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The detection and identification of cancerous tissue is currently a time-consuming and 

challenging process. The segmentation of liver lesions from cancer CT images can aid in 

treatment planning and clinical response monitoring. This study employs Residual U-Net, a 

powerful tool that has been adapted and applied for the segmentation of liver tumors, 

addressing the ongoing challenge in liver cancer diagnosis. Segmentation of liver lesions in 

CT images can be utilized to assess tumor burden, predict therapeutic outcomes, and monitor 

clinical response. In this research, the liver was extracted from the CT image using ResUNet, 

and the tumor was subsequently segmented using another ResUNet applied to the extracted 

Region of Interest (ROI). This approach effectively extracts features from Inception by 

combining residual and pre-trained weights. The deep learning system elucidates the 

underlying concept by highlighting the components contributing to the inner layer analysis 

and prediction, and by revealing a section of the decision-making process employed by pre-

trained deep neural networks. 
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1. INTRODUCTION

1.1 Liver anatomy 

The liver, a vital organ in the digestive system, comprises 

two lobes. Although it performs various functions, its primary 

role is to process the nutrients absorbed by the small intestine. 

Additionally, the liver produces bile juice, which it delivers to 

the small intestine, facilitating the breakdown of fats. The 

body leverages the raw materials ingested by the gut, enabling 

the liver to synthesize essential chemicals for its operation and 

to remove hazardous substances from the body [1]. Figure 1 

shows the anatomy of the liver. 

Figure 1. Anatomy of the liver 

1.2 Liver tumors and stages 

Statistics reveal that liver cancer ranks as the second most 

lethal disease in men and the sixth most prevalent cancer in 

women. Approximately 750,000 individuals were diagnosed 

with liver cancer in 2008, and of those, 696,000 succumbed to 

the disease. Globally, male infection rates are double those of 

females. The highest incidence rates are observed in East and 

South-East Asia, and Middle and Western Africa. While the 

prevalence of this disease is widespread, there is a notable 

increase in the United States and Central Europe. This rise may 

be attributed to obesity, the spread of the Hepatitis C virus 

(HCV), and the increasing incidence of liver cancer [2]. 

Figures 2-5 illustrate the various stages of liver tumors, along 

with the corresponding diagnosis and treatment procedures 

required for each stage [3]. 

Figure 2. Stage 1A of liver tumors 

1.3 Computed tomography CT 

Diagnostic methodologies have significantly evolved since 

the introduction of computer tomography (CT) in the 1970s. 

CT scanning has improved the detection of cancer, facilitated 

surgical procedures, enhanced radiation therapy, and advanced 

the monitoring of cardiac conditions, thereby eliminating the 

need for exploratory surgeries [4]. 

Unlike traditional x-ray machines which utilize a fixed x-

ray tube, CT scanners employ a motorized x-ray source 

encircled by a gantry. The x-ray tube rotates around the patient 

while they lay on a bed that moves through the gantry. With 

the transition from film-based to digital x-ray detectors, CT 
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scanners can process the data to create a 2D image slice of the 

patient using the information gathered from one rotation. 

Moreover, the computer can generate a 3D representation of 

the patient by rotating the model in space and examining the 

slices sequentially. This 3D image displays all the scanned 

organs, aiding medical professionals in pinpointing the exact 

location of the problem [5]. 

Figure 3. Stages 2A & 2B of liver tumors 

Figure 4. Stages 3A & 3B of liver tumors 

1.4 Current state of liver tumor segmentation 

Liver CT scans are commonly evaluated through manual or 

semi-manual methods. However, these approaches are often 

subjective, costly, time-consuming, and highly prone to errors. 

To address these challenges and enhance the accuracy of liver 

tumor diagnosis, several computer-aided methods have been 

developed. Yet, due to a range of issues such as minimal color 

contrast between the liver and lesions, proximity of other 

organs to the liver and tumors, varying contrast levels within 

tumors, variability in the number and size of tumors, tissue 

abnormalities, and irregular tumor growth in response to drug 

treatments, these systems have not been highly effective at 

segmenting the liver and lesions. Consequently, a novel 

approach is required to surmount these obstacles. 

