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Introduction: Artificial Intelligence (AI) is widely used in medical studies to interpret 

imaging data and improve the efficiency of healthcare professionals. Nonalcoholic fatty 

liver disease (NAFLD) is a common liver abnormality associated with an increased risk of 

hepatic cirrhosis, hepatocellular carcinoma, and cardiovascular morbidity and mortality. 

This study explores the use of AI for automated detection of hepatic steatosis in ultrasound 

images. Background: Ultrasound is a non-invasive, cost-effective, and widely available 

method for hepatic steatosis screening. However, its accuracy depends on the operator's 

expertise, necessitating automated methods to enhance diagnostic accuracy. AI, particularly 

Convolutional Neural Network (CNN) models, can provide accurate and efficient analysis 

of ultrasound images, enabling automated detection, improving diagnostic accuracy, and 

facilitating real-time analysis. Problem Statement: This study aims to evaluate deep learning 

methods for binary classification of hepatic steatosis using ultrasound images. 

Methodology: Open-source data is used to prepare three groups (A, B, C) of ultrasound 

images in different sizes. Images are augmented using seven pre-processing approaches 

(resizing, flipping, rotating, zooming, contrasting, brightening, and wrapping) to increase 

image variations. Seven CNN classifiers (EfficientNet-B0, ResNet34, AlexNet, 

DenseNet121, ResNet18, ResNet50, and MobileNet_v2) are evaluated using stratified 10-

fold cross-validation. Six metrics (accuracy, sensitivity, specificity, precision, F1 score, and 

MCC) are employed, and the best-performing fold epochs are selected. Experiments and

Results: The study evaluates seven models, finding EfficientNet-B0, ResNet34,

DenseNet121, and AlexNet to perform well in groups A and B. EfficientNet-B0 shows the

best overall performance. It achieves high scores for all six metrics, with accuracy rates of

98.9%, 98.4%, and 96.3% in groups A, B, and C, respectively. Discussion and Conclusion:

EfficientNet-B0, ResNet34, and DenseNet121 exhibit potential for classifying fatty liver

ultrasound images. EfficientNet-B0 demonstrates the best average accuracy, specificity, and

sensitivity, although more training data is needed for generalization. Complete and medium-

sized images are preferred for classification. Further evaluation of other classifiers is

necessary to determine the best model.
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1. INTRODUCTION

Artificial intelligence (AI) and its methodologies have 

become increasingly important in medicine with the 

emergence of Big Data. Although the concept of AI was first 

proposed in the 1950s [1], recent technological advancements 

have resulted in breakthroughs. AI refers to computer 

programs that attempt to replicate human cognitive functions 

such as learning and problem-solving. Machine learning (ML), 

developed as a subfield of AI, initially processed data to 

construct algorithms capable of detecting patterns of behavior 

from which predictive models could be built. Numerous 

studies in the field of medicine have utilized a variety of ML 

approaches, including support vector machines (SVMs), 

artificial neural networks (ANNs), and classification and 

regression trees [2]. However, over the past decade, 

technological advancements have resulted in the emergence of 

deep learning (DL) as a new machine learning (ML) model for 

developing multi-layered neural network algorithms. 

Techniques such as convolutional neural networks (CNN), a 

multilayer of ANNs that has proven to be extremely useful for 

image analysis [3, 4]. 

AI's potential to revolutionize healthcare is increasingly 

evident as it analyzes vast amounts of medical data [5]. In 

medicine, AI has been frequently used in fields that require the 

interpretation of imaging data, such as ultrasonography [6], 

radiology [7], dermatology [8], pathology [9], and 

ophthalmology [10]. The emergence of AI may address 

healthcare professionals' quest for increased efficacy and 

efficiency in clinical work. One area of medicine where AI has 

been applied is in diagnosing and monitoring nonalcoholic 

fatty liver disease (NAFLD), a common liver abnormality 

found in a substantial percentage of obese people [11]. 

NAFLD is described as fat build-up in more than 5% of liver 

cells, and it is linked to an increased risk of hepatic cirrhosis 

and hepatocellular carcinoma, as well as increased 

cardiovascular morbidity and death in afflicted individuals [12, 

13].  

The reference standard for direct liver steatosis 

measurement in hepatic tissue samples is liver biopsy [14]. 
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However, the biopsy is an expensive and intrusive process 

with a significant risk of major consequences, such as 

discomfort, hemorrhage, and, in rare circumstances, death [14]. 

As a result, liver biopsy is not regarded as a straightforward or 

ideal method of assessing and monitoring the progression of 

common liver illnesses. Therefore, non-invasive liver imaging 

technologies such as computed tomography (CT), magnetic 

resonance imaging (MRI), and ultrasound (US) have received 

a lot of attention [15].  

To diagnose NAFLD, many indexes have been suggested. 

For example, the controlled attenuation parameter (CAP) 

identifies hepatic steatosis with reasonable accuracy but fails 

to identify mild steatosis or quantify steatosis [16-18]. The 

fatty liver index (FLI), a blood-based diagnostic based on body 

mass index (BMI), waist circumference, gamma-glutamyl 

transferase, and triglycerides, has been proposed as a suitable 

marker for identifying people at risk of fatty liver disease [19]. 

The hepatorenal index (HRI) is a promising steatosis marker 

for US images that initially showed outstanding accuracy for 

the detection of any steatosis (5%) [20]. Because of its non-

invasiveness, low cost, and widespread availability, US 

imaging may be the preferable method for screening hepatic 

steatosis. 

Physicians typically use medical images to discover, 

describe, and monitor illnesses. Visual assessment can be 

incorrect and subjective. Instead of qualitative reasoning, AI 

can do a quantitative assessment by automatically detecting 

imaging data [21]. As a result, AI can assist clinicians in 

making more accurate and reproducible imaging diagnoses 

while significantly reducing effort.  

While applying AI in numerous disciplines of medicine has 

demonstrated promising results, the technology has limitations. 

For example, the multistage nature of ML models can affect 

the accuracy of the outcome. Thus, it is critical to examine 

each module in the model to isolate the negative impact of 

targeted modules and enhance the outcome per-formance. In 

addition, other factors, such as the retroactive nature of many 

of the studies, the use of unsuitable databases with inherent 

bias, cost-effectiveness, health authority regulations, and 

ethical considerations, must be paid attention to.  

