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Social recommendation, a technique aimed at predicting user preferences by harnessing 

social ties, has frequently employed collaborative filtering (CF) due to its demonstrated 

efficiency and scalability. Nonetheless, a decline in performance of most extant CF 

techniques has been observed when confronted with extreme sparsity in explicit feedback. 

Past investigations predominantly merged both explicit and implicit feedback to mitigate 

the data scarcity issue, embedding based solely on explicit characteristics and formulating 

objective functions founded on user-item associations. Such a paradigm signifies a 

dependency on these interactions to compensate for deficient embeddings. Notably, a 

considerable discrepancy exists between implicit feedback and genuine user satisfaction in 

social recommendations, attributed to pervasive false positive interactions devoid of detailed 

user/item attributes. Furthermore, the establishment of connectivity between users/items has 

been partially dependent on users' inclinations, suggesting that the aggregation procedure 

might overlook certain neighbourhood preferences. In response to these challenges, a hybrid 

neural graph model endowed with attributive features has been introduced. This model 

amalgamates explicit/implicit feedback, attribute data, and a user-item interaction graph. To 

counteract data sparsity, a variational graph framework has been devised to extract latent 

representations from both feedback and attribute data. For the effective and explicit 

discernment of collaborative signals, the embedding incorporates a user-item interaction 

graph, which offers a potent modelling of elevated-order connectivities and the detection of 

latent user-item associations. The user and item embeddings are derived via an attentive 

propagation method, with the ultimate item embeddings being sourced through a linear 

weighted sum, eschewing non-linear activation functions. Comparative analyses on four 

real-world datasets have demonstrated the superior efficacy of the proposed methodology 

in relation to leading contemporary recommendation systems. 
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1. INTRODUCTION

Recommendation systems have been recognized as 

instrumental tools in addressing the challenges of information 

overload, guiding users towards valuable insights and 

predicting preferences across an array of items in alignment 

with individual tastes. In the evolving landscape of social 

commerce, a profusion of social connections, such as 

friendships, is generated within social networks. These 

connections are believed to significantly augment social 

engagements amongst individuals, whether they be 

acquaintances, colleagues, or even strangers [1]. In this digital 

realm, avenues for communication and the exchange of ideas 

are presented, fostering rich social interactions. 

Recommendations, derived from these social interactions, 

underscore the foundational importance of these social ties. An 

enhancement in the potency of social recommendations is, 

therefore, postulated to be closely tethered to these social 

connections. The principle of social correlation posits that 

within a given network, individuals are predisposed to 

manifest similar preferences or exhibit mutual influences, 

culminating in analogous choices within their interconnected 

web [1]. CF, which predicates user preferences on the notion 

that individuals with converging tastes are inclined towards 

analogous items, emerges as a quintessential methodology in 

the realm of social recommendation [2]. For the actualization 

of this principle, user-item interactions are reconstituted 

through a process that necessitates the parameterization of 

both users and items. Conventionally, most CF models can be 

demarcated into two predominant facets: embedding and 

interaction modelling. In initial methodologies, entities were 

projected into a shared latent space, and hidden vectors were 

employed to represent either entity. Subsequently, the 

emphasis shifted towards reconstructing user-item interactions 

leveraging these embeddings, as evidenced by techniques such 

as matrix factorization (MF) [3]. Advances like the 

collaborative topic regression (CTR) [4] amalgamated with 

deep feature representation learning further refined these 

interactions. A paradigm shift was observed with the advent of 

Neural Collaborative Filtering (NCF) and its derivatives [5], 

which merged linear MF and nonlinear neural networks, 

forsaking the traditional MF interaction function. 

While the aforementioned methodologies have 

demonstrated efficacy, inherent limitations emerge when 

confronted with data paucity, inhibiting the generation of 

optimal embeddings for CF. In response to the challenges 

posed by data scarcity, attribute data has been integrated into 

traditional CF methods by several researchers [6]. To more 
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accurately distil the essential elements from attribute data, 

techniques such as latent Dirichlet allocation, Bayesian 

personalized ranking (BPR), and autoencoders, among others, 

have been employed in previous studies [7]. However, a 

predominant reliance on inner products to emulate interactions 

between users and items has been identified, restricting these 

methodologies' capability to delineate non-linear relationships 

[8]. In a bid to rectify this, various approaches, inclusive of 

NCF, DeepFM [9], and Neural Factorization Machine [10], 

have harnessed deep neural networks, resulting in enhanced 

modelling of non-linear interactions. Notwithstanding their 

successes, the intricate ambiguities of latent representations 

pertaining to users and items have not been entirely captured 

by these profound neural architectures. Recently, the adoption 

of deep generative models, such as the Variational 

Autoencoder (VAE) [11], in CF tasks has been noted. 

Characterized by its probabilistic nature, VAE can encapsulate 

uncertainty, facilitating the exploration of non-linear 

probabilistic latent-variable models on extensive 

recommendation datasets, as evidenced by models like 

collaborative variational autoencoder (CVAE) [12] and VAE-

based CF (VAECF) [13]. Nonetheless, certain caveats 

accompany these VAE-based CF methods. For instance, the 

dependency of CVAE on inner products for interaction 

representation has been observed to constrict its scope in 

capturing intricate non-linear interactions between users and 

items. Conversely, VAECF's exclusive reliance on rating 

matrices for modelling user behaviors and prediction 

generation is found to be suboptimal on exceedingly sparse 

rating matrices, further compromising its ability to furnish new 

users with accurate recommendations [14]. 

In the quest to ameliorate the shortcomings of insufficient 

embeddings, recent analyses have been undertaken [7, 15]. It 

was discerned that a preponderance of studies formulated 

embedding functions without the integration of implicit 

characteristics. As a result, the capability to efficaciously seize 

the fundamental collaborative signals, indicative of user-item 

interactions, was compromised. Furthermore, the employment 

of user-item interactions was discerned to be predominantly 

constrained to delineating training objectives, leading to the 

insufficiency in embeddings' capability to capture pertinent 

signals [8]. Such an observed disconnect between embedding 

and interaction modelling suggests that latent representations 

of users and items may not always be accurately discerned. 

Predominantly, information pertaining to users in social 

recommendation systems is gleaned from both social 

interactions and direct user-item interactions. However, this 

multifaceted information is not always holistically leveraged, 

often due to a lack of integrated analysis from diverse vantage 

points [1]. It should be emphasized that interactions between 

users and items not only denote direct exchanges but also 

encapsulate users' intrinsic item preferences. The nature of 

interactions within social networks is subject to the strength of 

user connections; stronger ties often manifest in more aligned 

preferences compared to weaker connections. A uniform 

treatment of these varied social interactions might 

inadvertently attenuate the efficacy of recommendation 

systems [16]. Hence, there emerges an intrinsic imperative to 

distinctly categorize these varied social ties, concurrently 

assimilating insights about both interactions and preferences. 

