted by the method corresponds to the class associated 

with the highest probability value [34, 35]. 

For given 𝑥 inputs, the outcome of an individual neuron is 

depicted as presented in Eq. (2).  

 

𝑡 = 𝑓(𝑤 ∗ 𝑥 + 𝑏𝑖𝑎𝑠) (2) 

 

Within Eq. (2), 𝑓 (. ) denotes a non-linear activation 

function that is employed on a summation of weighted inputs. 

The weight w signifies the filter weight. In the context of 2D 

CNN, convolution is conducted with a 2D filter, representing 

the conventional convolution operation. When this typical 2D 

CNN is employed on HRSI data, solely spatial FE are obtained. 

The expression for the extraction of spatial features through 

the use of a 2D CNN is demonstrated in Eq. (3). 

 

𝑡𝑚𝑛 = 𝑓 (∑ ∑ ∑ 𝑘𝑖𝑗𝑥(𝑖+𝑚)(𝑗+𝑛) + 𝑏𝑖𝑎𝑠𝑚𝑛

𝑤−1

𝑗=0

ℎ−1

𝑖=0𝑙

) (3) 

 

As indicated by Eq. (3), k refers to the 2D convolutional 

kernel with dimensions h×w. The feature 𝑡𝑚𝑛 is derived from 

the position (m,n). For a 2D image scenario, the process of 2D 

convolution is executed across all feature maps (l) within the 

recipient region, aggregating all values to apply nonlinear 

activation. 
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2.1.2 3D CNN 

Given that HRSI data exists in a 3D format, the application 

of a 2D CNN fails to yield spectral feature insights. In such 

instances, a 3D CNN featuring 3D convolutional strata 

becomes essential. Through the utilization of a 3D CNN, the 

amalgamation of spatial-spectral features occurs. The 

expression utilized to extract features using a 3D CNN is 

illustrated in Eq. (4). 

 

𝑡𝑚𝑛𝑑 = 𝑓 (∑ ∑ ∑ ∑ 𝑘𝑖𝑗𝑟𝑥(𝑖+𝑚)(𝑗+𝑛)(𝑟+𝑑)

𝑏−1

𝑟=0

+ 𝑏𝑖𝑎𝑠𝑚𝑛𝑑

𝑤−1

𝑗=0

ℎ−1

𝑖=0𝑙

) (4) 

 

According to Eq. (4), 𝑏 denotes the extent of the 3D filter 

along the spectral dimension. The feature 𝑡𝑚𝑛𝑑 is derived from 

the position (m,n,d). The kernel (𝑘)  is designed in a 3D 

manner, enabling feature extraction through the application of 

3D convolution to HRSI data. Traditional 2D CNNs solely 

employ convolution to generate 2D feature maps on spatial 

dimensions, encompassing all prior-layer feature maps. 

However, for 3D HRSIC, the acquisition of spatial-spectral 

features holds great importance. The drawback of utilizing a 

2D CNN lies in its inability to extract spectral features. While 

3D CNNs extract spatial-spectral features, they introduce 

increased computational complexity. This heightened 

complexity is perceived as a downside of adopting 3D CNNs. 

To address these challenges, the utilization of hybrid CNN 

methods has become prevalent. 

 

2.2 3D/2D DSCNet 

 

Within the developed multiscale technique, diverse 

attributes are acquired through the execution of multiple 

convolutional operations. Nevertheless, employing a 

multitude of convolutional kernels leads to an upsurge in the 

count of trainable parameters. DSC offers a viable strategy for 

curtailing the number of trainable parameters. DSC performs 

convolutional processing in two distinct stages. Firstly, 

Depthwise Convolution (DC) is executed, followed by 

Pointwise Convolution (PC). The PC is essentially a typical 

1×1 convolution. Unlike conventional convolution, DSC 

dissects the process into two stages: DC autonomously filters 

each input channel, and subsequently, PC amalgamates the DC 

outputs by means of a 1×1 convolution. In this regard, DSC 

can also be characterized as a factorized convolution approach 

[36-38]. Illustrated in Figure 1a, the utilization of DSC in a 2D 

context involves executing convolutional procedures 

separately for each channel of the input image via DC, thereby 

enabling the extraction of spatial attributes in individual 

dimensions. Subsequently, PC with a 1×1 kernel is employed 

on the feature maps generated through DC. This PC 

amalgamates feature maps across channels. Given that HRSI 

is three-dimensional, the simultaneous capture of spatial-

spectral characteristics is imperative. In such instances, 3D 

convolution procedures are enacted. However, the 

computational complexity associated with 3D convolution 

remains substantial. The objective is to mitigate this 

computational load by implementing 3D DSC. Thus, the 

concept of DSC naturally extends to 3D convolutions. This 

entails a straightforward transition by substituting 2D 

convolutions in 2D DSC with corresponding 3D operations. 

As depicted in Figure 1b, 3D DSC can be disassembled into 

two stages: DC and PC. While 3×3 DC and 1×1 PC are applied 

in the context of 2D DSC, 3D DSC integrates 3×3×3 DC and 

1×1×1 PC layers. 

The 3D conventional convolution and 3D DSC 

computational costs are as follows: The way to perform a 

convolution operation on a 3D feature matrix of (𝑙, 𝑤, ℎ, 𝑐) is 

to use a filter with size 𝑘 × 𝑘 × 𝑘 to go over the 3D matrix. 

𝑙, 𝑤, ℎ, 𝑐  indicate the length, width, height and channels, 

respectively, while 𝑘 denotes side length of the filter. When a 

standard 3D convolution operation is applied to an input 

feature matrix (𝐹) of size 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹 × 𝑐𝐹, a feature output 

matrix (𝐺) of size 𝑙𝐺 × 𝑤𝐺 × ℎ𝐺 × 𝑐𝐺  is obtained. 𝑐𝐹  and 𝑐𝐺 

indicate the number of channels before and after 3D 

convolution. The 3D convolution kernel (𝐾) will be 𝑘 × 𝑘 ×
𝑘 × 𝑐𝐹 × 𝑐𝐺 . As a result of the standard 3D convolution 

process, the computational cost will be as in Eq. (5). 

 
𝑐𝑜𝑠𝑡𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑡_𝑐𝑜𝑛𝑣 = 𝑘 × 𝑘 × 𝑘 × 𝑐𝐹 × 𝑐𝐺 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹 (5) 

 

The 3D DSC operation consists of two stages, namely, 3D 

DC and 3D PC (or 1 × 1 × 1  convolution). With DC, a 

3 × 3 × 3 kernel size convolution process is applied to each 

channel separately. As a result of this process, the computation 

cost is as in Eq. (6). 