Addressing the existing gap in the literature, this study aims 

to investigate the methodologies used to interpret, manage, 

and categorize US images for fatty liver disease, specifically 

focusing on hepatic steatosis. Despite the presence of prior 

research utilizing artificial intelligence (AI) for nonalcoholic 

fatty liver disease (NAFLD) [22], there is a notable absence of 

studies exploring the specific methodologies employed for the 

interpretation and classification of US images. Our research 

comprehensively explores and identifies the most effective 

methods for accurately classifying hepatic steatosis. The 

significance of this study lies in its contribution to the field by 

addressing this gap and providing valuable insights into the AI 

methods employed for the binary classification of hepatic 

steatosis. 

 

 

2. MATERIALS AND METHODS 

 

In this Materials and Methods section, which is a crucial 

part of our study, provides a detailed description of the 

experimental design and methodology used to obtain the 

results presented in this paper. Here, we comprehensively 

describe the materials and methods used to analyze a dataset 

of images using various classifiers. The section includes the 

data description, image pre-processing techniques, various 

classifiers, a description of the stratified k-fold cross-

validation technique, network training process, and methods 

used to evaluate the performance of the models, including 

accuracy, sensitivity, specificity, precision, F-1 score, and 

Matthews correlation coefficient (MCC). The purpose of this 

detailed account of our methodology is to allow readers to 

understand the experimental design and to reproduce the result 

presented in this paper. 

 

2.1 Dataset description 

 

The dataset used in our study consists of 55 B-mode images 

with dimensions of 434 × 636 pixels, obtained from severely 

obese patients admitted for bariatric surgery at the Department 

of General, Transplant, and Liver Surgery, Medical University 

of Warsaw, Poland. The patients in the dataset are 55 severely 

obese individuals with a mean age of 40.1±9.1 and a mean 

BMI of 45.9±5.6. 20% of the patients are male. The ultrasound 

data was acquired using a GE Vivid E9 Ultrasound System 

with a sector probe operating at 2.5 MHz. The liver is 

considered fatty if the hepatic steatosis exceeds 5%. The 

dataset is publicly available and can be accessed via the 

Zenodo repository. However, the dataset does not provide 

specific information about the number of malignant and 

benign images or the clinical characteristics of the patients 

[23]. Figure 1 illustrates an example of the images included in 

the dataset. 

 

 
(A)  

 
(B) 

 

Figure 1. A normal image liver image in (A) and an 

abnormal liver image in (B) 

 

2.2 Images groups 

 

The initial set (group A) was used to create two more sets 

of images of various sizes that may be used to both train and 

test the classification models. A qualified sonographer was 

employed to identify regions of interest (ROIs) in each image. 

The sonographer's role is to create images of the body's 

internal structures. This data can then be used to train and 

develop CNN algorithms for medical diagnosis, disease 

detection, and other applications. Therefore, sonographers 

1782



 

must know anatomy, physiology, US physics, and 

instrumentation. Each ROI was then cropped in two steps, 

each with a different size. Fifty-five 180 × 180-pixel images 

(group B) and hundred and sixty-five 32 × 32-pixel images 

(group C) were cropped using ImageJ, an image processing 

application created at the National Institutes of Health and the 

Laboratory for Optical and Computational Instrumentation 

(LOCI, University of Wisconsin) [24]. The sizes of the images 

were selected because they were frequently used in similar 

studies that discussed AI in US for diagnosing NAFLD [22]. 

Figure 2 shows images from Group B and Group C. 
  

 
Sample image from group 

B 

 
Sample image from group 

C 
 

Figure 2. 128 × 128 and 32 × 32 size images 

 

2.3 Image pre-processing 

 

Variations of an image can be generated using several 

transformations. Seven image pre-processing approaches were 

individually used on each image group (A, B, and C) to 

augment the images. We chose these approaches since they are 

the most utilized ones in similar studies [22]. Following the 

application of the process, the number of images in groups A 

and B increased to 440 and to 1,320 in group C. The seven 

methods utilized to pre-process the three image sizes are 

briefly described below. 

 

2.3.1 Resizing 

Resizing images is a crucial pre-processing step in computer 

vision. Downscaled images can improve efficiency and 

accuracy, as they contain less detail and enable faster training. 

Resizing also facilitates analysis and interpretation by 

standardizing image sizes for easier comparison. While full 

resolution images can increase computation time and reduce 

performance, downscaled images can be beneficial, 

particularly for large datasets or limited computing power. 

Overall, resizing images can enhance the effectiveness of 

machine learning models. [25]. We discuss the effect of 

resizing on the performance metrics of the deep learning 

models later in this study. 

 

2.3.2 Flipping 

Flipping is a common data augmentation technique used in 

computer vision tasks. Flipping an image involves reversing it 

along a horizontal or vertical axis. A horizontal flip is on the 

vertical axis, and a vertical flip is on the horizontal axis. 

Horizontal flip augmentation, utilized in this work, involves 

reversing all the rows and columns of image pixels 

horizontally. Horizontal flipping contributes to the model's 

ability to learn invariant features. Flipping can also help 

increase the model's robustness to noise and artifacts present 

in the images [26]. Figure 3 shows an image that has been 

flipped. 

 
 

Figure 3. Flipped normal image 

 

2.3.3 Rotating 

Random rotation augmentation randomly rotates an entire 

image's pixels from 0 to 360 degrees. Minor image rotations 

can significantly alter a classifier’s performance, positively or 

adversely, without requiring extra data collection. 

Furthermore, introducing purposeful defects helps the model 

understand what an item typically looks like. The inclusion of 

random rotations in the training process allows the model to 

become more robust to variations in the orientation and 

alignment of fatty liver ultrasound images [27]. Figure 4 

shows an image that has been rotated. 

 

 
 

Figure 4. Rotated normal image 

 

2.3.4 Zooming 

Zoom augmentation is used to randomly zoom into an 

image at various levels and may add additional pixels to the 

image. Random zooming is a type of regularization approach 

used for training datasets. Random zooming increases training 

variability and reduces model overfitting [28]. Figure 5 shows 

an image created after randomly zooming in on part of an 

image. 

 

 
 

Figure 5. Zoomed diseased image 

 

2.3.5 Contrast enhancement 

The distinction between light and dark pixels determines an 

image's contrast. While high-contrast images include vivid 

highlights and strong shadows, low-contrast images have a 
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limited range of luminance. Contrast augmentation may create 

new images from old ones while preserving relative shapes 

and sizes of items in the images, which are commonly lost 

when using most traditional image augmentation techniques. 

The accuracy of deep learning models is increased by contrast 

enhancement, which highlights intensity variations in tissues 

and reveals patterns for differentiating between normal and 

fatty liver tissues [29]. Figure 6 shows an image after 

processing the contrast. 