This comprehensive approach would involve amalgamating 

user information sourced from both social dynamics and direct 

user-item engagements, ensuring the embedding function is 

optimally primed to extrapolate the requisite collaborative 

signals for enriched representation. 

To address the outlined challenges, a hybrid attributive 

GCN structure tailored for recommendation in the realm of 

social e-commerce has been proposed. Within this structure, 

explicit collaborative signals in the user-item interaction graph 

are discerned, leveraging two supplementary VAEs to derive 

non-linear latent representations and establish high-order 

connectivity via attentive embedding propagation. A unified 

neural variational model has been employed to encapsulate the 

generative processes of both users and items, thereby 

facilitating the efficient extraction of non-linear latent 

representations for CF. By embedding the attribute 

information of users and items into their latent factors through 

a deep graph neural networks (GNN) for CF, data sparsity 

issues can be effectively addressed and the latent 

representations of users and items can be enhanced. Drawing 

from findings in GNN research [17, 18], an embedding 

propagation layer has been integrated to augment user/item 

embeddings. This augmentation is achieved by aggregating 

embeddings from interacting items or users. Sequentially, 

these embeddings are optimized to discern cooperative 

indications in higher-order connectivity, achieved through 

layer stacking for embedding propagation. Through data-

driven training, the adopted neural network has demonstrated 

the capacity to incorporate both user preferences and item 

attributes into the latent factors of users and items. This 

manuscript is structured as follows: Section 2 offers a review 

of extant literature on CF models. In Section 3, the proposed 

models are elucidated, accompanied by a discussion on 

parameter learning methodologies. Section 4 presents the 

empirical outcomes and associated discussions, with Section 5 

concluding the paper and suggesting avenues for future 

research. 

 

 

2. RELATED WORKS  

 

2.1 CF 

 

Recommendation systems have often been crafted utilizing 

CF, a method widely acknowledged for its ubiquity in the 

domain. In such processes, data pertaining to users' actions, 

behaviors, or preferences are collected and scrutinized. The 

aim is to predict user preferences through juxtaposition with 

other users. Three primary paradigms emerge: memory-based 

CF, model-based CF, and hybrid CF models. 

Memory-based models bifurcate into user-based and item-

based categories. In these, CFs have been observed to hinge 

on ratings and the discernment of closely correlated neighbors. 

Such neighbors, identified as those manifesting analogous 

rating patterns to a given user, serve as sources of 

recommendations rooted in items previously endorsed by 

these similar entities. As per Shi et al. [2], a greater precision 

in user-based CF is often achieved when an expansive data 

pool is employed for similarity computations. However, 

challenges arise in scalability due to user volume and data 

sparsity. In contrast, the scalability of item-based CF is noted 

to be commendable, even with voluminous, sparse data, albeit 

potentially at the cost of precision. 

Model-based CF, diverging from memory-based models, 

offers an alternate paradigm that does not predominantly lean 

on user or item similarity. Here, techniques such as matrix 

factorization have been employed, constructing predictive 

models rooted in user preferences, leading to notable boosts in 
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both accuracy and scalability. Koren et al. [3] have asserted 

the prevalence of matrix factorization techniques, 

underscoring their foundational premise: a minimal set of 

concealed factors often suffices to elucidate extant ratings and 

to prognosticate absent ones. Whilst model-based CF has been 

shown to augment prediction efficacy and offer insightful 

rationales behind recommendations, a significant loss of 

information is often incurred due to dimensionality reduction. 

Hybrid models aim to augment recommendation precision 

by amalgamating CF with diverse methodologies including 

Bayesian hierarchical models, clustering, neural networks, and 

knowledge-based techniques [1]. As noted by He and Chua 

[10], such models have demonstrated enhanced precision in 

suggestions, adeptly addressing issues like data sparsity and 

the cold-start problem. Moreover, they present explicative 

recommendation rationales. Yet, complexities in 

implementation and the recurrent unattainability of external 

information requisites often overshadow their potential 

benefits. 

Over recent decades, deep learning has experienced 

significant advancements in model-based CF. Restricted 

Boltzmann machines and deep belief networks have been 

applied to discern a probabilistic perspective of user-item 

interaction in rating contexts [11]. Other state-of-the-art 

models, including variations of VAEs, generative adversarial 

networks, and the like, have been explored due to their 

inherent capacity to embrace both uncertainty and non-

linearity [13]. In such endeavors, deep neural networks have 

been employed, envisaging recommendation as either a 

classification or regression challenge, with the intent to 

autonomously discern obscured affiliations between users and 

items. 

 

2.2 GNN for recommendation systems 

 

GNNs, especially in recent developments, have been 

demonstrated to hold remarkable efficacy in processing graph 

data across various fields [19]. Their innate capacity to 

seamlessly handle typical graph data makes them particularly 

apt for the realm of social recommendation. GNNs are often 

perceived in certain recommendation models as instrumental 

tools for feature extraction, thereby harnessing additional 

attributes from social data [20, 21]. Central to this approach is 

the propensity to employ embedding propagation, thereby 

facilitating the amalgamation of neighborhood embeddings. 

Such a mechanism ultimately grants each node the capability 

to assimilate information from higher-order neighbors. Both 

user-user social graphs and user-item interaction graphs have 

been leveraged in social recommendations, revealing inherent 

benefits in the realm of embedding learning. 

Recent investigations, as highlighted by Gao et al. [19], 

have denoted an inclination towards amalgamating 

neighbouring embeddings to refine the embeddings of target 

nodes within the spatial domain. Contemporary research has 

pivoted towards the deployment of GCN for the meticulous 

management of user-item interaction graphs. Such endeavors 

are underscored by the pursuit of unveiling CF signals within 

high-order neighbours, steered by the GCN’s interpretability 

and efficiency. An exemplar of this approach is the graph 

convolutional matrix completion (GCMC) [22], wherein both 

the CF signal and the inherent graph structure are harnessed to 

curate embeddings. Through an effective synthesis of 

information stemming from the structural and attribute 

components of the user-item interaction graph, enhanced 

accuracy is attained. PinSage [20] adopts a distinct 

methodology, employing random walks to sculpt bespoke item 

embeddings. This method meticulously captures adjacent 

graph configurations, subsequently consolidating the 

preferences of akin users. In a fusion of GCN with CF, neural 

graph CF (NGCF) [23] adeptly discerns intricate 

interconnections existing between users and items. By 

accruing embeddings from neighboring nodes, latent user 

preferences are capably grasped, with performance metrics 

outstripping conventional methodologies. To enhance the 

proficiency of GCN, attention mechanisms have been 

employed, as illustrated by the works of GAT [24] and KGAT 

[25]. In the former, varying levels of significance are assigned 

to interactions between users and items, enabling the capture 

of intricate associations within the knowledge graph. 