 

𝑐𝑜𝑠𝑡𝐷𝐶 = 𝑘 × 𝑘 × 𝑘 × 𝑐𝐹 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹  (6) 

 

 
(a) 

 
(b) 

 

Figure 1. (a) 2D DSC, (b) 3D DSC 

 

In order to bring together the separate channels and to 

ensure adequate information exchange between the channels, 

it is necessary to join these channels into a single new feature 

map. This operation is performed with PC. That is, the 1×1×1 

filter is used to apply a linear combination to the feature maps 

acquired as a result of the output of the DC. The computational 

cost of the PC is as in Eq. (7). 
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𝑐𝑜𝑠𝑡𝑃𝐶 = 𝑐𝐺 × 𝑐𝐹 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹  (7) 

 

The total computational cost obtained by combining DC and 

PC is as in Eq. (8). 

𝑐𝑜𝑠𝑡𝐷𝐶 + 𝑐𝑜𝑠𝑡𝑃𝐶 = 𝑘 × 𝑘 × 𝑘 × 𝑐𝐹 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹

+ 𝑐𝐺 × 𝑐𝐹 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹 
(8) 

 

When comparing 3D DSC with standard 3D convolution, 

the result is obtained as in Eq. (9). 

 

𝑐𝑜𝑠𝑡𝐷𝐶 + 𝑐𝑜𝑠𝑡𝑃𝐶

𝑐𝑜𝑠𝑡𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑡_𝑐𝑜𝑛𝑣

=
𝑘 × 𝑘 × 𝑘 × 𝑐𝐹 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹 + 𝑐𝐺 × 𝑐𝐹 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹

𝑘 × 𝑘 × 𝑘 × 𝑐𝐹 × 𝑐𝐺 × 𝑙𝐹 × 𝑤𝐹 × ℎ𝐹

=
𝑘 × 𝑘 × 𝑘 × 𝑐𝐹 + 𝑐𝐺 × 𝑐𝐹

𝑘 × 𝑘 × 𝑘 × 𝑐𝐹 × 𝑐𝐺

=
1

𝑐𝐺

+
1

𝑘3
≈

1

𝑘3
 (9) 

 

𝑐𝐺  channel size is big number (usually 32, 64, 128, 256, etc.). 

This makes 
1

𝑐𝐺
 very small. 

1

𝑘3 is depending on the side length 

of kernel. Even when the kernel is small and of side length 2, 
1

𝑘3 is approaching to 0.1 already. Joining the 
1

𝑐𝐺
 and 

1

𝑘3, Eq. (9) 

is easy to get to less than 0.1 which means that the 

computational cost is reduced by approximately 10 times at Eq. 

(9) [39]. 

 

2.3 Datasets 

 

The analysis of classification performance for Hybrid 

DSCNet and the various methods employed for comparison 

was carried out using datasets such as WHU-Hi (LongKou, 

HanChuan, and HongHu) and Indian pines. 

 

2.3.1 Indian pines (IP) 

The IP was captured using the AVIRIS sensor at the Indian 

pine test site situated in the North-western region of Indiana. 

IP possesses dimensions of 145×145×200, where 145×145 

designates the spatial dimensions representing width and 

height, and 200 signifies the count of spectral bands. IP 

encompasses 16 distinct classes and comprises a total of 10249 

samples [40].  

 

2.3.2 WHU-Hi LongKou (WHU-LK) 

The WHU-LK was captured using a Headwall Nano-

Hyperspec imaging sensor mounted on the DJI M600 Pro 

UAV platform, over the region of Longkou Town in Hubei 

province, China. The images were obtained with the UAV 

flying at an altitude of 500 m, resulting in spatial dimensions 

of 550×400 pixels. The acquired images from the UAV exhibit 

a spatial resolution of approximately 0.463 m and encompass 

270 spectral bands, spanning wavelengths from 400 nm to 

1000 nm [41]. Within WHU-LK, there are 9 distinct classes, 

comprising a total of 204542 samples.  

 

2.3.3 WHU-Hi HanChuan (WHU-HC) 

The WHU-HC was obtained utilizing the Headwall Nano-

Hyperspec imaging sensor, which was mounted on the Leica 

Aibot X6 UAV V1 platform within the region of Hanchuan, 

located in Hubei province, China. The images were procured 

by the UAV during flight at an altitude of 250 m, resulting in 

image dimensions measuring 1217×303 pixels. The images 

captured by the UAV possess an estimated spatial resolution 

of around 0.109 m and encompass 274 spectral bands spanning 

the wavelength range from 400 nm to 1000 nm [41]. Within 

WHU-HC, there are 16 distinct classes, comprising a total of 

257530 samples. 

 

2.3.4 WHU-Hi HongHu (WHU-HH) 

The WHU-HH was procured using the Headwall Nano-

Hyperspec imaging sensor. It was deployed atop the DJI M600 

Pro UAV platform within Honghu City, positioned in Hubei 

province, China. The images were captured by the UAV while 

flying at an elevation of 100 m, resulting in image dimensions 

measuring 940×475 pixels. These images, acquired by the 

UAV, possess an approximate spatial resolution of 0.043 m 

and comprise 270 spectral bands spanning the wavelength 

spectrum from 400 nm to 1000 nm. This particular dataset 

embodies various types of the same product, forming a 

complex agricultural landscape housing numerous product 

classes [41]. WHU-HH encompasses 22 distinct classes and 

consists of 386693 samples. Elaborated details regarding 

WHU-(LK, HC, and HH) and IP can be found in Table 1. 

Additionally, ground truth information, false-color images, 

and the color map for all four datasets are provided in Figure 

2. 

 

Table 1. Comprehensive data pertaining to the IP, WHU (LK, HC, and HH) 
 

No 
IP WHU-HC WHU-LK 

Classes Samples Classes Samples Classes Samples 

1 Alfalfa 46 Strawberry 44735 Corn 34511 

2 Corn-notill 1428 Cowpea 22753 Cotton 8374 

3 Corn-mintill 830 Soybean 10287 Sesame 3031 

4 Corn 237 Sorghum 5353 Broad-leaf soybean 63212 

5 Grass-pasture 483 Water spinach 1200 Narrow-leaf soybean 4151 

6 Grass-trees 730 Watermelon 4533 Rice 11854 

7 Grass-pasture-mowed 28 Greens 5903 Water 67056 

8 Hay-windrowed 478 Trees 17978 Roads and houses 7124 

9 Oats 20 Grass 9469 Mixed weed 5229 

10 Soybean-notill 972 Red roof 10516   

11 Soybean-mintill 2455 Gray roof 16911   

12 Soybean-clean 593 Plastic 3679   

13 Wheat 205 Bare soil 9116   

14 Woods 1265 Road 18560   

15 Buildings-grass-trees-drives 386 Bright object 1136   

16 Stone-steel-towers 93 Water 75401   

Total Number 10249  257530  204542 
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WHU-HH 