Figure 5. Stages 4A & 4B of liver tumors 

1.5 Objective 

The primary objective is to segment the liver and identify 

the lesion therein. This can be accomplished through three 

steps: 

1. Augment the 3D-IRCADb01 Dataset.

2. Construct and train a ResUNet model to segment the

liver.

3. Construct and train a ResUNet model to segment the

tumors.

2. LITERATURE SURVEY

Bai et al. [6] proposed the Multi-scale Candidate Generation 

(MCG) for CT image-based liver tumor segmentation. To 

refine the detection of liver cancer cells, they employed a 3D 

fractal residual network and an active contour model. They 

performed segmentation tasks using the 3DIRCADb dataset, 

and the results, along with comparisons with related studies, 

demonstrate that their sophisticated system can achieve high 

segmentation efficiency. 

Das et al. [7] suggested a deep learning-based Watershed 

Transform and Gaussian Mixture Model (WT-GMM) for liver 

cancer detection. This strategy relies on the marker-controlled 

alteration of the watershed and the Gaussian mixture model for 

accurate detection. The proposed method was tested in a real-

time clinical setup using clinical data from a variety of patients. 

Their deep neural network classifier achieved an impressive 

accuracy of 99.38% with minimal validation loss, which is a 

significant advantage of this automated detection method. 

Chlebus et al. [8] discussed liver lesion detection using 2D 

Convolutional Deep Neural Networks followed by shape-
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based post-processing. They achieved an accuracy of 77% and 

state-of-the-art results on the LiTS challenge. A Random 

Forest classifier was trained on the features produced from the 

Convolutional Neural Network to filter False Positives, 

achieving an accuracy of 87%. 

Li et al. [9] minimized the use of a Gaussian smoothing 

filter to reduce noise in CT scans. The resulting images were 

then normalized and down-sampled to expedite training time. 

The pre-processed images were then provided to the CNNs. 

They created 5 CNNs with different patch sizes: 13×13, 15×15, 

17×17, 19×19. However, the 17×17 model outperformed all 

the other CNNs, thus proving to be the optimal choice. 

Ben-Cohen et al. [10] utilized Fully Convolutional 

Networks (FCNs) in liver segmentation and detection of 

metastases from Computed Tomography (CT) scans. They 

tested their model on a small dataset composed of 20 patients 

with a total of 68 lesions and 43 livers in one slice, along with 

20 different patients for 3D liver segmentation. After cross-

validation, they achieved promising results with a true positive 

rate of 0.86 and 0.6 false positives per patient. Following data 

augmentation, they trained two networks: one for liver 

segmentation, which isolated the liver from neighboring 

organs, and another for tumor and lesion segmentation, which 

operated on the output of the first network. 

Christ et al. [11] proposed a method to automatically 

segment the liver and lesions from both MRI and CT 

abdominal images using two cascaded Fully Convolutional 

neural Networks (CFCNs). One network was used for liver 

segmentation and the other for detecting lesions from the 

Region of Interest (ROI) resulting from the first CFCN. They 

used the models on a clinical dataset for DW-MRI, with 

clinical evaluation and MR imaging performed on 31 patients 

for the primary diagnosis of HCC. The cascaded U-Net 

achieved an 87% dice score for liver in MR-DWI and a mean 

dice score of 69.7% for lesions. 

Goryawala et al. [12] proposed a novel 3D-segmentation 

method combining a modified k-means algorithm with a 

localized contouring algorithm. This method identified five 

distinct regions in the CT images during the segmentation step. 

Combined with 3D-rendering, the method proved to be fast 

and accurate, achieving a mean accuracy of 98.27%. 

Milletari et al. [13] proposed a method for segmenting 

medical images that used Fully Convolutional Neural 

Networks (FCNNs). The FCN was trained end-to-end to 

process MRI volumes using volumetric convolutions instead 

of preprocessing the input volumes in a slice-wise manner. 