Conversely, in the latter, weights are allocated to proximate 

nodes, with a distinct focus on prioritizing nodes deemed more 

informative during the information propagation phase. 

Recent advancements in the understanding of GCN have 

been observed, and based on the comprehensive survey by 

Gao et al. [19], the evolution of GCN-based recommendation 

methodologies can be categorized into three primary domains. 

Firstly, emphasis has been placed on the deployment of 

simplified single-layer GCN or streamlined message passing 

to augment efficiency without compromising performance. 

The second trend involves the integration of GCN models with 

supplementary modules, notably attention mechanisms or 

gating functions, thereby elevating the efficacy of 

representation learning. Finally, advancements have been 

witnessed in the fusion of GCN with auxiliary datasets like 

knowledge graphs and various side information, including 

attributes, trust connections, and social regularization, to 

refine user profiling. Among these evolving trends, the 

emphasis on designing streamlined GCN has garnered 

significant attention in recent years. For instance, the nexus 

between GCN and Page Rank has been explored in 

personalized propagation of neural predictions (PPNP) [26], 

which yielded an advanced propagation technique. This 

methodology was further employed to construct a streamlined 

GCN model, demonstrating compatibility with diverse neural 

network architectures. In parallel, it has been asserted by Wu 

et al. [17] in their introduction of the simplifying GCN (SGCN) 

that the conventional GCN poses unnecessary complexities. 

They advocate for a simplified design, achieved by omitting 

non-linear functions and amalgamating multiple weight 

matrices for successive layers. LightGCN [18], on the other 

hand, was developed to address the excessive smoothing issue 

intrinsic to GCN for collaborative filtering scenarios. By 

centering attention solely on the adjacency matrix of the user-

item interaction graph and employing numerous graph 

convolution layers with a direct linear aggregation strategy, 

Light GCN illuminates the pitfalls associated with non-

linearity and redundant weight matrices in the collaborative 

filtering paradigm. Corroborating this perspective, other 

academic pursuits [27-29] have also postulated that the 

exclusion of non-linear components can bolster 

recommendation outcomes. A distinct linear residual network 

architecture has been delineated specifically for collaborative 

filtering undertakings involving user-item interactions. This 

innovative structure efficaciously rectifies the over-smoothing 

quagmire encountered during the graph convolution 

aggregation phase, particularly in light of interaction matrix 

sparsity. 

While numerous studies have endeavored to enrich GCN-

1883



 

based recommendation, the pervasive influence of user and 

item attributes is often overlooked. The amalgamation of 

solely the interaction graph within GCN can inadvertently lead 

to over-smoothing and a dilution of semantic significance, 

issues potentially rectifiable through the inclusion of attribute 

and graph structures [19]. Attributes can proffer valuable side 

information, aiding in refining user profiles and decoding item 

attributes. Moreover, in scenarios typified by cold-start 

users/items, attribute data can be instrumental in offsetting the 

dearth of interaction history. Hence, the exploitation of user 

and item attributes in concert with GCN is indispensable. 

 

 

3. METHODOLOGY 

 

The forthcoming section elucidates the architecture of the 

proposed Hybrid Attributive GCN (HAGCN), as visually 

represented in Figure 1. This model comprises three pivotal 

components: the initial feature extraction and embedding, an 

attentive GCN fortified with a dual attention mechanism, and 

the subsequent rating prediction. Initially, two ancillary VAEs 

are employed to discern users' and items' characteristics 

through a coherent deep generative framework. Nodes’ 

embeddings are initialized employing both ID and feature 

embeddings. Thereafter, the node embeddings undergo 

enhancement by a refined GCN, incorporating dual attentive 

propagation mechanisms. Such a mechanism facilitates the 

assimilation of collaborative signals through attentive 

embedding propagation atop the user-item relation graph. The 

culminating stage involves generating predictions via the inner 

product of users' and items' final representations. 

 

  
 

Figure 1. The architecture of the proposed HAGCN model 

 

Table 1. Symbols and notations used in this paper 

 
Symbols/Notations Description 

U, V The sets of users and items 

R, R* ∈ ℝM×N The rating matrix and prediction matrix 

Ru ∈ ℝK×M, Rv ∈ ℝK×N The rating vectors of users and items 

Xu, Xu
' ∈ ℝP×M The attribute information and feature vectors of users 

Xv, Xv
' ∈ ℝQ×N The attribute information and feature vectors of items 

eu, ev ∈ ℝD The full embedding vectors of user and item 

eu
(l), ev

(l) ∈ ℝD The l-th-hop embedding representations of user and item  

M, N The number of users and items 

K, D The dimensionality of latent space for users/items and node embedding 

P, Q The dimensionality of latent space for users’ and items’ attribute information 

 

3.1 Notations 

 

For clarity, a compendium of employed symbols and 

notations is presented, with comprehensive details delineated 

in Table 1. 

The sets U={ui|i=1, …, M}∈ ℝK×M and V={vj|j=1, …, N}∈
ℝK×N are posited to symbolize the latent factors of users and 

items, respectively, with K representing the latent factors' 

dimensions. In scenarios involving implicit feedback, both the 

rating matrix and its predictive counterpart are denominated as 

R  ∈ ℝM×N  and R*  ∈ ℝM×N , respectively. Within this 

framework, Rij = 1 is indicative of engagement between the i-

th user and the j-th item, whereas Rij = 0 denotes a lack thereof. 

Concurrently, rating vectors for users and items are 

represented as Ru ∈ ℝK×M and Rv ∈ ℝM×N, respectively. 

Vectors Xu={Xui|i=1, …, M}∈ ℝP×M and Xv ={Xvj|j=1, …, 
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N}∈ ℝQ×M  encapsulate attribute data pertinent to users and 

items, respectively. Dimensions of these attributes are 

demarcated by P for users and Q for items. Within this context, 

terms latent profile representation and latent content 

representation correspond to Xu and Xv, respectively. 

Embedding representations for users and items after l 

propagation steps are delineated as eu  ∈ ℝD  and ev ∈ ℝD , 

respectively. The overarching endeavour is to deduce the 

latent factors ui and vj for users and items, predicated upon the 

extant variables R, U, V, Xu, and Xv, with the terminal 

objective being the prediction of hitherto uncharted ratings, R*. 