No Classes Samples No Classes Samples 

1 Red roof 14041 12 Brassica chinensis 8954 

2 Road 3512 13 Small Brassica chinensis 22507 

3 Bare soil 21821 14 Lactuca sativa 7356 

4 Cotton 163285 15 Celtuce 1002 

5 Cotton firewood 6218 16 Film covered lettuce 7262 

6 Rape 44557 17 Romaine lettuce 3010 

7 Chinese cabbage 24103 18 Carrot 3217 

8 Pakchoi 4054 19 White radish 8712 

9 Cabbage 10819 20 Garlic sprout 3486 

10 Tuber mustard 12394 21 Broad beans 1328 

11 Brassica parachinensis 11015 22 Tree 4040 

Total Number 386693 

 

2.4 Proposed multipath Hybrid DSCNet 

 

The majority of techniques found in the existing literature 

for classifying HRSIs are rooted in either 2D CNN, 3D CNN 

or Hybrid CNN approaches. While 2D CNN can effectively 

extract spatial features, it tends to overlook the abundant 

spectral feature data present in HRSIs. Meanwhile, the 

utilization of 3D CNN introduces heightened computational 

complexity, which can potentially lead to decreased 

classification accuracy. Recently, Hybrid CNN methodologies 

have emerged, merging the strengths of both 2D and 3D CNNs 

to address challenges associated with both. In this 

investigation, we propose a distinctive approach - a multipath 

hybrid 3D/2D Hybrid DSCNet, constructed from layers of 2D 

and 3D DSC components - designed specifically for HRSIC. 

The rationale behind adopting DSC layers is as follows: 

1. In contrast to the conventional hybrid CNN approach, this 

method effectively diminishes the count of trainable 

parameters within the network and concurrently decreases the 

computation duration. Consequently, the network training 

process gains speed, while also mitigating the risk of 

overfitting during classification. 

2. Due to their demand for a reduced number of 

computations, they are associated with lower computational 

expenses. 

The structure of the Hybrid DSCNet encompasses three 

components, illustrated in Figure 3. These components are as 

follows: (1) PCA and the establishment of 3D patches 

(neighbourhood extraction), (2) the block for learning spatial-

spectral features, and (3) the block for learning spatial features. 

 

2.4.1 PCA and the establishment of 3D patches 

In the initial phase of the hybrid DSCNet categorization 

framework, the spatial-spectral HRSI denoted as (𝑋) , is 

portrayed as a three-dimensional cube measuring 𝑊 × 𝐻 × 𝐷. 

𝑋 stands as the input data for HRSI. 𝑊 and 𝐻 symbolize the 

spatial width and height of the HRSI, while 𝐷 signifies the 

count of spectral bands. Each pixel within HRSI encompasses 

D spectral measurements and constructs a one-hot encoded 

label array 𝑌 = (𝑦1 , 𝑦2, . . . , 𝑦𝐶) , where 𝐶  represents the 

quantity of categories present in the input information. 

Notwithstanding, the HRSI pixels demonstrate areas of 

overlap and nesting, substantial similarity between different 

classes, as well as notable variability within the same class. 

These aspects call for significant endeavor when employing 

any classification technique. 

Dealing with these issues presents a considerable hurdle for 

any approach. Addressing these challenges necessitates the 

elimination of redundant spectral bands. In this pursuit, by 

utilizing conventional PCA on the HRSI data, the count of 

bands is adjusted to the desired level. Subsequent to the 

application of PCA, the spatial dimensions (𝑊 𝑎𝑛𝑑 𝐻) 

remain unaltered, while the number of spectral bands is 

diminished from D to B. While PCA retains the spatial 

dimensions, it curtails the spectral dimension. Following PCA, 

the HRSI takes on the form of 𝑊 × 𝐻 × 𝐵, where 𝑊 denotes 

width, 𝐻 signifies height, and 𝐵 denotes the count of newly 

acquired bands. To enable classification through DL methods, 

the HRSI cube is fragmented into compact 3D patches. These 

3D patches, measuring 𝑆 × 𝑆 × 𝐵, are derived from the HRSI 

cube, centered at spatial coordinates (𝑎, 𝑏), and encompassing 

the spatial dimensions of 𝑆 × 𝑆, as well as all spectral bands in 

B. The overall count of 3D patches (𝑛) generated from the 

HRSI cube is determined by (𝑊 − 𝑆 + 1) × (𝐻 − 𝑆 + 1) . 

Therefore, these sections located at position (𝑎, 𝑏) cover the 

width from 𝑎 − (𝑆 − 1)/2 to 𝑎 + (𝑆 − 1)/2, the height from 

𝑏 − (𝑆 − 1)/2 to 𝑏 + (𝑆 − 1)/2, and all spectral bands (𝐵) 

of the HRSI cube [23]. 

 

2.4.2 The block for learning spatial-spectral features 

During the subsequent phase, inputting 3D hypercubes with 

dimensions of 𝑆 × 𝑆 × 𝐵, the spatial-spectral feature learning 

component comes into play. This component encompasses 

three distinct strategies for enhancing spatial-spectral features, 

each involving the integration of 3D CNN and 3D DSC layers. 

In all three strategies, the initial 3D CNNs exhibit varying 

filter sizes and kernels. Specifically, the 3D convolution 

specifications for the 3D CNNs are as follows: 8 filters with a 

7×7×7 kernel in the first approach, 16 filters with a 5×5×5 

kernel in the second approach, and 32 filters with a 3×3×3 

kernel in the third approach. The 3D DSC layers within all 

three strategies encompass a 3x3x3 DC combined with a 

1×1×1 PC. However, the quantity of filters differs for each 

strategy, being 16, 32, and 64 respectively. As a result, a 

distinct neural network architecture is tailored for each 

approach. Leveraging multiple strategies facilitates the 

extraction of diverse features, thus attaining a more distinct 

feature representation. Subsequently, these features are 

consolidated. The feature cubes derived from all three 

strategies possess identical spatial dimensions, although their 

depths vary. This is followed by the application of a 3D 

convolution with dimensions of 1×1×1 and 64 filters, 

accompanied by a resizing operation. 