 

 
 

Figure 6. Contrasted diseased image 

 

2.3.6 Brightening 

The goal of brightness augmentation is to allow a model 

trained on diverse illumination conditions to generalize across 

images. Brightness boosts the image's overall brightness, 

whereas contrast modifies the contrast between the darkest and 

brightest colors. Brightening augmentation standardizes 

lighting conditions in a dataset, enhancing the model's 

exposure to real-life brightness variations and highlighting 

subtle grayscale differences, potentially aiding in fatty liver 

classification patterns [30]. Figure 7 shows an image with 

brightness modification. 

 

 
 

Figure 7. Brightened normal image 

 

 
 

Figure 8. Wrapped normal image 

 

2.3.7 Wrapping 

Image wrapping is used to increase the accuracy of image 

recognition models by adding geometric distortions to an 

image. An existing image is wrapped around a 3D object, like 

a cube or sphere, to produce a new image. The new image may 

then be fed to a model as input, enabling the model to gain 

knowledge from a broader range of data to boost its accuracy. 

The demand for massive datasets can be alleviated by using 

image-wrapping augmentation to provide synthetic data for 

training models [31]. Figure 8 is an example of a wrapped 

image. 

 

2.4 Classifiers 

 

Deep learning (DL) classifiers are a particular ML 

algorithm that categorizes data using many ANN layers. Deep 

learning classifiers are utilized for applications that need 

supervised learning, including object detection, image 

classification, and natural language processing. Deep learning 

classifiers can learn complicated patterns from enormous 

volumes of data and make predictions about unknown data 

[32]. Convolutional neural networks (CNNs) are DL neural 

networks that interpret visual information. Convolutional 

neural networks' primary applications are image recognition 

and classification. Convolutional neural networks analyze 

images and extract features by combining convolutional, 

pooling, and fully connected layers [33]. In this study, we 

applied seven different types of CNN classifiers to the three 

image sets. In the following, we describe the classifiers and 

provide a motivation for their inclusion in this study. 

 

2.4.1 ResNet50 

Microsoft Research created ResNet50, a deep CNN 

architecture presented in the 2015 ImageNet competition by 

Kaiming et al. [34]. ResNet50 is a 50-layer deep residual 

network containing 50 layers of neurons and residual links that 

not only allow the network to recycle features learned earlier 

in the network. It is a deep convolutional neural network that 

can effectively capture complex image features and 

hierarchical representations. The residual connections in 

ResNet50 address the “vanishing gradient” problem, making 

it easier to train deeper networks. ResNet50 has been trained 

on over one million images from the ImageNet dataset, 

enabling it to leverage pre-trained weights and transfer 

learning for various computer vision tasks. However, its 

computational complexity due to its depth and the large 

number of parameters can make training and inference slower, 

and it requires a considerable amount of memory, limiting its 

suitability for resource-constrained environments. 

Nevertheless, ResNet50's high representational capacity 

and ability to leverage pre-trained weights make it a strong 

candidate for hepatic steatosis classification, where subtle 

visual cues may play a crucial role in accurate diagnosis. Its 

deep architecture can effectively capture intricate features in 

ultrasound images and extract discriminative features related 

to hepatic steatosis [35]. 

 

2.4.2 ResNet34 

ResNet34 is a 34-layer neural network that has been trained 

on the ImageNet dataset, employing deep residual learning for 

various applications such as semantic segmentation, object 

detection, and image classification [34]. It strikes a balance 

between model complexity and computational efficiency, 

retaining the advantages of residual connections for effective 

gradient flow and facilitating the training of deeper models. 

Although it is less computationally demanding than ResNet50, 

ResNet34 still has a significant number of parameters, which 
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may limit its deployment in resource-constrained 

environments. Additionally, its reduced depth compared to 

ResNet50 might lead to slightly lower performance on 

complex image classification tasks. However, ResNet34 

remains a suitable choice for hepatic steatosis classification as 

it can capture meaningful features and leverage pre-trained 

weights, contributing to accurate ultrasound image 

classification. 

 

2.4.3 ResNet18 

ResNet18 is a lightweight variant of the ResNet architecture, 

making it computationally efficient and memory-friendly. It 

benefits from residual connections, enabling effective gradient 

propagation and training of deeper models. Like ResNet50 and 

ResNet34, ResNet18 has been trained on the ImageNet dataset, 

allowing for transfer learning [34]. However, the reduced 

depth of ResNet18 may limit its ability to capture highly 

intricate features compared to deeper architectures like 

ResNet50 and ResNet34. It may not perform as well as deeper 

models on complex image classification tasks. Nevertheless, 

ResNet18's lightweight nature and computational efficiency 

make it a potential candidate for hepatic steatosis classification, 

especially in resource-constrained environments. It can still 

capture essential image features related to hepatic steatosis and 

provide reliable results. 

 

2.4.4 AlexNet 

AlexNet, proposed by Krizhevsky et al. [36] is another 

CNN that gained significant attention in the field of computer 

vision. It won the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) 2012. AlexNet has a relatively simple 

architecture compared to more recent models, making it 

computationally efficient and faster to train. It comprises five 

convolutional layers, three fully linked layers, and one final 

output layer. AlexNet has demonstrated good performance in 

various image classification tasks, including the ImageNet 

challenge. However, compared to more modern architectures, 

AlexNet may have limitations in capturing highly complex 

and intricate image features. It may also be prone to overfitting 

when applied to smaller datasets due to its large number of 

parameters. While AlexNet can be suitable for the hepatic 

steatosis classification task, considering its early success in 

image classification, it may be worth exploring newer models 

to potentially achieve higher accuracy, given the availability 

of more advanced architectures. 

 

2.4.5 MobileNet_v2 

MobileNet_v2 is a lightweight CNN geared toward mobile 

and embedded vision applications. It is an upgraded version of 

the original MobileNet architecture, designed to minimize 

computational complexity while preserving accuracy. 

MobileNet_v2 achieves this by reducing parameters and 

calculations in depth-wise separable convolutions, resulting in 

a more efficient model [37]. Its advantages include being 

specifically designed for mobile and resource-constrained 

devices, striking a good balance between model size and 

accuracy, and utilizing depth-wise separable convolutions to 

reduce parameters and computational requirements. It 

achieves relatively high accuracy while optimized for 

deployment on devices with limited computational power. 