 

3.2 Feature extraction and node embedding 

 

Traditionally, most model-based CF methodologies are 

dependent exclusively on user-item interactions for rating 

predictions. However, when certain techniques are employed 

to amalgamate user or item attribute data into rating prediction 

through linear regression, an observed limitation in accuracy 

emerges. In addressing this constraint, attribute information 

pertaining to both users and items is integrated into the feature 

learning process in the proposed model. This integration is 

surmised to enhance the precision in discerning latent factors 

germane to users and items. Subsequently, the ID and feature 

embeddings pertaining to users and items are amalgamated 

into two distinct embedding lookup tables. Utilizing the 

features of previously unobserved nodes, embeddings for such 

nodes are generated, a feat unattainable with conventional ID 

embedding. Furthermore, this method contributes to a 

reduction in the count of learnable parameters. 

 

3.2.1 Generative model 

In the pursuit of deriving robust user and item features, a 

dual modeling structure fortified with two supplementary 

VAEs is devised. This structure is primed to incorporate user 

profile and item content information, along with associated tag 

data. By this approach, the effective derivation of concealed 

user and item representations becomes feasible. The 

generative process espoused by the proposed model is 

analogical to the deep latent Gaussian model paradigm. Tag 

information for user profiles and item contents are symbolized 

by S ∈ ℝN×S and T ∈ ℝN×T respectively, being represented as 

binary matrices. The condition Sis = Tjt = 1 connotes the 

association of the s-th tag with user ui and the t-th tag with item 

vj. Conversely, Sis = Tjt = 0 denotes a void in association. For 

each user ui, a K-dimensional latent representation zu~N(0,𝕀K) 

is sampled from a standard Gaussian prior. Post this sampling, 

a conditional sample variable X~pθ(X|zu) is generated via a 

decoder, where θ represents the generative parameter. 

Depending on data type, pθ(X|zu) might originate from a 

multivariate Bernoulli distribution (binary data) or a Gaussian 

distribution (real-valued data). 

The latent representation zu~N(0, 𝕀𝐾 ) is drawn from a 

Gaussian prior distribution with an identity covariance matrix. 

The latent representation of user ui amalgamates the latent user 

offset with the latent user profile vector: ui = εi + zui. The 

methodology employed for generating item content mirrors 

that of the user profile. Thus, the latent representation of item 

vj is the fusion of the latent item offset and the latent item 

content vector: vj = εj + zvj. 

 

3.2.2 Inference model 

The inference framework encompasses an encoder network 

that bears resemblance to the generative model. Within this 

construct, the generative network prescribes the posterior 

distribution pθ(zu|X), which, due to its intractable nature, 

necessitates approximation during the inference phase for each 

user. By deploying the SGVB estimator, the posterior of the 

latent user profile variable zu can be effectively approximated 

through a tractable variational distribution qф(zu|X). The 

variational parameters are subsequently derived by optimizing 

the evidence lower bound (ELBO) objective: 

 

( ) ( )( )( )2( | ) ,u i ii
q z X N X diag X   =  (1) 

 

where, the mean and standard deviation of the approximate 

posterior are denoted as 𝜇𝜙 ∈ ℝK and 𝜎𝜙
2 ∈ ℝK , respectively.  

Outputs generated by the inference mode were identified as 

nonlinear functions of Xi and the variational parameter 𝜙. The 

representation zu ~ N(μi, diag(𝜎𝑖
2)) was elucidated in a manner 

aligned with the findings presented by Liang et al. [13]. 

Drawing on the work of Deng et al. [14], it is posited that the 

SGVB estimator holds potential for approximating the ELBO 

of Xi. 
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The term KL is understood to denote the Kullback-Leibler 

divergence. In this context, the parameter β∈ [0,1] has been 

identified as a pivotal component, employed to modulate the 

robustness of regularization, a strategy adopted to address the 

challenge of posterior collapse, as documented by Lee et al. 

[11]. It was also observed that εi,l adheres to the normal 

distribution N(0, 𝕀𝐾 ), and ⨀ is interpreted to symbolize the 

element-wise multiplication. Inferences related to items were 

drawn in a manner mirroring the inferences pertaining to users. 

Furthermore, the derivation of the ELBO for the item-oriented 

network was found to emulate established protocols. 
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3.2.3 Node embedding 

In the absence of supplementary features such as user 

profiles or item attributes, ID embeddings were traditionally 

employed. To augment the precision of rating predictions, the 

integration of attribute data pertaining to users and items into 

node embeddings was proposed, as such an approach was 

observed to enhance the inference of latent factors for users 

and items. Two embedding look-up tables, denoted as 

Eu={eu1,…, euM} and Ev={ev1,…, evN}, were utilized, providing 

an initial state for both user and item embeddings. 

 

3.3 Simplified GCN with dual attentive propagation 

 

Guided by the foundational principles presented in Light 

GCN, an innovative mechanism for the transmission of 

information was incorporated, with the primary objective 

being the capture of collaborative signals intricately woven 

within the graph structure. Such an endeavour was undertaken 

to fortify the quality and precision of user and item 

embeddings. 

 

3.3.1 First-order propagation 

As postulated by Wang et al. [23], an observable interaction 

between a user and an item often provides valuable insights 

into the user's predilection for said item. Furthermore, an 

engagement of a user with a particular item can be interpreted, 

not merely as an isolated event, but as an intrinsic attribute of 

that item. This attribute, in turn, can be instrumental in 

evaluating the shared collaborative inclinations between that 

item and others. During the embedding propagation phase, 

attention-driven mechanisms were deployed to determine the 

relevance of data exchanged across a consistent user and 

varying items. In the proposed model, a meticulous 

propagation of embedding was executed, predicated 

predominantly on the documented interactions between users 

and items. This structured propagation strategy encompassed 

three core procedures: the initial dissemination of information, 

the duality of attentive transmission, and the final synthesis of 

the amassed information. 

Information Propagation. The information transmitted 

from v to u is defined as follows for a connected user-item pair 

(u, v). 