 

2.4.3 The block for learning spatial features 

In the third phase, operations in the block for learning 

spatial features are performed after the resizing operation. In 

order to perform 2D convolution and 2D DSC operations in 

this block, the input image must be 3D. Therefore, by resizing 

before this block, the input size is prepared for 2D CNN. In 
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the spatial feature learning block, DSC and 2D CNN are 

applied to learn more spatial features. Within this module, a 

2D convolution with a kernel size of 3×3 and utilizing 64 

filters is initially executed on the feature map obtained through 

the resizing procedure. Then, 64 filters and 3×3 kernel size DC, 

64 filters and 1×1 kernel size PC, 128 filters and 3×3 kernel 

size DC, 128 filters and 1×1 kernel size PC, and finally 128 

filters and 3×3 kernel size DC are applied. The features 

extracted after both feature learning blocks are flattened and 

given as input to FC layers for HRSIC. The Hybrid DSCNet 

employs a pair of FC layers, comprising 128 and 256 neurons, 

respectively. For the purpose of averting overfitting, a dropout 

layer is introduced following each FC layer, featuring a 

dropout rate set at 0.4. The outcome from the FC layer is then 

fed into a basic softmax classifier, yielding the classification 

outcome. Comprehensive details regarding the Hybrid 

DSCNet technique are presented in Table 2. The count of 

parameters available for training in the Hybrid DSCNet 

technique, in the case of WHU-LK, is 776.089. 

Figure 2. (a) Images in false-color representation, (b) maps depicting the ground truth, and (c) color maps associated with the 

WHU (LK, HC, and HH) and IP 
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Figure 3. Hybrid 3D-2D depthwise separable convolution networks (Hybrid DSCNet) 
 

Table 2. Detailed information about Hybrid DSCNet for WHU-LK 
 

Layer Name Layer Details Parameters Output Connected to 

InputLayer - 0 7×7×20×1 - 

Conv3D_1a filters=8, kernel_size=7×7×7, padding=‘same’ 2752 7×7×20×8 InputLayer 

Conv3D_1b filters=16, kernel_size=5×5×5, padding=‘same’ 2016 7×7×20×16 InputLayer 

Conv3D_1c filters=32, kernel_size=3×3×3, padding=‘same’ 896 7×7×20×32 InputLayer 

Depthwise_conv3D_1a kernel_size=3×3×3, depth_multiplier=2 448 5×5×18×16 Conv3D_1a 

Conv3D_2a filters=16, kernel_size=1×1×1, padding=‘same’ 272 5×5×18×16 Depthwise_conv3D_1a 

Depthwise_conv3D_1b kernel_size=3×3×3, depth_multiplier=2 896 5×5×18×32 Conv3D_1b 

Conv3D_2b filters=32, kernel_size=1×1×1, padding=‘same’ 1056 5×5×18×32 Depthwise_conv3D_1b 

Depthwise_conv3D_1c kernel_size=3×3×3, depth_multiplier=2 1792 5×5×18×64 Conv3D_1c 

Conv3D_2c filters=64, kernel_size=1×1×1, padding=‘same’ 4160 5×5×18×64 Depthwise_conv3D_1c 

Concatenate 5×5×18×112 
Conv3D_2a, Conv3D_2b, 

Conv3D_2c 

Conv3D_3a filters=64, kernel_size=1×1×1, padding=‘same’ 7232 5×5×18×64 Concatenate 

Reshape - 0 5×5×1152 Conv3D_3a 

Conv2D_1a filters=64, kernel_size=3×3 663616 3×3×64 Reshape 

Depthwise_conv2D_1a kernel_size=3×3, depth_multiplier=1 640 3×3×64 Conv2D_1a 

Conv2D_1b filters=64, kernel_size=1×1 4160 3×3×64 Depthwise_conv2D_1a 

Depthwise_conv2D_1b kernel_size=3×3, depth_multiplier=2 1280 1×1×128 Conv2D_1b 

Conv2D_1c filters=128, kernel_size=1×1 16512 1×1×128 Depthwise_conv2D_1b 

Depthwise_conv2D_1c kernel_size=3×3, depth_multiplier=1 1280 1×1×128 Conv2D_1c 

Flatten - 0 128 Depthwise_conv2D_1c 

FullyConnected1 (FC) units=256 33024 256 Flatten 

Dropout_1 dropout-ratio 0.4 0 256 FullyConnected1 (FC) 

FullyConnected2 (FC) units=128 32896 128 Dropout_1 

Dropout_2 dropout-ratio 0.4 0 128 FullyConnected2 (FC) 

output_layer Output_units=9 1161 9 Dropout_2 

Total number of trainable parameters 776.089 
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3. RESULTS AND DISCUSSIONS 

 

3.1 Experimental setup 

 

The experimental studies using the four datasets were 

written in python using Google Colab. Colab has TPU (Tensor 

Processing Units) and GPU (Graphics Processing Units) as 

hardware accelerator. TPU is used in our applications. TPU 

provides 35GB of RAM and approximately 107GB of storage 

to run codes. The test-train ratio was taken as 95-5% in all 

three datasets. Besides, Adam was utilized as the optimizer, 

and the learning rate was 0.001. Training is performed in 100 

epochs and 256 batch sizes. While IP use 25×25 (S=25) 

window size/patch size for convolution, WHU-LK, WHU-HC 

and WHU-HH use 7×7 (S=7) window size/patch size. Once 

PCA is applied to the HRSI data, originally sized WxHxD, the 

spectral band count is reduced, resulting in a new image size 

of W×H×B. In various applications, the values selected for B 

are 30 for IP and 20 for WHU (LK, HC and HH). The 

dimensions of the 3D patches provided as input to all the DL-

based methods employed for comparison are as follows: 

7×7×20 for WHU-LK, WHU-HC, WHU-HH and 25×25×30 

for IP. 

 

3.2 Evaluation metrics 

 

The assessment of the classification performance of the 

proposed Hybrid DSCNet across the four datasets was carried 

out using metrics such as the Average accuracy (AA), Kappa 

coefficient (K) and Overall accuracy (OA). The calculation of 

AA involves determining the mean accuracy values on a per-

class basis. The OA is expressed as the proportion of 

accurately classified test samples to the total count of test 

samples. The K serves as a statistical metric capable of 

gauging the degree of agreement between the ground truth 

map and the classification map obtained through estimation. 

 

3.3 Comparison with existing methods and performance 

analysis 

 

The performance of Hybrid DSCNet was evaluated against 

eight distinct DL methods introduced in recent years. These 

methods encompass S3EResBoF [1], A2S2KRes [21], 

HybridSN [22], FC3DCNN [23], FuSENet [24], DLEM [25], 

3D CNN [42], and 2D CNN [43]. The outcomes of the 

assessments conducted on the IP are presented in Table 3, 

revealing the classification performance based on both class-

specific and overall evaluation metrics (AA, OA, and K). 