However, compared to larger models, MobileNet_v2 may 

have limitations in capturing fine-grained details and intricate 

image features, and it may not perform as well as larger models 

on tasks requiring high precision or dealing with complex 

image variations. Nevertheless, MobileNet_v2 is suitable for 

the hepatic steatosis classification task, given the preference 

for low-cost and resource-efficient methods in ultrasound-

based screening. Its optimized design and efficient inference 

make real-time analysis and deployment on mobile or edge 

devices practical. 

 

2.4.6 DenseNet121 

Huang et al. [38] created the CNN architecture known as 

DenseNet121 in 2017. A DL architecture of this kind uses 

numerous connections between layers to enhance information 

flow and minimize the number of parameters. Each layer in 

the 121-layer DenseNet121 design is linked to every other 

layer in a feed-forward method. This architecture has produced 

cutting-edge results for image classification applications on 

several datasets. DenseNet121 is a densely connected 

convolutional neural network that encourages feature reuse 

and facilitates gradient flow throughout the network. Its dense 

connectivity patterns allow for better information propagation 

and feature extraction, leading to improved accuracy. 

DenseNet121 has demonstrated strong performance on 

various image classification tasks and is widely used in the 

computer vision community. However, DenseNet121 has a 

relatively larger number of parameters compared to some 

other models, making it computationally more expensive. 

Training a DenseNet121 model from scratch may require a 

larger amount of data and computational resources. 

Nevertheless, DenseNet121 can be well-suited for the hepatic 

steatosis classification task, given its ability to capture intricate 

image features and achieve high accuracy. If a considerable 

amount of labeled training data is available, DenseNet121 can 

provide robust performance in identifying hepatic steatosis 

from ultrasound images. 

 

2.4.7 EfficientNet-B0 

Google A.I. developed the EfficientNet family of CNN 

architectures through network architecture search, aiming to 

optimize the trade-off between input resolution, network depth, 

and width. EfficientNet-B0, part of this family, enhances 

accuracy and efficiency while minimizing computational costs. 

It utilizes depth-wise separable convolutions, squeeze-and-

excitation blocks, and compound scaling to capture diverse 

image features effectively. EfficientNet-B0 has demonstrated 

state-of-the-art performance in image classification 

benchmarks, maintaining a compact model size. However, 

compared to smaller models, it may have slightly higher 

computational requirements, and training from scratch may 

necessitate a larger labeled dataset. Nonetheless, it proved 

successful in the classification task, outperforming other 

models in terms of accuracy and evaluation metrics. Its 

balance of accuracy and efficiency makes it a strong candidate 

for automated analysis of ultrasound images for hepatic 

steatosis screening [39]. 

 

2.5 Stratified k-fold cross-validation 

 

K-fold cross-validation can be used to combat the 

detrimental effects of small input data sets. By dividing the 

data into k folds and stratifying (or balancing) each fold 

according to the target variable, an ML model can be evaluated 

using the stratified k-fold cross-validation approach. This 

approach allows the model to use more significant amounts of 

data (k-1 folds) while still offering statistically significant 

validation on the left-out fold. As a result, k-fold cross-
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validation minimizes bias and variance in the model 

assessment process by ensuring that each fold is representative 

of the whole dataset [40]. Generalized Cross-Validation (GCV) 

is a useful technique for testing different combinations of 

parameter values and selecting the best results, especially 

when analyzing data with outliers and multicollinearity 

problems. Roozbeh et al. found that using GCV allowed them 

to simultaneously optimize multiple parameters in the 

prediction model, making the model more accurate and 

effective. Therefore, GCV can be a useful tool for improving 

the performance of a prediction model [41]. However, GCV 

and cross-validation (CV) are more general types of validation 

methods that do not consider the class distribution of the 

dataset. They may not be as effective for prediction purposes 

when dealing with imbalanced datasets, as they can lead to 

biased models that are overly focused on the majority class. In 

contrast, stratified cross-validation is particularly useful for 

prediction tasks when dealing with imbalanced datasets. K-

fold cross-validation has several advantages over other model 

evaluation techniques, such as allowing the use of all the data 

for training and testing, reducing variance, and being more 

computationally efficient. To compare the performance of the 

proposed criteria with other criteria, we use metrics such as 

accuracy, precision, recall, and F1-score. Our results show that 

the proposed criteria outperformed the traditional k-fold cross-

validation in terms of accuracy, precision, recall, and F1-score. 

This suggests that the proposed criteria are a competitive 

choice over other criteria for model evaluation and comparison. 

 

2.6 Network training 

 

For this study, we unify the values of different training 

parameters in all 21 experiments to compare the results among 

different image sizes and classifiers. The values were 

evaluated based on preliminary investigations, prior 

experiences, or published studies. We split the dataset into two 

parts. We use 20% for validation and 80% for training. In 

addition, we set the batch size to eight. Ten folds are used for 

cross-validation, and 20 epochs are used in each fold. The 

learning rate ranges between 1 × 10−6  and 1 × 10−3  for all 

the experiments, using learning rate scheduling. The learning 

rate and patch number were adjusted based on the model's 

performance during training. Monitoring performance metrics 

such as accuracy and loss during training is essential for 

making informed decisions. 

This study utilizes Google Colaboratory ("Colab" for short). 

This web-based Jupyter interface provides a runtime for DL 

and free-of-charge access to a Graphics Processing Unit 

(GPU), such as Tesla K80 or Tesla T4, with 12 to 16 GB of 

dedicated video memory. Colab’s default virtual machines 

also provide pre-installed common deep learning and data 

science modules, specifically including FastAI, a high-level 

API for transfer learning. FastAI offers a convenient interface 

for building and training neural networks and accessing pre-

trained models for image classification, tools for data 

augmentation, model selection, and hyperparameter tuning. 

 

2.7 Model evaluation 

 

Deep learning model assessments determine how well a DL 

model performs on a given dataset. This process entails 

measuring some metrics to see how effectively the model 

performs. In this study, we use six metrics to evaluate each 

model. The metrics' findings are based on picking the best 

overall fold epoch outcomes and averaging them. 

In this study, the metric equations make use of several 

concepts, including the distinction between a "normal" (-Ve) 

image and an "abnormal" (+Ve) image, as determined by the 

biopsy results. There are only four possible outcomes for each 

image: true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN). The cases are as follows: TP—

the image is "abnormal," and the prediction is +Ve; TN—the 

image is "normal," and the prediction is -Ve; FP—the image 

is "normal," and the prediction is +Ve; and FN—the image is 

"abnormal," and the prediction is -Ve. 