 

( ) ( ),, ,IP , v
u v u v

u v

e
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where, function IP(∙) is delineated as the conduit for the 

propagation of information embeddings, and the role of 

function f is to facilitate the encoding of this information. The 

primary inputs to this function are represented by the 

embeddings, namely eu and ev. To modulate the decay factor 

of each propagation occurring on the edge (u, v), the parameter 

pu,v is introduced. This parameter essentially quantifies the 

historical influence items exert on user preferences. The set of 

items and users interacting with user u and item v are 

symbolized by ℕu and ℕv, respectively. These denote the first-

hop neighbors for both u and v. Intriguingly, pu,v is 

conceptualized as the square root of the graph Laplacian 

norm(|ℕ𝑢||ℕ𝑣|)−1/2, offering further insights into the extent 

of the influence of historical items on user inclinations. In the 

pursuit of amplifying both performance and representational 

capability, the distinction of NGCF lies in its opting for an 

identity matrix over a feature transformation matrix during the 

information aggregation phase. Such an approach has been 

observed to enhance recommendation performance. 

 

Dual Attentive Propagation. Deficiencies in user-item 

interaction signals are noted to impact the precision of the CF 

task, as underscored by Shi et al. [29]. Given such challenges, 

a dual attentive network, geared towards assimilating both user 

and item attentions, has been integrated to enhance the 

acquisition of their embeddings. The embeddings within this 

network are iteratively updated based on calculated attentions 

corresponding to diverse items. Subsequent to this, predictions 

are formulated by amalgamating the embeddings 

corresponding to self-connection information with those 

linked to interactive data. 

Upon procuring the node embeddings, attention 

mechanisms are deployed to discern a user's inclination 

towards an assortment of items, with subsequent updates 

applied to the embeddings. The ensuing step involves a fusion 

of the self-connection message embedding with the interactive 

message embedding to proffer the concluding prediction. In 

this study, the dual attention mechanism is articulated through 

the subsequent equations: 
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where, Hj denotes the concealed representation procured from 

the dense, low-dimensional embedding associated with item 

vj ∈ |V|. The LeakyReLU function has been enlisted to bolster 

the nonlinear potential of the attention model, complemented 

by the designated hyper-parameters Wa ∈ ℝK×K and ba ∈ ℝK×1. 

Given a sequential labelling of items from 1 to N, the dense 

embedding vector corresponding to item vj is represented as evj. 

Diverging from traditional attention models which 

uniformly employ context vectors for each input, the adopted 

context vector in this methodology is identified as the 

embedding eu. The attention score ATj, indicative of the 

significance of vj for u, is discerned by harnessing the Softmax 

function. This assists in computing the normalized similarity 

between H1j and eu. The representation of the user, denoted as 

eu, is then derived by integrating the item embeddings, each 

weighed by their corresponding attention scores. Such a 

computational approach is designed to encapsulate both 

inherent traits of ui and the interactions noted between the user 

and the item. 
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Information Aggregation. During the aggregation phase, 

information from the neighborhoods of u is assimilated to 

refine its representation. The accuracy of predictions is 

purported to be augmented when information propagation and 

aggregation are undertaken using a straightforward weighted 

sum aggregator. Notably, there is no reliance on feature 

transformation or nonlinear activation functions in this context 

[17]. The corresponding aggregation functions are depicted as:
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In the presented Eq. (9), the representations of user u and 

item v, symbolized by eu
(1) and ev

(1), are procured by 

channelling information from interconnected users and items 

during the foundational embedding propagation stages. The 

representations at the 0-th layer for the user and item are 

depicted as eu
(0) and ev

(0) respectively. As highlighted by He et 

al. [18], superior outcomes can be achieved through the 

application of the square root of the symmetric graph 

Laplacian normalization in contrast to other norms. This 

method also serves to circumvent any escalation in the 

embedding scale attributable to graph convolution operations. 

Within the model described, the aggregation functions 

solely take into account direct connections of users and items, 

deliberately overlooking their self-connection. It is posited 

that layer combination operations can fulfil the roles typically 

ascribed to self-connections. Such an approach presents a 

deviation from a majority of extant graph convolution 

operations [17, 23] that encompass extended neighbors and 

acknowledge self-connections. Upon the culmination of the K-

th embedding propagation layers, the final representations for 

users and items are synthesized by amalgamating the 

embeddings discerned at each successive layer, as illustrated: 
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where, ξk stands as a modifiable hyper-parameter reflecting the 

importance of the embedding in the k-th layer for the synthesis 

of the concluding embedding. Disparate embedding layers are 

understood to encapsulate varied representations. For instance, 

the foundational layer is tailored for fostering unimpeded 

interactions between users and items. Subsequent layers 

accentuate the congruity between users and items exhibiting 

shared interactions. Elevated layers, in contrast, are adept at 

capturing higher-order proximities. Such a conglomerate 

approach ensures a more encompassing final representation. 

The infusion of the attention mechanism into the embedding 

propagation is believed to amplify the dynamics of user-item 

interactions. 

 

3.3.2 High-order propagation 

Upon completion of the primary information propagation, 

representations of both users and items are ascertained. To 

further delve into higher-order interactions between users and 

items, supplementary layers of embedding propagation are 

introduced. It is posited that these interactions are instrumental 

in encapsulating collaborative signals and discerning the 

affiliations between users and items. By invoking multiple 

layers of embedding propagation, both users and items stand 

to assimilate information conveyed by their neighbors within 

a defined range of hops. Within the model, the recursion 

formulas are employed to determine the representations of the 

user and item at the l-th iteration. 
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By iteratively implementing multiple layers of embedding 

propagation, the user and item representations, delineated as 

eu
(l−1) and ev

(l−1) from the (l-1)-th propagation phase, are 

believed to inculcate collaborative signals from their 

respective (l-1)-hop neighbors. Such an integration is 

purported to augment representation learning and thereby 

bolster performance. 

 

3.3.3 Propagation in matrix form 

To facilitate the execution of HAGCN, the matrix 

formulation is introduced. Let E(0) ∈ ℝ(𝑀+N)×dl  stand as the 

embedding matrix at the initial layer, and let dl < min(M,N) 

represent the size of the embedding. The corresponding matrix 

form is delineated as: 
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where, 𝔸 serves to represent the adjacency matrix pertaining 

to the user-item graph. Furthermore, the diagonal degree 

matrix D encapsulates the count of non-zero elements present 

within each row of the matrix 𝔸. The parameter ξk is posited 

to demarcate the significance of the embedding at the k-th 

layer within the holistic embedding. 

 

3.4 Prediction and optimization 

 

Upon the culmination of the attentive embedding 

propagation, a series of user representations is acquired from 

multiple layers. These representations underscore the nuances 

of information propagation through distinct connections. 