Figure 4 displays the ground truth map alongside the 

classification maps obtained from the predictive results. Upon 

reviewing Table 3, it becomes evident that the Hybrid DSCNet 

achieved the most favorable classification outcomes, boasting 

an AA of 88.86%, a K value of 93.73%, and an OA of 94.51%. 

The Hybrid DSCNet method outperforms DLEM, which is 

one of the methods used for comparison, by 6.74% AA, 3.95% 

K and 3.43% OA. Similarly, it results in better classification 

accuracy of 6.42%, 7.31% and 3.77% compared to FuSENet, 

4.96%, 5.69% and 2.16% compared to A2S2KRes, 7.25%, 

8.26% and 7.77% compared to S3EResBoF, 8.6%, 9.95% and 

15.56% compared to HybridSN, 17.62%, 20.3% and 25.56% 

compared to FC3DCNN, 15.49%, 18.24% and 28.15% 

compared to 3D CNN, 19.26%, 22.45% and 26.33% compared 

to 2D CNN. The least favorable outcomes were observed in 

the case of 2D CNN, yielding an OA of 75.25% and a K value 

of 71.28%. Similarly, 3D CNN exhibited suboptimal 

performance, registering an AA of 60.71%. The AA outcome 

from the 3D CNN demonstrates a situation where the class-

specific classification results exhibit a notably diminished 

level of accuracy for each individual class. Considering the 

accuracies for individual classes, it becomes evident that the 

Hybrid DSCNet method yielded the most superior 

classification outcomes for classes 2, 3, 4, 5, 6, 8, 12, and 14, 

showcasing values of 93.66%, 91.38%, 95.55%, 98.47%, 

95.67%, 100%, 94.14%, and 99.92% respectively. In the case 

of class 7 and 16, the highest accuracy in classification was 

achieved through the utilization of the FuSENet and 

S3EResBoF methods, both attaining a perfect 100% accuracy. 

The highest classification accuracies for class 10 and 11 were 

obtained in DLEM with 92.36% and 97.56%, respectively. 

The highest classification performances were obtained in 

FuSENet with 100% for class 1, HybridSN with 78.95% for 

class 9, FC3DCNN with 98.38% for class 13 and S3EResBoF 

with 98.41% for class 15. Furthermore, the durations for both 

training and testing across all methodologies are presented in 

Table 3. The training duration is expressed in minutes, while 

the testing duration is quantified in seconds. Upon analyzing 

the training and testing durations of the eight distinct 

approaches, it is evident that the Hybrid DSC approach, as 

proposed, exhibited comparatively swifter training and testing 

procedures in comparison to the other seven methodologies, 

with the exception of 2D CNN. The reason why it is lower in 

2D CNN is due to the inability to obtain spectral feature 

information. 

Upon conducting assessments on the WHU-LK, the 

outcomes of the classifications, considering both class-

specific and comprehensive evaluation metrics (AA, OA, and 

K), are detailed in Table 4. The visual representation of the 

ground truth map alongside the classification maps within the 

predictive outcome is illustrated in Figure 5. Based on the data 

in Table 4, it is evident that the most favorable classification 

outcomes were achieved by the Hybrid DSCNet, showcasing 

an impressive 99.36% AA, 99.72% K, and 99.78% OA. The 

closest classification results to the Hybrid DSCNet were 

obtained in DLEM with 99.20% AA, 99.68% K, 99.76% OA 

and in A2S2KRes with 99.21% AA, 99.51% K and 99.63% 

OA. The classification results (AA, K and OA) obtained by 

other methods are as follows: 99.18%, 99.40%, 99.54% with 

FuSENet, 99.11%, 99.52%, 99.63% with HybridSN, 99.07%, 

99.64%, 99.64% with FC3DCNN, 98.96%, 99.46%, 99.59% 

with S3EResBoF, 98.79%, 99.46%, 99.59% with 3D CNN, 

98.09%, 99.24%, 99.42% with 2D CNN. The worst AA result 

was acquire with 2D CNN. According to class-wise 

classification accuracies, the classification results of 100%, 

99.91%, 100% and 98.76% were obtained in the 3, 4, 6 and 8 

classes, respectively, with the proposed Hybrid DSCNet 

method. The proposed approach demonstrates its superiority 

across these specific classes, delivering the most impressive 

results. Notably, the DLEM exhibited the highest 

classification performance, boasting an impressive 99.99% 

and 99.89% accuracy for class 1 and 2, respectively. In similar 

fashion, A2S2KRes achieved 99.84% accuracy for class 5, 

FuSENet excelled with 99.99% accuracy for class 7, and 

S3EResBoF attained a notable 99.55% accuracy for class 9. 

With the exception of classes 3, 4, 6, and 8, the proposed 

Hybrid DSCNet method approached the performance of the 

top-performing method across the remaining classes. The 

training and testing durations of the methods using the WHU-

LK are presented in Table 4. Upon analyzing Table 4, it 
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becomes apparent that the proposed Hybrid DSC method 

exhibited faster training and testing processes than other 

methods, excluding the 2D CNN. Factoring in all the 

information from Table 4, it is evident that the Hybrid DSCNet 

method achieves enhanced classification outcomes within a 

shorter time frame. 

 

Table 3. The outcomes of classification achieved through the utilization of the IP dataset (%) 

 