They proposed a novel objective function that maximizes the 

Dice coefficient, demonstrating accurate and fast results on 

prostate MRIs. 

Yuan [14] worked on road extraction from aerial images, a 

fundamental but challenging task in remote sensing due to 

noise in aerial images. Road extraction has various 

applications, such as unmanned vehicle navigation, map 

plotting, and updating geographical data. They developed a 

new model, ResUNet, after failing to achieve optimal results 

with the U-Net model. ResUNet combines the benefits of both 

the ResNet and U-Net models. It employs residual blocks with 

skip-connections instead of the conventional convolutions 

used by the standard U-Net, enabling faster training with less 

data. 

2.1 Research gaps 

The computational complexity of the task is estimated using 

the Gaussian Mixture Model, which requires less computation 

and fewer overall CT scans. The process could be further 

enhanced by incorporating 3D visualization of volumetric 

images in cancer detection. That is the main limitation of this 

type. Multi-scale Candidate Generation (MCG) cannot 

segment the cancer borders accurately because multiple 

adjacent tumors may merge into a single tumor region. These 

models primarily focused on cancer detection rather than 

accurately segmenting the tumor. 

2.2 Problem statement 

Generally, cancer detection involves the collection of organ 

tissue. However, the challenge is that when tissues are 

obtained through medical procedures, there's a risk of 

spreading cancer cells, which could worsen the condition. In 

this project, we aim to segment cancer cells based on CT scan 

images to minimize this risk. 

CT scans are invaluable not only for designing treatment 

plans but also for monitoring clinical outcomes. The 

computational complexity of the task is estimated using the 

Gaussian mixture model, which requires less computation and 

fewer overall CT scans. To address these issues and enhance 

the accuracy of liver cancer diagnoses, we utilize 

Convolutional Neural Networks (CNNs). These networks 

have demonstrated effective results in image classification and 

face recognition tasks. Deep learning is often a rapid and 

straightforward method for aligning pixels in an image. The 

type of features returned for pre-processed images dictates the 

precision required for the task, and the extracted images can 

therefore reflect the features of the original images [15]. 

Our main goal is to develop a liver segmentation model. We 

will then use the Region of Interest (ROI) from this model to 

identify the liver tumor. 

2.3 Deep learning models 

Deep learning, a subset of machine learning, draws 

inspiration from the biological nervous system, particularly 

the sections responsible for data processing and 

communication. Among many learning architectures in deep 

learning, deep neural networks are a significant component. 

These networks can be trained using various methods 

including supervised, semi-supervised, or unsupervised 

learning, depending on the task and available data. 

Deep learning is versatile and has been successfully applied 

to a wide range of tasks, including speech recognition, 

computer vision, natural language processing, and medical 

image analysis.The network models are: 

• Convolutional neural network

• U-Net

• ResNet

2.4 Convolutional neural network 

Convolutional Neural Networks (CNNs) are structured 

similarly to traditional neural networks, as they are composed 

of neurons. Each neuron processes a weighted sum of multiple 

inputs it receives, and this result is then passed through an 

activation function to produce an output. 

Like their counterparts, CNNs also utilize loss functions. 

However, unlike traditional neural networks that operate on 

vectors, CNNs operate on volumes. This is largely due to their 

unique architecture, which includes convolutional layers. 
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These convolutional layers comprise a collection of distinct 

filters that collectively process the input image. Each filter in 

the convolutional layer is responsible for extracting different 

features, making CNNs particularly effective for tasks 

involving image and pattern recognition. 

2.5 U-Net architecture 

The network architecture is shown in Figure 6. It consists of 

a contracting path and an expansive path and it consists of a 

total of 23 convolution layers [15, 16]. 

Every step in the Contracting Path shares a typical 

architecture of CNNs which consists of: 

Repeated two 3×3 convolutions; 

A Rectified Linear Unit (ReLU) refer to following every 

convolution. See figure for more details on ReLU; 

2×2 max pooling operation with a stride of 2. See figure for 

more details on ReLU; 

Down sampling where the number of feature channels is 

doubled Every Step in the Expansive Path consists of: 

Up sampling of the feature map; 

2×2 convolution which decrease the size of feature maps by 

half; 

Concatenation with the cropped feature map; 

Two 3×3 convolutions; 

ReLU activation function [16]. 