These sets of user representations, represented as {eu
(1), 

eu
(2), … , eu

(l)}, signify varied importances concerning user 

preferences. The eventual user embeddings are formulated by 

collating eu
(1), eu

(2), … , eu
(l). Analogously, the item 

representations are derived by amalgamating the item 

representations ev
(1), ev

(2), … , ev
(l) amassed across diverse 

layers. The ultimate representation for both users and items is 

established as: 
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where, ⨂  symbolizes a concatenation operation, absent of 

learning any ancillary parameters. Such an operation has been 

demonstrated as efficacious in GCN [22]. Through the 

deployment of concatenation operations, initial embeddings 

are enhanced via attentive embedding propagation, with the 

propagation breadth modulated by the parameter l. The focal 

point remains on embedding learning, with a fundamental 

inner product interaction function utilized for deriving the 

ranking score for recommendations. This implies that the 

preference of a user for a specific item is evaluated through 

1887



 

R*=𝑒𝑢
∗ T𝑒𝑢

∗ . Future investigations are poised to delve into more 

sophisticated mechanisms, encompassing VAE-based 

interaction functions. 

Following the prediction of ratings, optimization of the loss 

functions is conducted to achieve optimal performance. 

Typically, these loss functions encompass both the feature 

reconstructing error and the rating prediction error. Training 

of parameters in HAGCN is confined to the embeddings of the 

initial layer, making its complexity comparable to that of the 

standard MF. Therefore, the pairwise BPR loss is adopted as 

the principal loss function for HAGCN, in line with findings 

by He et al. [18]. This loss function accounts for the relative 

order of both observed and unobserved user-item interactions. 

Notably, the pairwise BPR loss tends to favour predictions of 

observed interactions with elevated values in comparison to 

their unobserved counterparts. The formulation of HAGCN's 

loss function is delineated as: 
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In Eq. (15), Ψ+ signifies the set of observed interactions, 

while Ψ- denotes the set of unobserved instances. The sigmoid 

function is represented as σ(·). All trainable parameters within 

the 0-th layer are encapsulated by E(0), with λL2 being 

employed to modulate the intensity of L2 regularization, 

thereby mitigating overfitting. 

Drawing parallels with SGCN and Light GCN, a minimal 

increase in parameters is observed in the model to facilitate the 

modelling of high-order connectivity. Given that HAGCN's 

propagation layers encompass a limited number of parameters, 

and that the size of the parameters matrix is defined by dl×dl−1 

(where dl represents the embedding size and dl <min(M, N)), 

the model's size is approximated as 2C×dl×dl−1. Herein, C 

typically remains a minor integer, seldom surpassing four, as 

these embedding matrices are derived from the underlying 

user-item graph structure and corresponding weight matrices. 

 

 

4. EXPERIMENTS AND DISCUSSIONS 

 

4.1 Experimental settings 

 

4.1.1 Datasets 

The proposed method was assessed using datasets sourced 

from GroupLens, Yelp, Epinions, and Amazon. An overview 

of the characteristics of these datasets is presented in Table 2. 

 

 

Table 2. Statistics of real-world datasets 

 
Dataset Users Items Ratings Sparsity User Features Item Features 

ML1M 6,040 3,706 1,000,209 95.53% Demographics Genres 

Yelp 31,668 38,048 1,561,406 99.87% Social relations Categories 

Epinions 49,289 139,738 664,823 99.99% Trust relations Topics 

Douban 278,297 21,359 1,048,576 99.98% Topics Genres 

The MovieLens-1M dataset (ML1M), supplied by 

GroupLens, has traditionally been utilised for evaluating 

recommendation algorithms. This dataset encompasses 6,040 

users, 3,706 films, and over 1,000,209 ratings, with each user 

having provided ratings for at least 20 movies. Ratings span a 

range of 1 to 5. For the purpose of assessing learning 

performance based on implicit feedback, ML1M was 

transformed into implicit data. Collaborative information was 

inferred from user attributes such as age, occupation, and 

gender, whereas auxiliary item information was derived from 

movie genres. 

Data from Yelp in 2018 incorporated customer feedback, 

tied to a 1 to 5 rating scale. To structure a user-item matrix, a 

binary conversion was employed using a threshold of 3. 

Retained reviews were limited to English language content 

and were exclusively restaurant-related. Sparsity reduction 

measures entailed excluding users with fewer than 5 reviews 

and establishments rated by fewer than 30 users. Duplicate 

ratings were unified by their earliest time-stamp. The refined 

dataset comprised 25,815 users, 25,677 businesses, and 

totalled 730,791 ratings. 

The dataset from Epinions.com, a notable consumer opinion 

platform, permits users to convey feedback, appraise diverse 

items (ranging from literature and music to gadgets), and share 

experiences and expertise with their counterparts. Within this 

platform, the establishment of trust boundaries by users 

facilitates the formation of distinct communities. Within these 

communities, reviews and ratings, as provided by the users, 

have been repeatedly evidenced to hold significant value. The 

dataset is characterized by its notable sparsity, encompassing 

49,289 users, 139,738 items, 664,823 ratings, and 487,183 

trust connections. The attributes of this dataset comprise trust 

relationships between users and the topics of the items 

reviewed. 

Data sourced from Douban, a renowned online platform, in 

2019, incorporates over 140,000 films, 70,000 performers, 

600,000 users, 4.16 million movie ratings, and 4.42 million 

film reviews. Among all datasets, Douban exhibits the highest 

level of sparsity. It is observed that a significant portion of 

users and movies have fewer than 6 interactions. In the pursuit 

of ensuring comprehensive user feedback on movies, entities 

and users with fewer than 10 interactions were excluded from 

the dataset. The refined dataset encapsulates 278,297 users, 

21,359 items, and 1,048,576 ratings. 

For the empirical evaluation, each dataset was bifurcated: 

the training set, comprising a random selection of 80% of user 

ratings, and the test set, reserved with the remaining 20%. 

 

4.1.2 Baselines and evaluation metrics 

For the purpose of assessing the model under discussion, a 

selection of five CF models was chosen as benchmarks. 

• ANCF [6] represents an attribute-driven model. Through 

the deployment of an attention mechanism, this model 

discerns the significance levels of attribute data and 

subsequently assimilates attributes during feature 

acquisition, aiming for a holistic feature representation. 

• NGCF [23] stands as a refined GCN model amalgamating 

NCF with graph convolutional networks. This 

combination is devised to capture intricate relationships 

inherent in user-item interactions, thereby enhancing 
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recommendation precision. 

• KGAT [25], an avant-garde model, amalgamates graph 

convolutional networks, knowledge graph embeddings, 

and attention mechanisms, all of which synergise to refine 

recommendation accuracy. 

• LRGCCF [27] presents itself as an evolved GCN method. 

Characteristically, it eschews non-linearity and infuses a 

residual network structure, an innovation targeting the 

mitigation of over-smoothing issues during graph 

convolution aggregation. 