No Train/Test 
2D 

CNN 

3D 

CNN 
FC3DCNN HybridSN S3EResBoF A2S2KRes FuSENet DLEM 

Hybrid 

DSCNet 

1 2/44 26.67 22.22 26.83 40.00 0.0 81.19 100 55.55 59.09 

2 71/1357 75.31 69.17 70.27 89.60 77.39 83.86 92.41 88.74 93.66 

3 41/789 48.82 64.10 66.13 70.81 74.94 82.97 85.25 89.69 91.38 

4 12/225 23.48 3.04 50.23 50.00 90.70 91.23 90.91 53.91 95.55 

5 24/459 48.19 72.07 77.01 68.66 97.03 93.77 96.32 83.58 98.47 

6 37/693 91.10 95.20 84.93 90.68 88.79 94.11 83.14 90.54 95.67 

7 1/27 62.96 11.11 8.00 51.85 100 84.73 100 62.96 96.30 

8 24/454 83.62 100 98.84 100 100 96.09 100 100 100 

9 1/19 89.47 21.05 5.56 78.95 28.81 43.45 22.22 68.42 42.10 

10 49/923 74.23 78.15 86.40 87.38 75.63 88.96 78.03 92.36 91.66 

11 123/2332 88.41 96.30 79.91 96.85 96.31 91.54 91.33 97.56 95.32 

12 30/563 62.78 64.00 49.62 66.09 88.55 86.41 81.86 77.74 94.14 

13 10/195 77.39 85.43 98.38 83.92 84.95 91.24 60.36 85.93 92.82 

14 63/1202 99.92 90.79 90.08 96.49 95.96 95.29 96.32 98.70 99.92 

15 19/367 33.69 38.77 61.09 66.04 98.41 95.74 83.29 89.30 82.56 

16 5/88 14.44 60.00 59.52 35.55 100 86.61 100 78.89 93.18 

OA 512 

/ 

9737 

75.25 79.02 76.89 85.91 87.26 89.55 88.09 91.08 94.51 

K 71.28 75.49 73.43 83.78 85.47 88.04 86.42 89.78 93.73 

AA 62.53 60.71 63.30 73.30 81.09 86.70 85.09 82.12 88.86 

Training Time 

(min.) 
1.27 54.1 18.3 14.1 10.96 7.22 13.3 9.55 1.5 

Testing Time (sec.) 1 4.26 4.7 4.8 3 12 3.99 3.15 1.2 

 

 
 

Figure 4. The classification maps derived from the estimation process for the IP 

 

Table 4. The outcomes of classification achieved through the utilization of the WHU-LK dataset (%) 

 

No Train/Test 
2D 

CNN 

3D 

CNN 

FC3D 

CNN 
HybridSN S3EResBoF A2S2KRes FuSENet DLEM 

Hybrid 

DSCNet 

1 1725/32786 99.95 99.89 99.90 99.99 99.97 99.31 99.83 99.99 99.90 

2 419/7955 98.89 99.20 99.26 99.87 99.01 99.30 99.42 99.89 99.68 

3 152/2879 97.48 99.83 99.76 98.98 100 99.13 99.82 99.42 100 

4 3161/60051 99.67 99.71 99.62 99.46 99.88 99.81 99.31 99.85 99.91 

5 207/3944 97.07 98.46 97.76 97.59 99.46 99.84 99.54 98.34 98.73 

6 593/11261 99.57 99.86 99.92 99.88 99.99 99.63 99.97 99.87 100 

7 3353/63703 99.98 99.97 99.98 99.96 99.88 99.98 99.99 99.98 99.93 

8 356/6768 95.45 98.16 98.41 98.16 92.85 98.26 95.79 98.36 98.76 

9 261/4968 94.75 94.08 97.06 98.13 99.55 97.64 98.91 97.08 97.40 

OA 10227 

/ 

194315 

99.42 99.59 99.64 99.63 99.59 99.63 99.54 99.76 99.78 

K 99.24 99.46 99.64 99.52 99.46 99.51 99.40 99.68 99.72 

AA 98.09 98.79 99.07 99.11 98.96 99.21 99.18 99.20 99.36 

Training Time 

(min.) 
1.63 2.7 4.1 6.33 10.54 29.38 13.8 19 2.6 

Testing Time (sec.) 10.3 19 26 29 36 47.7 37 20.1 10.5 

 

 
 

Figure 5. The classification maps derived from the estimation process for the WHU-LK 
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Table 5. The outcomes of classification achieved through the utilization of the WHU-HC dataset (%) 

 

No Train/Test 
2D 

CNN 

3D 

CNN 

FC3D 

CNN 
HybridSN S3EResBoF A2S2KRes FuSENet DLEM 

Hybrid 

DSCNet 

1 2237/42498 96.61 96.80 98.46 97.19 91.61 95.26 97.49 98.41 98.24 

2 1137/21616 93.65 93.14 95.73 94.38 95.07 97.44 97.16 96.69 96.44 

3 514/9773 86.85 91.03 89.49 89.96 92.12 94.71 99.09 94.38 95.74 

4 268/5085 98.21 97.82 98.46 98.28 98.14 97.67 99.61 98.77 98.74 

5 60/1140 69.59 67.18 74.74 61.43 96.94 89.86 87.30 90.55 87.46 

6 227/4306 68.41 67.36 69.82 70.00 79.46 78.51 57.36 75.96 82.05 

7 295/5608 88.02 90.24 87.53 87.63 93.61 91.80 93.58 93.24 94.65 

8 899/17079 87.54 90.41 94.72 91.68 94.11 92.96 92.87 95.30 96.58 

9 473/8996 89.13 89.01 90.58 92.75 92.31 92.99 91.03 94.28 94.72 

10 526/9990 99.01 97.80 98.13 98.99 98.33 98.84 96.78 98.67 99.01 

11 845/16066 96.74 96.96 98.85 98.25 92.37 96.42 94.90 97.51 98.70 

12 184/3495 66.74 87.31 80.44 69.36 84.98 84.95 57.56 82.18 87.87 

13 456/8660 77.10 75.30 81.08 75.67 76.54 86.51 67.25 84.27 86.81 

14 928/17632 90.05 91.82 87.45 91.65 91.31 98.42 98.74 94.68 96.25 

15 57/1079 57.89 73.23 84.94 72.41 96.10 91.42 97.43 84.93 79.70 

16 3770/71631 99.33 99.73 99.71 99.38 99.95 99.78 99.65 99.76 99.76 

OA 12876 

/ 

244654 

93.40 94.28 95.09 94.41 94.27 96.87 94.05 96.47 97.06 

K 92.28 93.30 94.25 93.45 93.28 96.34 93.05 95.87 96.56 

AA 85.30 87.82 89.38 86.94 92.06 92.97 89.24 92.47 93.30 

Training Time 

(min.) 
1.7 4.40 4.5 4.71 11 26.05 12.17 29 3.47 

Testing Time (sec.) 19 23 23.3 43 37 117 37 60 20.3 

 

 
 

Figure 6. The classification maps derived from the estimation process for the WHU-HC 

 

Upon conducting experiments on the WHU-HC, the 

outcomes of the classification are depicted in Table 5, 

presenting evaluations based on class-specific and overall 

criteria (AA, OA, and K). The classification outcomes, 

alongside the ground truth map and classification maps, are 

visually presented in Figure 6 for all methods in the prediction 

results. Upon reviewing Table 5, it becomes evident that the 

most favorable classification outcomes were attained using the 

Hybrid DSCNet, yielding an AA of 93.30%, K of 96.56%, and 

OA of 97.06%. The Hybrid DSCNet yielded the most similar 

classification outcomes, closely followed by DLEM at 

92.47%, 95.87%, and 96.47%, and A2S2KRes with 92.97%, 

96.34%, and 96.87%, when evaluating AA, K, and OA 

classification criteria. The classification metrics (AA, K, and 

OA) obtained from other techniques are as follows: 92.06%, 

93.28%, 94.27% with S3EResBoF, 89.24%, 93.05%, 94.05% 

with FuSENet, 89.38%, 94.25%, 95.09% with FC3DCNN, 

87.82%, 93.30%, 94.28% with 3D CNN, 86.94%, 93.45%, 

94.41% with HybridSN, and 85.30%, 92.28%, 93.40% with 

2D CNN. Analyzing all methods reveals that the least 

favorable classification results are obtained with the utilization 

of 2D CNN. According to class-wise classification accuracies, 

the classification results of 82.05%, 94.65%, 96.58%, 94.72%, 

99.01%, 87.87% and 86.81% were obtained in the 6, 7, 8, 9, 

10, 12 and 13 classes, respectively, with the proposed Hybrid 

DSCNet method.  