2.6 U-Net limitations 

While the U-Net model yielded impressive results on the 

liver segmentation images [17], it performed poorly on tumor 

segmentation, resulting in empty masks. After extensive 

research and testing, we discovered the Residual U-Net 

(ResUNet) model, which combines elements of both the U-

Net and ResNet models [18, 19]. Figure 7 shows the 

segmentation result of the U-Net model. 

Figure 6. Architecture of the U-Net CNN 

Figure 7. Random sample #1 

2.7 ResNet 

Figure 8. Residual block 

ResNet, a variation of traditional Artificial Neural Networks, 

introduces a small but significant change called Residual 

Blocks to the standard architecture. The core building blocks 

of ResNets, these Residual Blocks, leverage a crucial concept 

called Skip Connections. The main purpose of Skip 

Connections is to link a layer directly with a layer that is not 

its immediate successor [20, 21]. 

By bypassing a few layers during the initial stages of 

training, the network is simplified, which accelerates learning. 

This approach also mitigates the impact of the Vanishing 

Gradient problem, as there are fewer layers for the information 

to traverse. Residual blocks reuse the activation function from 

earlier layers to learn weights, and then adjust to amplify the 

skipped layer and dampen the upstream layer [22, 23]. While 

ResNets typically skip only one layer, the introduction of a 

weight matrix can enable skipping of more than one layer, 
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leading to a variation known as HighwayNets [24, 25]. The 

structure of a Residual block is illustrated in Figure 8. 

3. METHODOLOGY

3.1 Proposed model 

To identify the liver tumour in this study, deep learning 

algorithms will be used to a dataset. To segregate the liver and 

tumour, a fully convolutional neural network will be employed. 

Two ResUNets will be used: one to segment the liver and 

extract ROI, and the other to segment the tumour using the 

extracted ROI. The CT imaging dataset of patient given by 

IRCAD served as the training data for the learning models. 

Pre-processing has been used to divide the dataset into three 

smaller subsets: the training set, the validation set, and the 

testing set. The evaluation of the performance was done in 

terms of crucial metrics including Accuracy, Dice Coefficient, 

Confusion Matrix, and True Value Accuracy. Proposed 

workflow can be seen as in below Figure 9. Figure 10 

represents CT slice before and after HU windowing. Figure 9. Overview of proposed workflow 

Figure 10. CT slice before and after HU windowing 

Figure 11. CT slice 
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3.2 Steps involved 

Data Preprocessing 

We Used 3D- IRCADb01 dataset and for every slice, in 

order to differentiate the liver from nearby Organs, we had to 

preprocess each slice. 

Hounsfield Windowing 

Hounsfield Unit (HU) is the average of the attenuation 

values of a certain voxel compared to the attenuation value of 

distilled water at standard temperature and pressure where the 

HU of water is zero and air is -1000. It is encoded in 12 bits 

thus have 212 values which is 4096 ranging from -1024 HU to 

3071 HU table 3.1. It was named after the inventor of CT-

scanning Sir Godfrey Newbold Hounsfield, and it’s computed 

for any tissue as follows where µ is the linear attenuation 

coefficient: 

( )2

2

1000  tissue 

O

H O
HU

H

 



 −
=

Hisogram Equalization 

Histogram Equalization (HE) is a method that is used to 

enhance the contrast in photographs, particularly when it is 

concentrated in a small area and is not evenly distributed. 

Histogram To improve the contrast between the liver and 

figures of nearby organs, equalization was performed to the 

windowing image's output, then the image is normalized to 

ranges [0,1]. 

Figure 11 shows that before and after HU windowing & 

Histogram Equalization, the increase in contrast on the image 

on the right makes the tumors more visible and thus easier to 

segment. 