• Light GCN [18], evolved from the NGCF model, 

leverages both linear and attentive embedding 

propagation, devised to judiciously diffuse embeddings 

from adjacent nodes. 

For the quantification of the model's efficacy, a set of four 

established evaluation metrics tailored for social 

recommendation were employed: mean absolute error (MAE), 

root mean square error (RMSE), Recall, and normalized 

discounted cumulative gain (NDCG). While MAE and RMSE 

are harnessed to gauge prediction accuracy, Recall@20 and 

NDCG@20 serve as tools to assess the performance of top-tier 

recommendations. 

 

4.1.3 Parameter settings 

Within the training dataset, for every positive instance, four 

negative instances were sampled. An embedding size of 64 

was established, and the Xavier method was applied for the 

initialization of embedding parameters across all 

methodologies. Parameters for the proposed model were 

initialized by drawing samples from a Gaussian distribution 

characterized by a mean of 0 and a standard deviation of 0.01. 

HAGCN's optimization was undertaken employing a mini-

batch Adam method, akin to the approach delineated by He et 

al. [18]. A learning rate of 0.001 was fixed, with a default mini-

batch size determined at 1024. During feature extraction 

endeavors, K was fixed at 128. The AVAE comprises two 

latent layers equipped with LeakyReLU activation, both 

functioning as generative networks. Adjustments were made 

for the dropout ratio and the parameter β within the confines 

of {0, 0.2, 0.4, 0.6, 0.8, 1.0} and {0.2, 0.4, 0.6, 0.8, 1.0} 

respectively. With β fixed at 0.2, the most commendable 

performance by AVAEs was noted. In the span of the 

simplified GCN with attentive propagation, the L2 

regularization coefficient was investigated within the 

spectrum of {10−5, 10−4, 10−3, 10−2, 10−1}. Concurrently, the 

layer combination coefficient was designated as (1+κ)-1. Here, 

κ, symbolizing the number of layers, underwent testing in the 

interval [1, 4]. Optimal results across all datasets were 

achieved when κ was equated to 3. 

 

4.2 Experimental results and discussions 

 

4.2.1 Overall performance 

Table 3 presents the performance evaluations of HAGCN 

and five other methods on all datasets, comparing rating 

prediction and top-ranking based on MAE/RMSE. 

Additionally, Table 4 displays the results for Recall@20 and 

NDCG@20.  

The comparison of rating prediction performance on MAE 

and RMSE with all methods is presented in Table 3, 

emphasizing the highest scores achieved by each method. The 

exceptional effectiveness of the proposed HAGCN is evident 

as it consistently outperforms other methods on MAE and 

RMSE for all datasets, validating its remarkable efficacy 

achieved through a straightforward yet logical design. 

Comparing to Light GCN and other GCN models, our model 

consistently achieves promising performance by leveraging 

attributes boosting based on variational graph framework. 

Light GCN outperforms LRGCCF, KGAT, and NGCF among 

the GCN-based baselines. The performance of KGAT is 

comparable to that of NGCF, but it barely outperforms NGCF. 

The performance comparison of all methods on Recall@20 

and NDCG@20 is shown in Table 4. The superiority of 

HAGCN over the other five baselines is apparent, with recall 

rates ranging from 2.23% to 7.33% and NDCG rates ranging 

from 2.22% to 7.53% across all datasets. Additionally, 

HAGCN considerably outshines ANCF by at least 7.84%, 

which indicates the GCN structure can facilitate capturing 

collaborative signals for CF task. 

 

Table 3. Performance comparison among all methods on MAE and RMSE 

 
Dataset Metrics ANCF NGCF KGAT LRGCCF LightGCN HAGCN 

ML1M 
MAE 0.8725 0.8141 0.8043 0.7812 0.7431 0.6874 

RMSE 0.9807 0.9126 0.9011 0.875 0.8316 0.7681 

Yelp 
MAE 0.9171 0.8562 0.8505 0.8101 0.7709 0.7232 

RMSE 1.167 1.0889 1.0813 1.0294 0.9644 0.9151 

Epinions 
MAE 1.0012 0.9554 0.9528 0.8912 0.8512 0.8193 

RMSE 1.1398 1.0881 1.0855 1.0149 0.9691 0.9325 

Douban 
MAE 0.5749 0.5634 0.5672 0.5561 0.5457 0.5298 

RMSE 0.7663 0.7508 0.7557 0.7413 0.7266 0.7051 

 

Table 4. Performance comparison among all methods on Recall@20 and NDCG@20 

 
Dataset Metrics ANCF NGCF KGAT LRGCCF LightGCN HAGCN 

ML1M 
Recall@20 0.2316 0.2514 0.2475 0.2552 0.2601 0.2696 

NDCG@20 0.2079 0.2407 0.2376 0.2517 0.2560 0.2623 

Yelp 
Recall@20 0.0551 0.0563 0.0572 0.0585 0.0614 0.0659 

NDCG@20 0.0812 0.0829 0.0843 0.0861 0.0903 0.0971 

Epinions 
Recall@20 0.6863 0.7110 0.7004 0.7333 0.7535 0.7703 

NDCG@20 0.7261 0.7526 0.7539 0.7896 0.8111 0.8291 

Douban 
Recall@20 0.0703 0.0698 0.0757 0.0820 0.0703 0.0875 

NDCG@20 0.0817 0.0852 0.0845 0.0921 0.0998 0.1061 
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Table 5. The performance comparison in cold-start scenarios on Recall@20 

 
Dataset Scenario ANCF KGAT LRGCCF HAGCN 

ML1M 
Cold-U 0.1623 0.1656 0.1888 0.2068 

Cold-V 0.1725 0.1745 0.1919 0.2101 

Yelp 
Cold-U 0.0341 0.0344 0.0385 0.0435 

Cold-V 0.0376 0.0389 0.0414 0.0468 

Epinions 
Cold-U 0.3992 0.4068 0.4471 0.4809 

Cold-V 0.4374 0.4438 0.4816 0.5223 

Douban 
Cold-U 0.0420 0.0434 0.0502 0.0551 

Cold-V 0.0433 0.0446 0.0512 0.0562 

 

Table 6. The performance comparison in cold-start scenarios on NDCG@20 

 
Dataset Scenario ANCF KGAT LRGCCF HAGCN 

ML1M 
Cold-U 0.1965 0.2017 0.2225 0.2405 

Cold-V 0.2052 0.2110 0.2346 0.2543 

Yelp 
Cold-U 0.0287 0.0302 0.0322 0.0333 

Cold-V 0.0321 0.0336 0.0364 0.0378 

Epinions 
Cold-U 0.4929 0.4951 0.5442 0.5790 

Cold-V 0.5389 0.5430 0.5945 0.6329 

Douban 
Cold-U 0.0500 0.0513 0.0605 0.0688 

Cold-V 0.0517 0.0525 0.0627 0.0722 

 