Among these classes, the Hybrid DSCNet approach delivers 

the most favorable classification outcomes. The top 

classification accuracy was achieved by the FuSENet 

technique, attaining 99.09%, 99.61%, 98.74%, and 97.43% for 

class 3, 4, 14, and 15, respectively. The highest classification 

results was obtained in the FC3DCNN with 98.46% and 

98.85% for class 1 and 11, in the S3EResBoF method with 

96.94% and 99.95% for class 5 and 16, in the A2S2KRes 

method with 96.94% for class 2. Except for the 3, 5, 14 and 15 

classes, the proposed Hybrid DSCNet method in other classes 

acquired a classification result close to the method that gave 

the highest classification result. Furthermore, the training and 

testing durations for all approaches are displayed in Table 5. 

Analyzing the data in Table 5 reveals that, except for the 2D 
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CNN method, the proposed Hybrid DSCNet technique 

exhibits faster training and testing times than other 

sophisticated methods. Taking into account the 

comprehensive details presented in Table 5, it can be inferred 

that the Hybrid DSCNet method attains superior classification 

outcomes in a more efficient timeframe. 
 

Table 6. The outcomes of classification achieved through the utilization of the WHU-HH dataset (%) 
 

No Train/Test 
2D 

CNN 

3D 

CNN 

FC3D 

CNN 
HybridSN S3EResBoF A2S2KRes FuSENet DLEM 

Hybrid 

DSCNet 

1 702/13339 98.41 98.05 98.05 97.60 93.77 99.28 99.34 97.94 98.78 

2 176/3336 83.97 89.87 70.32 86.32 95.38 94.70 84.14 94.83 94.84 

3 1091/20730 95.75 92.26 97.77 95.38 95.17 97.56 96.03 98.08 97.76 

4 8164/155121 99.30 99.47 99.12 99.34 99.59 99.40 98.15 99.89 99.70 

5 311/5907 78.36 71.53 81.22 57.72 52.48 91.65 88.43 78.25 90.89 

6 2228/42329 97.13 97.31 97.89 96.98 98.52 98.95 97.77 98.26 98.22 

7 1205/22898 90.16 90.70 95.65 88.30 98.24 93.99 94.47 95.92 95.80 

8 203/3851 60.73 63.50 76.19 47.30 86.02 87.18 83.29 68.97 81.04 

9 541/10278 97.69 97.90 99.32 98.11 100 99.29 99.38 99.01 98.42 

10 620/11774 88.19 82.52 88.96 71.34 90.06 95.95 94.63 89.58 92.93 

11 551/10464 84.29 82.31 85.93 75.27 82.45 93.14 89.65 90.90 91.98 

12 448/8506 69.24 74.66 81.22 77.96 73.33 91.97 74.18 89.64 88.67 

13 1125/21382 83.26 87.44 88.58 78.65 82.91 91.39 90.46 88.97 94.31 

14 368/6988 92.35 91.74 95.35 90.22 99.20 96.73 99.05 93.29 95.92 

15 50/952 71.60 80.14 85.18 91.36 50.10 92.21 99.71 93.31 82.67 

16 363/6899 94.46 95.00 97.61 93.03 98.73 98.22 99.13 96.14 97.82 

17 150/2860 87.57 89.83 77.12 87.16 76.87 97.96 92.86 96.74 89.47 

18 161/3056 92.57 95.39 97.66 89.14 91.77 90.08 83.03 97.56 96.24 

19 435/8277 90.85 92.59 93.35 88.26 89.79 94.69 98.53 93.99 95.52 

20 174/3312 82.64 90.09 91.36 75.24 91.32 94.71 98.01 93.37 94.38 

21 66/1262 34.24 76.94 44.72 43.71 50.26 64.35 55.78 39.13 91.52 

22 202/3838 90.69 87.88 95.25 85.68 90.81 92.79 81.42 89.72 97.24 

OA 19334 

/ 

367359 

93.81 94.12 95.38 92.15 93.54 97.10 95.51 96.31 97.27 

K 92.17 92.56 95.38 90.05 91.90 96.34 94.31 95.33 96.54 

AA 84.70 87.60 88.08 82.46 85.76 93.46 90.79 90.16 93.82 

Training Time 

(min.) 

2.64 19.78 13.48 11.12 24.07 43.9 27.75 47 5.42 

Testing Time (sec.) 65 334 269 195 126.5 341 254 277 119 

 

 
 

Figure 7. The classification maps derived from the estimation process for the WHU-HH 
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Upon conducting the experiments on the WHU-HH, the 

classification outcomes are detailed in Table 6, encompassing 

both class-specific and overall evaluation criteria (AA, OA, 

and K). Additionally, Figure 7 exhibits the ground truth map 

and the classification maps produced by various methods for 

predicting results. Upon scrutinizing Table 6, it becomes 

evident that the Hybrid DSCNet demonstrated superior 

classification accuracies, achieving 93.82% for AA, 96.54% 

for K, and 97.27% for OA. The proposed Hybrid DSCNet 

method outperforms A2S2KRes, which is one of the methods 

used for comparison, by 0.36% AA, 0.2% K and 0.17% OA. 

Similarly, it results in better classification accuracies of 1.76%, 

2.23% and 3.03% compared to FuSENet, 0.96%, 1.21% and 

3.66% compared to DLEM, 3.73%, 4.64% and 8.06% 

compared to S3EResBoF, 5.12%, 6.49% and 11.36% 

compared to HybridSN, 1.89%, 1.16% and 5.74% compared 

to FC3DCNN, 3.15%, 3.98% and 6.22% compared to 3D 

CNN, 3.46%, 4.37% and 9.12% compared to 2D CNN. 