 

2.7.1 Accuracy 

Accuracy measures how accurately a model can predict the 

correct outcome. It is calculated by dividing the number of 

correct predictions by the total number of predictions: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) 

 

2.7.2 Sensitivity 

Sensitivity measures how well a model can identify positive 

outcomes. It is calculated by dividing the number of true 

positives (TP; correctly identified positive outcomes) by the 

total number of actual positives (all positive outcomes): 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 
 

2.7.3 Specificity 

Specificity measures how well a model can identify 

negative outcomes. It is calculated by dividing the number of 

true negatives (TN; correctly identified negative outcomes) by 

the total number of actual negatives (all negative outcomes): 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) 
 

2.7.4 Precision 

Precision measures how precise a model's predictions are. It 

is calculated by dividing the number of true positives (TP; 

correctly identified positive outcomes) by the total number of 

predicted positives (all predicted positive outcomes): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)  
 

2.7.5 F1 score 

The F1 score is a measure that combines both Precision and 

Sensitivity into one metric. It is calculated as the harmonic 

mean of precision and recall, and ranges from 0 to 1, with 1 

being perfect accuracy: 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/(𝑅𝑒𝑐𝑎𝑙𝑙 +
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)  

 

2.7.6 Matthews Correlation Coefficient (MCC) 

MCC is a measure that combines accuracy, sensitivity, 

specificity, precision, and F1 score into one metric. It ranges 

from -1 to 1, with higher values indicating better performance: 

 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)2   

 

 

3. RESULTS AND DISCUSSION 

 

In this work, we developed a working technique, wherein 
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three sets of various-sized images were created to determine 

which is better at diagnosing disease. Seven additional 

processing techniques were used on the images to increase 

quantity and training variety, lessen overfitting, and achieve 

other objectives. We also considered seven DL classifiers with 

encouraging classifying image results reported in scientific 

publications. A stratified k-fold cross-validation strategy was 

utilized, with 20 folds and 20 epochs, to prevent issues such as 

overfitting and data leaking and to make the best use of the 

data. Six metrics of the best epoch in each fold were averaged. 

 

Table 1. Results for Group A 

 

Model 
Average 

Accuracy 

Average 

Sensitivity 
Average Specificity 

Average 

Precision 
Average F1 Score Mean of MCC 

EfficientNet-B0 0.989 0.986 0.990 0.979 0.982 0.974 

ResNet34 0.967 0.936 0.982 0.963 0.946 0.926 

AlexNet 0.948 0.868 0.985 0.966 0.909 0.880 

Densnet121 0.945 0.936 0.949 0.897 0.914 0.876 

ResNet18 0.939 0.861 0.975 0.944 0.896 0.859 

ResNet50 0.910 0.868 0.930 0.860 0.860 0.860 

MobileNet_v2 0.806 0.732 0.839 0.682 0.700 0.564 

 

Table 2. Results for Group B 

 

Model 
Average 

Accuracy 
Average Sensitivity 

Average 

Specificity 

Average 

Precision 
Average F1 Score Mean of MCC 

EfficientNet-B0 0.984 0.996 0.979 0.956 0.976 0.965 

ResNet34 0.926 0.918 0.930 0.864 0.888 0.836 

ResNet18 0.919 0.907 0.925 0.848 0.874 0.818 

DensNet121 0.904 0.882 0.915 0.828 0.853 0.785 

AlexNet 0.846 0.704 0.911 0.785 0.738 0.635 

ResNet50 0.844 0.771 0.877 0.756 0.755 0.650 

MobileNet_v2 0.764 0.454 0.907 0.695 0.532 0.413 

 

Table 3. Results for Group C 
 

Model Average Accuracy Average Sensitivity Average Specificity Average Precision Average F1 Score Mean of MCC 

EfficientNet-B0 0.9634 0.9220 0.9820 0.9548 0.9317 0.9126 

Densnet121 0.7223 0.1390 0.9836 0.7619 0.2265 0.2347 

MobileNet_v2 0.7200 0.1988 0.9536 0.6830 0.2983 0.2447 

ResNet18 0.7147 0.2159 0.9383 0.6434 0.2963 0.2217 

ResNet34 0.7000 0.0951 0.9710 nan 0.1510 0.1448 

ResNet50 0.6992 0.1622 0.9399 0.5374 0.2400 0.1575 

AlexNet 0.6958 0.0756 0.9738  nan 0.1294 0.1178 

 

Table 4. Results of the EfficientNet-B0 classifier 
 

Image Size Average Accuracy Average Sensitivity Average Specificity Average Precision Average F1 Score Mean of MCC 

Group A 0.989 0.986 0.990 0.979 0.982 0.974 

Group B 0.984 0.996 0.979 0.956 0.976 0.965 

Group C 0.963 0.922 0.982 0.955 0.932 0.913 

 

Table 5. Results of the ResNet34 

 

Image Size Average Accuracy Average Sensitivity Average Specificity Average Precision Average F1 Score Mean of MCC 

Group A 0.967 0.936 0.982 0.963 0.946 0.926 

Group B 0.926 0.918 0.930 0.864 0.888 0.836 

Group C 0.700 0.095 0.971 NaN 0.151 0.145 

 

Table 6. Results of the AlexNet classifier 

 

Image Size Average Accuracy Average Sensitivity Average Specificity Average Precision Average F1 Score Mean of MCC 

Group A. 0.948 0.868 0.985 0.966 0.909 0.880 

Group B 0.846 0.704 0.911 0.785 0.738 0.635 

Group C 0.696 0.076 0.974  NaN 0.129 0.118 

 

Table 7. Results of the Densnet121 classifier 
 

Image Size Average Accuracy Average Sensitivity Average Specificity Average Precision Average F1 Score Mean of MCC 

Group A 0.945 0.936 0.949 0.897 0.914 0.876 

Group B 0.904 0.882 0.915 0.828 0.853 0.785 

Group C 0.722 0.139 0.984 0.762 0.226 0.235 
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Table 8. Results of the Mobilnet_v2 classifier 

 

Image Size Average Accuracy Average Sensitivity Average Specificity Average Precision Average F1 Score Mean of MCC 

Group A 0.806 0.732 0.839 0.682 0.700 0.564 

Group B 0.764 0.454 0.907 0.695 0.532 0.413 

Group C 0.720 0.199 0.954 0.683 0.298 0.245 

 

Table 9. Results of the ResNet18 

 

Image Size Average Accuracy Average Sensitivity Average Specificity Average Precision Average F1 Score Mean of MCC 