Referring to Tables 3 and 4, it becomes evident that most 

GCN-based methodologies consistently surpass ANCF. This 

highlights the intrinsic ability of GCNs to derive enhanced 

latent user and item representations. Further examination 

reveals that simplified GCN models, notably HAGCN and 

Light GCN, excel in comparison to conventional GCNs across 

all metrics and datasets. Such findings suggest that by 

simplifying graph convolution and layer combinations within 

GCNs, model complexity is reduced, which in turn mitigates 

the risk of overfitting during graph-based learning. This 

enhances both the performance and scalability of social 

recommendation systems. HAGCN, being rooted in a 

streamlined GCN structure, consistently surpasses the other 

five cutting-edge baselines across all the metrics on every 

dataset, underscoring the potency of its hybrid attributive 

framework. 

 

4.2.2 Performance in cold-start scenarios 

To rigorously evaluate the performance under diverse cold-

start conditions, test sets were curated with varying 

proportions of cold data. By randomly selecting 30% of the 

samples from the test datasets to represent 30% cold users, 

each sample was accorded a distinct user id exclusive to that 

instance. Evaluation was conducted under scenarios wherein 

30% of users (Cold-U) and 30% of items (Cold-V) were novel, 

spanning all datasets. Metrics of evaluation employed were 

Recall@20 and NDCG@20. In juxtaposition, Light GCN and 

NGCF, which are primarily contingent on feedback data and 

devoid of attribute information, were observed to be less adept 

at navigating cold-start contexts (Tables 5 and 6). 

For users experiencing cold-start scenarios, where 

interaction data are notably sparse, it has been found that 

harnessing auxiliary social connections within HAGCN can 

potentially discern latent preferences. Similarly, when 

addressing cold-start items with limited user interactions, the 

HAGCN mechanism is shown to capitalize on supplementary 

attribute data, refining similarity computations for CF tasks. 

Through this approach, embedding learning based on 

Bayesian inference is harnessed, suggesting that cold-start 

embeddings benefit from the statistical correlations between 

users and items. 

 

4.2.3 Analysis of layer combination 

Experiments were conducted to probe the potential 

advantages of integrating multiple embedding propagation 

layers within HAGCN. The objective was to gauge the impact 

of varying layer counts, spanning a range of 1 to 4 layers, 

across all datasets. For the clarity of representation, only 

Recall and NDCG were selected as evaluative metrics, and the 

corresponding findings are depicted in Figure 2. 

With an increase in the number of layers, a gradual 

enhancement in the performance of HAGCN is observed. 

Optimal outcomes on metrics such as Recall and NDCG across 

all datasets are noted when the layer number is three. These 

significant improvements can be attributed to the proficient 

encapsulation of the CF effect, whereby the second-order 

connectivities inherently grasp the collaborative user 

similarity and the third-order connectivities capture the 

collaborative signals. 

Upon extending to four layers, the performance on the 

ML1M and Yelp datasets consistently showed an upward 

trend. However, a marginal overfitting is noticed on the 

Epinions dataset and a pronounced decline in performance on 

the Douban datasets. Such performance fluctuations might be 

traced back to the potential introduction of noise as the 

network architecture deepens during graph representation 

learning. The nuanced gains on ML1M and Yelp datasets 

suggest that the impact of a four-layer propagation essentially 

mirrors that of a three-layer propagation, deemed adequate for 

encapsulating CF signals. This three-layer combination was 

identified to be as effective in counteracting over-smoothing 

as seen in the PPNP model by Gasteige et al. [26]. The layer 

combination coefficient for HAGCN was set in a manner akin 

to Light GCN, being designated as (1+κ)-1. This raises the 

possibility that further enhancements in performance might be 

unlocked by fine-tuning the parameter (1+κ)-1. 
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Figure 2. Performance comparison of HAGCN with different layers on four datasets 

 

 

5. CONCLUSION 

 

In the study presented, a hybrid attributive neural graph 

structure was introduced for enhanced social recommendation. 

Dual AVAEs structure was employed for feature extraction, 

adeptly capturing attribute details from both users and items. 

Through this method, linear and non-linear latent 

representations of users and items for feature embedding were 

derived. Initial embeddings were inferred from shared 

distributions anchored on Bayesian inference, allowing cold-

start embeddings to derive benefit from statistical strength 

among users and items. 

A simplified GCN, embedded with attentive feature 

propagation across layers, was integrated to ascertain a 

profound high-order connectivity, unveiling explicit 

collaborative signals within the interaction graph. By 

amalgamating user and item attribute data into latent factors 

via a deep neural graph network, data sparsity challenges were 

addressed, and enhanced user and item representation was 

achieved. Attention was given to refining the embeddings of 

users and items, by including a layer of attentive embedding 

propagation that amalgamates the embeddings of interactive 

users and items. Multiple embedding propagation layers, 

layered with weighted sum, were further augmented to harness 

collaborative indications in advanced connectivity. This 

provision was invaluable in ameliorating over-smoothing. 

As a result, HAGCN was postulated to effectively tackle the 

cold-start problem and augment the learning of user and item 

latent factors. This was achieved by synergising the intrinsic 

Bayesian probabilistic perspective evident in VAE and GCN. 

Experimental results validated the superiority of HAGCN over 

contemporaneous methods such as NGCF, KGAT, LRGCCF, 

and Light GCN. An improvement of at least 2.9% on 

MAE/RMSE for rating prediction performance was observed, 

while top-ranking performance witnessed an upliftment of at 

least 2.2% on Recall/NDCG. The efficacy of HAGCN in 

addressing challenges in cold-start scenarios, particularly 

those bereft of preliminary data, was further corroborated 

through extensive experimentation. 

Given the mounting inclination towards graph-based 

models in social recommendations, harnessing supplementary 

data from social commerce or media platforms has emerged as 

a novel trajectory. Yet, extant GCN models grapple with 

complexities in their GCN design. Prospective efforts will 

pivot on probing into the simplified graph convolutional layers 

within these GCNs to amplify recommendation outputs. The 

focus might shift towards harnessing limited rather than 

infinite message passing and reducing regularization for 

expedited training. Emphasis will also be placed on refining 

the variational graph architecture to deduce users/items 

embeddings from attribute distributions via Bayesian 

inference, coupled with the application of VAE-based 

interaction functions for reconstructing elusive preference 

embeddings. 
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