Data Augmentation 

We had to increase the dataset since our dataset had class 

imbalance issues because there were many more pixels 

without tumours than there were tumor-containing pixels. In 

order to increase training accuracy, prevent overfitting, and 

correct class imbalance, data augmentation is a technique that 

is often employed in various Deep Learning and Machine 

Learning applications. Data augmentation uses a variety of 

picture manipulation methods, including noise addition, 

rotation, cropping, and reflection. In this article, two methods 

were utilised to improve the data. 

Merging Liver Tumors 

Since the 3D-IRCADb01 

Dataset contains tumor masks for every tumor on its own, 

we needed to merge all the different masks into 1 mask to 

facilitate the training and Augmentation of data Figures 12-14. 

Figure 12. Mask for the first tumor 

Figure 13. Mask for second tumor 

Figure 14. Final mask for both tumors merged together 

Reflection 

We reflect every slice that contains a tumor along the y-axis 

along with both the liver mask and tumor mask in order to 

increase the number of infected slices Figures 15-17. 

Figure 15. Slice before & after reflection 
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Figure 16. Liver mask before & after reflection 

Figure 17. Tumor mask before & after reflection 

Figure 18. Slice before & after rotation 90◦ 
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Figure 19. Liver mask before & after rotation by 90◦ 

Figure 20. Tumor mask before and after rotation 

Rotation 

We rotate every slice that contains a tumor along with both 

the liver mask and tumor mask in order to increase the number 

of slices figures. 

ResUNet 

By replacing convolutional blocks in the traditional U-Net 

and ResNet models with residual ones, ResUNet combines the 

advantages of both models. The residual unit, which requires 

fewer training parameters, will make it simpler to train the 

CNN, skip connections between the low and high levels of the 

network, and prevent degradation during information 

propagation inside the residual unit. Figures 18, 19, 20 

represent slice, live mask, Tumor mask. Figure 21 represents 

ResUNet architecture. 

The ResUNet is composed of three paths. There are three 

possible routes: encoding, which reduces the input to a 

compact representation; decoding, which works in the 

opposite direction of encoding and categorizes the 

representation by pixel; and the bridge, which connects the 

two routes. Each route is built using Relative Units [26]. 

Liver Segmentation 

We use a CNN (ResUNet) for the sole purpose of Liver 

Segmentation. It is trained to recognise the Region of Interest 

using liver masks and CT scans (ROI) in order to segment the 

liver [27] and mask the neighboring like in Figures 22, 23. 

Tumor Segmentation 

At first we used a U-Net to segment the tumors in the liver 

but got bad results so we tried using the ResUNet to segment 

the tumors. After removing the ROI from the initial CNN and 

the tumors' masks, it is trained on liver CT scans [26]. 

Examples in Figures 24-25. 
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Figure 21. ResUNet architecture 

Figure 22. Liver Segmentation example 
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Figure 23. Liver segmentation without liver 

Figure 24. Tumor segmentation example 

Figure 25. Liver has no tumor 
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4. RESULTS

4.1 Dataset 

The datasets used in this research is 3D-IRCADb01 dataset 

made up of 3D CT scans of 10 men and 10 women, with liver 

tumours present in 75% of the cases, is made available to the 

public by the IRCAD Research Institute to fight stomach 

cancer. Each of the approximately 2,800 2D slices in the 3D 

CT scans, which are in the DICOM format, contains a mask 

for the liver, tumours, bones, arteries, kidneys, and lungs. 

Accuracy 

=
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Confusion Matrix 

It calculates true positives, true negatives, false positives 

and false negatives then draws a heat-map of the results. 

4.2 Evaluation parameters 

In this research, we evaluate the performance of each of the 

learning models in terms of Accuracy, Dice coefficient, 

Confusion Matrix, True Value Accuracy. 

Accuracy 

Accuracy calculate how many pixels are classified correctly 

without any regard to the class, which is not a very good metric 

as the true negatives value will always be dominating by far 

and will always get 95%. 

Dice Coefficient 

It calculates the overlap between the classes of the input A 

and predicted label B and is calculated as follows [28, 29]. 