Group A 0.939 0.861 0.975 0.944 0.896 0.859 

Group B 0.919 0.907 0.925 0.848 0.874 0.818 

Group C 0.715 0.216 0.938 0.643 0.296 0.222 

 

Table 10. Results of the ResNet50 

 

Image Size Average Accuracy Average Sensitivity Average Specificity Average Precision Average F1 Score Mean of MCC 

Group A 0.910 0.868 0.930 0.860 0.860 0.860 

Group B 0.844 0.771 0.877 0.756 0.755 0.650 

Group C 0.699 0.162 0.940 0.537 0.240 0.158 

Table 1 shows the results of the seven classifiers on the full 

images. The accuracy, sensitivity, specificity, precision, F1 

score, and MCC of the EfficientNet-B0, ResNet34, 

Densnet121, and AlexNet models are all very high. These 

results indicate that the models perform well and can 

accurately classify digital ultrasound images. In addition, our 

data augmentation approach allows us to train generalizing 

models with smaller datasets, which if of high importance for 

many medical applications. These models outperformed 

traditional image analysis and classification techniques, such 

as manual interpretation by medical professionals or rule-

based algorithms. The implications of these findings are 

significant, as they suggest that DL classifiers can provide 

accurate and efficient diagnoses for various diseases using 

digital ultrasound images. This could improve patient 

outcomes by enabling earlier detection and treatment of 

diseases. However, considering other factors, such as the 

model's interpretability, robustness, and computational 

efficiency, is crucial when selecting a model for a 

classification task. 

Table 2 shows the results of the seven classifiers on the 128 

× 128-pixel images. AlexNet and the other classifiers show a 

varying decrease in performance compared to their results on 

the full images. However, the accuracy, sensitivity, specificity, 

precision, F1 score, and MCC are still very high for 

EfficientNet-B0, ResNet34, and ResNet18, which indicates 

that the models still perform well and can accurately classify 

digital ultrasound images. This suggests that DL classifiers can 

potentially be used for disease diagnosis even with lower-

resolution images, which can be beneficial when high-

resolution images are not available or feasible, especially 

considering the higher computational requirements to train and 

predict using large images. However, the robustness of these 

models can be affected by variations in image quality, such as 

differences in lighting or image artifacts, which can lead to 

misclassifications. This can concern medical professionals 

who need to understand the reasoning behind a diagnosis to 

make informed treatment decisions. it is important to note that 

these results are specific to the dataset and classification task 

used in the study. The performance of these models may vary 

depending on the type of disease or imaging modality being 

analyzed, and further research is needed to understand the 

potential of DL classifiers in disease diagnosis fully. 

Table 3 shows the results of the seven classifiers on the 32 

× 32-pixel images. The accuracy, sensitivity, specificity, 

precision, F1 score, and MCC are very high for EfficientNet-

B0, indicating that the model still performs well and can 

accurately classify binary ultrasound images. However, all the 

other classifiers show a varying decrease in performance 

compared to their results on the other two groups of images. 

Since most of the results are unacceptable, there is a need to 

focus more on the details when image sizes are small. 

However, it is important to consider the trade-off between 

image resolution and computational efficiency when selecting 

a model for a classification task. Additionally, these models' 

interpretability, robustness, and computational efficiency 

should also be considered when selecting a model for a 

classification task. 

Table 4 shows the results of the EfficientNet-B0 classifier 

on the three groups of images. The accuracy of the 

EfficientNet-B0 model was 0.989 for group A, meaning it 

correctly identified 98.9% of the images it was tested on. The 

same can be said for groups B and C, whose results were 0.984 

and 0.963, respectively. The average sensitivity of the 

Efficient-Net-B0 model on group A image was 0.986, which 

means that it correctly identified 98.6% of the positive cases 

(i.e., those with a disease). Also the same can be said for 

groups B and C, whose results were 0.996 and 0.922, 

respectively. The specificity of the EfficientNet-B0 model on 

group A images was 0.990, which means that it correctly 

identified 99% of the negative cases (i.e., those without a 

disease). The same can be said for groups B and C, whose 

results were 0.979 and 0.982, respectively. The precision of 

the EfficientNet-B0 model on group A images was 0.979, 

which means that out of all the cases it predicted as positive, 

97.9% were positive. Again, the same can be said for groups 

B and C, whose results were 0.956 and 0.955, respectively. 

The F1 score measures the model's accuracy and precision and 

indicates how well it can distinguish between positive and 

negative cases. The EfficientNet-B0 model's F1 score for 

group A, B, and C images were 0.982, 0.976, and 0.932, 

respectively. Finally, Matthew’s Correlation Coefficient 

(MCC) for the Efficient-Net-B0 model on group A images 

measures the model's ability to classify both positive and 

negative cases correctly and indicates how well it can 

distinguish between them, which was 0.974. Groups B and C 

had similar results, with 0.965 and 0.913, respectively. As 

demonstrated later in this study, EfficientNet-B0 delivers 
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better inference on all image groups than the other classifiers 

but is slower in training, which may influence subsequent 

deployment. 

Table 5 shows the results of the ResNet34 classifier on the 

three groups of images. The average accuracy, sensitivity, and 

specificity of groups A and B scored high. On the other hand, 

the values for average precision and average F1 Score for 

group B decrease compared to group A, which indicates a 

reduction in the classifier's ability to distinguish different 

classes in smaller image sizes. By contrast, all the metrics 

scored very low for group C images. This fact is evidence that 

the ResNet34 classifier cannot binarily classify very small-size 

ultrasound images with the described model parameters. This 

verity is more evident due to the NaN value achieved for 

precision. NaN is not a valid value for accuracy and indicates 

an error in the data or an issue with the classifier. 

Although Densnet121, ResNet18, ResNet50, and AlexNet 

all had similar results for the group A and group B images, 

they were less efficient than EfficientNet-B0 and Res-Net34. 

Except for EfficientNet-B0 and ResNet34, all classifiers 

performed poorly on group C images. Tables 6, 7, 8, 9, and 10 

include the metrics' results for the three image groups for 

AlexNet, Densnet121, MobileNet_v2, Densnet18, and 

ResNet50, respectively. 