Considering all methods, it is seen that the closest 

classification results to the Hybrid DSCNet are obtained with 

A2S2KRes. Upon analyzing the classification outcomes on a 

class-wise basis, it is evident that the Hybrid DSCNet method 

achieved the most favorable classification results in classes 5, 

11, 13, 21, and 22, attaining accuracies of 90.89%, 91.98%, 

94.31%, 91.52%, and 97.24%, respectively. The highest 

classification results for class 1, 15, 16, 19 and 20 were 

acquired in FuSENet with 99.34%, 99.71%, 99.13%, 98.53% 

and 98.01%. The highest classification results were obtained 

in S3EResBoF with 95.38%, 98.24%, 100%, 99.20% for class 

2, 7, 9,14, DLEM with 98.08% and 99.89% for class 3 and 4, 

FC3DCNN with 97.66% for class 18 and A2S2KRes with 

98.95%, 87.18%, 95.95%, 91.97%, 97.96% for class 6, 8, 10, 

12, 17. Based on the data presented in Table 6, it is evident 

that the Hybrid DSCNet approach requires less time for 

training and testing when compared to other sophisticated 

methods, excluding the 2D CNN. Taking into account all the 

details provided in Table 6, it can be inferred that the proposed 

method yields improved classification results within a shorter 

timeframe. 

 

 

 

 
 

Figure 8. OA, AA, and K values obtained with different 

principal components for the four datasets 

 

 

 

 
 

Figure 9. Effect of different spatial patch sizes on 

classification accuracy with 5% training samples on IP, 

WHU-LK, WHU-HC and WHU-HH datasets 

 

In the Hybrid DSCNet method, classification accuracies 

were tested with different principal components in four 

different datasets to determine the number of principal 

components obtained after PCA dimension reduction method. 

Seven different principal component cases between 10 and 40 

are considered in all datasets and classification accuracies for 
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all principal components are given in Figure 8. When the 

classification accuracies in Figure 8 are examined, the number 

of reduced spectral bands after PCA in the proposed Hybrid 

DSCNet method was determined as 30, 20, 20 and 20 for IP, 

WHU-LK, WHU-HC and WHU-HH, respectively. 

For the Hybrid DSCNet method, the effect of different 

spatial dimensions on the classification accuracies in four 

different datasets was analyzed and given in Figure 9. While 

only 3×3, 5×5, 7×7, 9×9 and 11×11 spatial dimensions (patch 

size) are taken into account in WHU-LK, WHU-HC and 

WHU-HH datasets, 12 different cases are tested between 3×3 

and 25×25 spatial dimensions in IP. With increasing the spatial 

dimension in the WHU-LK, WHU-HC and WHU-HH datasets, 

the training time of the proposed method increases 

significantly. In addition, the need for graphics memory and 

internal memory are also increasing. To make a fair 

comparison and balance computational cost and accuracy, we 

determined the same spatial dimension of 7×7×B across all 

WHU-LK, WHU-HC, WHU-HH datasets. In the IP dataset, 

the most appropriate spatial patch size is 25×25. Because the 

best classification accuracies was obtained with the spatial 

patch size of 25×25. 

Figures 10-13 show that studies were carried out by taking 

different training samples (3%, 5%, 10% and 20%) for four 

datasets. The classification accuracies of the Hybrid DSCNet, 

2D CNN, 3D CNN, HybridSN, FC3DCNN with different 

training examples in all datasets were examined. According to 

Figures 10-13, it is seen that the Hybrid DSCNet provides 

better classification accuracies than all methods as the number 

of training samples increases. Especially for complex scenes 

in WHU-HC and WHU-HH, the Hybrid DSCNet shows a 

more important advantage than other classifiers. 

 

  
 

 
 

Figure 10. OA, AA and K values of different numbers of training samples for only 2D CNN, only 3D CNN, FC 3D CNN, 

HybridSN and the proposed method on IP dataset 
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Figure 11. OA, AA and K values of different numbers of training samples for only 2D CNN, only 3D CNN, FC 3D CNN, 

HybridSN and the proposed method on WHU-LK dataset 

 

 

 

 
 

Figure 12. OA, AA and K values of different numbers of 

training samples for only 2D CNN, only 3D CNN, FC 3D 

CNN, HybridSN and the proposed method on WHU-HC 

dataset 

 

 

 

 

 
 

Figure 13. OA, AA and K values of different numbers of 

training samples for only 2D CNN, only 3D CNN, FC 3D 

CNN, HybridSN and the proposed method on WHU-HH 

dataset 
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4. CONCLUSIONS 

 

In this paper, Hybrid DSCNet based on multipath feature 

fusion is suggested for HRSI classification. With the Hybrid 

DSCNet, it is purposed to improve the classification results by 

decreasing the number of trainable parameters. In this 

direction, unlike the Hybrid CNN methods used in the 

literature, 3D-2D depthwise and pointwise convolution layers 

are used instead of standard 3D-2D CNN. With these layers, 

the number of trainable parameters is reduced and the 

classification performance is increased. In addition, a 

multipath feature fusion structure is created to extract more 

spatial-spectral and spatial features. Thanks to a multi-scale 

network structure, the features extracted from HRSI are 

getting richer. Classification results of the Hybrid DSCNet on 

IP, WHU (LK, HC and HH) datasets were examined. Using 

5% training sample with IP, WHU-LK, WHU-HC and WHU-

HH, OA values of 94.51%, 99.78%, 97.06% and 97.27% were 

acquired. In addition, the Hybrid DSCNet was compared with 

the latest technology methods from the literature. It has been 

seen that the Hybrid DSCNet produces successful 

classification performances. When the classification results 

obtained are examined, it is concluded that the Hybrid 

DSCNet can be used in real world applications. In the future, 

studies based on Generative Adversarial Networks, Vision 

transformer, Swin Transformer, ConvMixer are planned for 

HRSIC. With these methods, it is aimed to further increase the 

classification accuracy results. 
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NOMENCLATURE 

 

CNN Convolutional Neural Networks 

HRSI Hyperspectral Remote Sensing Images 

DRM 

PCA 

Dimension Reduction Methods 

Principal Component Analysis 

LDA Linear Discriminant Analysis 

ICA Independent Component Analysis 

IPCA Incremental Principal Component Analysis 
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LLE Locally Linear Embedding 

SVM Support Vector Machine 

KNN K-Nearest-Neighbors 

DL Deep Learning 

IP Indian Pines 

WHU-LK WHU-Hi-Longkou 

WHU-HC WHU-Hi-Hanchuan 

WHU-HH WHU-Hi-Honghu 

DC Depthwise convolution 

PC Pointwise convolution 

UAV 

ANN 

FE 

DNN 

Unmanned Aerial Vehicle 

Artificial Neural Networks 

Feature Extraction 

Deep Neural Network 
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