Dice = 
 2× |(𝐴 ∩ 𝐵)|

|𝐴| + |𝐵|

True Value Accuracy 

It calculates the accuracy of segmentation for tumors and 

the liver and is calculated as follows: 

True value Accuracy =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
×100 

Computed tomography liver segmentation, formation, and 

segmentation of liver tumours Active contour classification 

models [28], Multiscale tumour candidates, and tumour 

candidates. For segmenting liver tumours, we suggested a 

number of machine learning techniques. Many CNNs have 

been constructed for the segmentation of the liver and lesions 

application. For instance, the dataset for lesion identification 

is much less than the one for liver segmentation. Only manual 

2D segmentation is possible for this data collection. Important 

to train essential invariants and effective network features 

when there are limited training samples available. We assess 

the effectiveness of our models using measures including 

accuracy, confusion matrix, Dice coefficient, and true value 

accuracy. 

After using the ResUNet model to segment the Liver we got 

the following results. 

Table 1. Dice coefficient results 

Tumor Training Progress 

Epoch Dice Coef Valid Dice Coef 

1 0.6377 0.2120 

2 0.7155 0.7280 

4 0.7572 0.7630 

6 0.7749 0.5741 

8 0.7886 0.8228 

10 0.7897 0.7365 

15 0.8131 0.8191 

20 0.8268 0.8315 

25 0.8437 0.8500 

30 0.8523 0.8523 

35 

40 

50 

0.8607 

0.8683 

0.8838 

0.7745 

0.7751 

0.8815 

Table 1 explains Dice coefficient results for the ResUNet 

model for Liver Segmentation's training and validation data. 

Here are the findings from our evaluation of a random 

sample of the validation data using the model. 

Figures 26-27 show on the first random slice in figure. 

White pixels have livers, but black pixels don't, as seen by the 

true label on the left and the anticipated label on the right. 

An accuracy of 99.4% and a true value accuracy of 98.1% 

were attained by one of the random samples (fig). Figure 27 

shows the anticipated liver and Figure 28 shows the Confusion 

Matrix. 

Figure 26. CT slice of the first random sample before liver 

segmentation 
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Figure 27. Result of liver segmentation 

Figure 28. Confusion matrix 

Figure 28 says Confusion Matrix following liver 

segmentation from the expected value of the first slice in the 

figure: 

·A different random sample (fig) had an accuracy of 99.6%

and a true value accuracy of 97.6%. 

·We can see the predicted liver in Figure 29 and the

Confusion Matrix in Figure 28. 

The ResUNet showed some limitations as it failed to 

diagnose very small tumors. 

One of the failing samples achieved an Accuracy of 99.95% 

and a True Value Accuracy of 0%. We can see the failure in 

Figure 30 and the Confusion Matrix in Figure 31. 

Result of tumor segmentation on slice in Figure 32. 

True label White pixels represent tumours on the left and 

right, while black pixels represent tumor-free pixels. 

It is obvious that the tumor was not predicted by the model 

at all and also some tumors have less true value accuracy. 

Figure 29. Random example of a CT slice before to liver 

segmentation 

Figure 30. Result of liver segmentation 

Figure 31. Confusion matrix 

Figure 32. Result of tumor segmentation 

Figure 33. A sample CT slice with the liver mask 
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Figure 34. Confusion matrix 

Figures 33 and 34 represents sample CT slice with the liver 

mask and Confusion matrix respectively. 

5. CONCLUSIONS AND FUTURE SCOPE

In this work, the liver and liver tumours were automatically 

segmented pixel-by-pixel from CT images using the ResUNet 

model. We were successful in attaining our goals, as shown by 

the data, and CNNs are among the best techniques for 

segmenting liver cancers. They should be studied on cancer 

types other liver tumours, and ResUNet shown excellent 

promise. 

There are several restrictions notwithstanding the 

ResUNet's highly encouraging outcomes. We might be able to 

overcome these limitations by training for further epochs, 

using more data, alternate datasets, or different preprocessing 

techniques. 
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