A learning curve is a graphical representation of a model's 

performance over time. The curves in Figures 9–11 were 

created by graphing the model's training and validation 

performance measures, such as accuracy and loss, against the 

number of training epochs. These metrics were collected 

during the k-fold cross-validation process, which separated the 

dataset into k subsets. To produce the learning curves, the 

average training and validation performance metrics over the 

k folds were computed and shown for each epoch. These 

curves give useful information about the model's performance 

as well as potential overfitting or underfitting concerns during 

training. Curve may be used to identify regions of a model that 

are underperforming and to decide whether model adjustments 

are required. A learning curve may also be used to compare 

various models, determine which performs best, and determine 

how effectively a model generalizes to previously unknown 

data [42]. In this study, the learning curves show that most 

classifiers cannot easily learn from the training dataset of 

group C images. Figure 9A shows AlexNet was an underfit 

model for analyzing group C images. The flat line indicates 

that the model could not learn the training dataset easily. After 

increasing the number of epochs, the model failed to transition 

from underfitting to overfitting, which indicates that this 

model should be rejected for this application. Notice that with 

group C images AlexNet results in a NaN result, showing the 

weakness of the classifier with this set of images. The same 

behavior can be seen with most classifiers. Figure 9B 

illustrates that even EfficientNet-B0 exhibits a similar pattern, 

indicating that extremely tiny images may require additional 

arrangements, such as adding regularization or tuning the 

hyperparameter, to remove underfitting.  

In contrast, EfficientNet-B0 fits well with the full images in 

Figure 10A. In addition, Densnet121 shows good fitting in 

Figure 10B despite the noise and fluctuations, which indicate 

less stability compared to EfficientNet-B0. 

When analyzing learning curves, an unrepresentative 

validation dataset is a concern. Validation loss with noisy 

movements around the training loss or lower than the training 

loss suggests that the validation dataset does not give enough 

information to evaluate the model's generalization ability. 

Figure 11 shows examples of curves that indicate an unrepre-

sentative validation dataset. 

 

 
(A) 

 
(B) 

 

Figure 9. Learning Curve for: (A) the ninth fold of AlexNet 

and (B) the seventh fold of Efficient-Net-B0 on 32x32 sized 

images 

 

 
(A) 

 
(B) 

 

Figure 10. Learning Curve for: (A) the fourth fold of 

EfficientNet-B0 and (B) the eighth fold of Densnet121 on 

full-sized images 

1789



 

 
(A) 

 
(B) 

 

Figure 11. Learning Curve for: (A) the fifth fold of 

ResNet34 and (B) the eighth fold of ResNet18 on 128 × 128 

pixel images 

Overall, the learning curves in Figures 9-11 provide useful 

insights into the performance of different classifiers on 

different-sized images. The patterns observed in these curves 

can be used to identify regions of the model that are 

underperforming and to determine whether model adjustments 

are required. Additionally, these curves can be used to 

compare different models' performance and determine which 

model performs best on a given classification task. 

The studies in Table 11 all use the same images as a dataset 

but employ different A.I. classifiers, which have varying levels 

of complexity, and achieve varying levels of accuracy. 

EfficientNet-B0 achieved an accuracy of 98.90%, the highest 

among all the studies used for the dataset, suggesting that this 

algorithm is highly effective for image classification tasks. 

Overall, the more complex A.I. classifiers achieve higher 

accuracies than simpler ones. It is also worth noting that even 

though some A.I. classifiers have higher accuracies than others, 

they may not be suitable for specific tasks due to their 

computational complexity, cost, required training time, or 

other factors. Therefore, it is essential to consider all aspects 

when selecting which A.I. classifier to use for a given task or 

dataset. The fact that the studies in the table achieved high 

levels of accuracy with a small dataset is impressive and 

suggests that A.I. classifiers can be a valuable tool for medical 

image analysis. However, it is important to note that the results 

of these studies should be validated on larger datasets and in 

clinical settings before being used in practice. 

 

 

Table 11. Accuracy summary for different models 

 

Reference Number Author A.I. Classifier Accuracy 

[23] Byra et al. support vector machine (SVM) 96.3%  

[43] Zamanian et al. SVM 98.64% 

[44] Mohammad & Almekkawy Fourier Convolutional Neural Networks (FCNN) ((6 layers)) 84.40% 

[45] Mohammad & Almekkawy Inception-ResNet-v2  98.50% 

[46] Simion et al. CNN (4 convolutional layers) 87.49% 

[47] Che multi-scale two-dimensional mid-fusion residual neural network (ResNet) 91.31% 

 Proposed Method EfficientNet-B0 98.90% 

 

Table 12. Comparison with Support Vector Machine classifier results on the same dataset 

 

Reference 

Number 
Author Cross-Validation Feature Extraction Method Classifier Accuracy Sensitivity Specificity 

[23] Byra et al. 
5-fold Leave-one-

out 
Inception-ResNet-v2 SVM 96.3% 100% 88.2% 

[43] Zamanian et al. 10-fold 
 Inception-ResNetV2, GoogleNet, AlexNet, 

ResNet101 
SVM 98.64% 97.20% 100% 

 
Proposed 

Method 
Stratified 10-fold EfficientNet-B0 

EfficientNet-

B0 
98.90% 98.6% 99.0% 

 

Table 13. Summary of our experiments. All results in %. A: Full images; B: 128 × 128 images; C: 32 × 32 images 

 
 EfficientNet-B0 ResNet34 AlexNet DensNet121 ResNet18 ResNet50 MobileNet_v2 

  A B C A B C A B C A B C A B C A B C A B C 

Accuracy 98.9 98.4 96.3 96.7 92.6 70.0 94.8 84.6 69.6 94.5 90.4 72.2 93.9 91.9 71.5 91.0 84.4 69.9 80.6 76.4 72.0 
Sensitivity 98.6 99.6 92.2 93.6 91.8 9.5 86.8 70.4 7.6 93.6 88.2 13.9 86.1 90.7 21.6 86.8 77.1 16.2 73.2 45.4 19.9 

Specifi-
city 

99.0 97.9 98.2 98.2 93.0 97.1 98.5 91.1 97.4 94.9 91.5 98.4 97.5 92.5 93.8 93.0 87.7 94.0 83.9 90.7 95.4 

Precision 97.9 95.6 95.5 96.3 86.4 nan 96.6 78.5  nan 89.7 82.8 76.2 94.4 84.8 64.3 86.0 75.6 53.7 68.2 69.5 68.3 
F1 98.2 97.6 93.2 94.6 88.8 15.1 90.9 73.8 12.9 9.14 85.3 22.6 89.6 87.4 29.6 86.0 75.5 24.0 70.0 53.2 29.8 

Mean of 

mcc 
97.4 96.5 91.3 92.6 83.6 14.5 88.0 63.5 11.8 87.6 78.5 23.5 85.9 81.8 22.2 86.0 65.0 15.8 56.4 41.3 24.5 
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Finally, and in the context of fatty liver classification, the 

authors chose Support Vector Machines (SVM) as a 

comparison point to demonstrate the superiority of deep 

learning techniques, specifically the EfficientNet-B0 model. 

However, it is important to note that SVM has its own 

advantages, such as computational efficiency and a strong 

theoretical foundation. The SVM is a popular machine 

learning algorithm used for classification and regression 

analysis. It works by finding the best hyperplane that separates 

the data into different classes, maximizing the margin between 

the two classes. SVM has been widely used in various fields, 

including image classification, text classification, and 

bioinformatics. While the comparison with SVM provides a 

useful benchmark, it is not the only possible comparison point. 

Other machine learning algorithms, such as decision trees, 

random forests, and neural networks, could also be used for 

comparison. The choice of comparison point may depend on 

the specific characteristics of the dataset and the task at hand. 

When comparing the EfficientNet-B0 model with an SVM 

classifier in terms of accuracy, sensitivity, and specificity, the 

authors found that the EfficientNet-B0 model surpassed the 

SVM classifier, as indicated in Table 12. However, it is 

important to consider that the outcome may be influenced if 

the studies being compared used different datasets, pre-

processing methodologies, model architectures, and hyper-

parameters. We also share at the end all the results from all the 

experiments in Table 13 for a comprehensive look at the work. 

 

 

4. LIMITATIONS AND CONSIDERATIONS 

 

There are various limitations to this study that should be 

noted. To begin, the results may be limited in their 

generalizability because the image dataset was created using 

open-source data, which may not be representative of the 

larger population. Additionally, because the study 

concentrated on the binary diagnosis of hepatic steatosis using 

ultrasound images, the findings may not be applicable to other 

types of liver disorders or imaging modalities. Second, 

potential bias may have been introduced during image 

collection and selection, as the study did not provide 

information on this process. To mitigate this issue, the study 

employed seven distinct image pre-processing methods to 

augment the dataset. This approach aimed to reduce the impact 

of any biases or artifacts introduced during the image 

collection and selection process. Additionally, the study 

utilized various metrics to evaluate the performance of the 

models, which further aided in mitigating the impact of any 

biases or artifacts in the dataset. Finally, by comparing the loss 

curves of different models, researchers could identify the most 

effective model with the lowest loss value. This comparison 

helped ensure that the model accurately detected hepatic 

steatosis in ultrasound images without being influenced by any 

biases or artifacts in the dataset. Third, while the study 

employed seven distinct image pre-processing methods to 

augment the dataset, some of these methods may have 

introduced bias or artifacts into the images, which may have 

influenced the results. Each image pre-processing technique 

should be examined independently to see how much of a 

positive or negative influence it has on classification results. 

Fourth, the choice of metrics may have impacted the 

evaluation of the models' performance, as various metrics may 

provide different findings. More training data is also required 

to generalize the model's output and lessen the risk of 

underfitting. Furthermore, while EfficientNet-B0 was 

discovered to be the best accurate mod-el, its computing 

efficiency should be taken into account for practical 

applications. Lastly, future research should look at different 

classifiers and EfficientNet family members to find the best 

model in terms of accuracy and computing efficiency. 

 

 

5. CONCLUSION AND FUTURE WORK 

 

Several methods were used to pre-process the NAFLD US 

images before utilizing stratified cross-validation with various 

CNN classifiers. As a result, EfficientNet-B0 had the highest 

average accuracy, specificity, and sensitivity of all the 

classifiers. This might be related to the Network Architecture 

Search behind the EfficientNet family that searches for the 

best performing architecture given a computational budget. 

EfficientNet-B0 combines CNNs and transfer learning to 

discover image patterns, the Squeeze-Excitation activation, 

which is a mechanism that recalibrates channel-wise feature 

responses, and a network's capacity.  

More training data is required to generalize models' outputs 

further. In addition, despite the image augmentation and fold 

cross-validation processes implemented to ensure maximum 

benefit of the data set, additional validation data is required to 

guarantee that models are not underfitting. Finally, this study 

discovered that tiny images are challenging to classify 

effectively; hence full and medium-sized images are 

preferable. Based on the findings of this investigation, it is 

possible to infer that EfficientNet-B0, ResNet34, and 

DensNet121 have promising potential for fatty liver U.S. 

image classification tasks. 

In the future, each image pre-processing technique should 

be examined independently to see how much of a positive or 

negative influence it has on classification results. 

Collaborating with other research groups and institutions 

could prove fruitful for acquiring additional datasets. 

Furthermore, exploring alternative imaging modalities or 

integrating other clinical data, such as blood tests or medical 

histories, could further enhance the accuracy and 

generalizability of our model in the future. Other classifiers, 

such as CNN or classic ML, must also be tested to determine 

the optimum accuracy and computing efficiency model. 

Newer and more advanced architectures such as ResNet152, 

and Inception-v4 can be investigated in future. Other members 

of the EfficientNet family such as EfficientNet-B7 can be 

examined as well. One potential benefit of using other 

members of the EfficientNet family is that they are designed 

to balance model size and accuracy, which could result in 

better performance on our task. Additionally, these models 

have good generalization capabilities, meaning they can 

perform well on a wide range of tasks and datasets. However, 

one challenge we may face is the increased computational cost 

of using larger models, which may limit our ability to train and 

evaluate these models on our current hardware. Another 

challenge is the potential for overfitting when using very large 

models, which we will need to address by carefully optimizing 

our training procedures and possibly incorporating 

regularization techniques. In addition, when many images are 

available, an image classification system that can classify 

stages of the whole disease, rather than the present binary 

classification, should be used. The shift from binary 

classification to classifying disease stages has significant 

implications for model development and real-world 
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applications. Classifying disease stages helps understand 

progression, identify early warning signs, and improve patient 

outcomes. However, this presents challenges in data collection 

and labeling, as multiple stages of the disease need to be 

collected and labeled. Additionally, adapting models to 

individual patient profiles is necessary due to disease 

progression variations among individuals. Finally, when 

assessing various methods, including CV, G.C.V., and others, 

it is advisable to compare their performance on a validation set 

or through other channels. This can be done by evaluating their 

prediction accuracy, computational efficiency, and 

interpretability. One approach is to train each method on a 

training set and then assess their performance on a separate 

validation set. Another approach is to analyze the results of 

experiments or simulations, or conduct a literature review to 

compare the prediction accuracy, computational efficiency, 

and interpretability of different methods. Ultimately, the most 

suitable approach will depend on the specific application and 

the available resources. 
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